Свойства оксидов и гидроксидов металлов

Обновлено: 04.10.2024

Нажмите, чтобы узнать подробности

презентация к уроку по теме "Оксиды и гидроксиды металлов". Урок-обобщение. Сравниваются свойства металлов 1,2,3 групп главных подгрупп и их кислородных соединений.

Просмотр содержимого документа
«Оксиды и гидроксиды металлов»

или = водород + основание (если основание не растворимо в воде)

Реакция протекает только в том случае, если

металл находится в ряду активности до водорода.

Основание – сложное вещество, в котором каждый атом металла связан с одной или несколькими гидроксогруппами.

в степенях окисления +1 и +2 проявляют основные свойства ,

Заполнить таблицу: Сравнительная характеристика оксидов и гидроксидов

металлов главных подгрупп I - III групп

Вопросы для сравнения

I группа

II группа

Степень окисления Ме в оксиде.

2. Физические свойства.

III группа

3. Химические свойства (сравнить).

4. Способы получения оксидов.

Взаимодействие:

б) с кислотами

в) с кислотными оксидами

г) с амфотерными оксидами

д) со щелочами

5. Формула гидроксида.

Степень окисления Ме в гидроксиде.

6. Физические свойства

7. Химические свойства (сравнить).

8. Способы получения гидроксидов.

а) действие на индикаторы

г) с растворами солей

д) с неметаллами

е) со щелочами

ж) с амфотерными оксидами и гидроксидами

з) отношение к нагреванию

Свойства оксидов и гидроксидов в периоде изменяются от основных через амфотерные к кислотным, т.к. увеличивается положительная степень окисления элементов. Na 2 O , Mg +2 O , Al 2 O 3 основные амфотерный Na +1 O Н , Mg +2 (O Н ) 2 , Al +3 (O Н ) 3 щелочь Слабое Амфотерный основание гидроксид В главных подгруппах основные свойства оксидов и гидроксидов возрастают сверху вниз .

Свойства оксидов и гидроксидов в периоде изменяются от основных через амфотерные к кислотным, т.к. увеличивается положительная степень окисления элементов.

Na 2 O , Mg +2 O , Al 2 O 3

основные амфотерный

Na +1 O Н , Mg +2 (O Н ) 2 , Al +3 (O Н ) 3

щелочь Слабое Амфотерный

основание гидроксид

В главных подгруппах основные свойства оксидов и гидроксидов возрастают сверху вниз .

Соединения металлов I А группы Оксиды щелочных металлов Общая формула Ме 2 О Физические свойства: Твердые, кристаллические вещества, хорошо растворимые в воде. Li 2 O , Na 2 O – бесцветные, К 2 О, Rb 2 O – желтые, Cs 2 О – оранжевый. Способы получения: Окислением металла получается только оксид лития 4 Li + O 2 → 2 Li 2 O (в остальных случаях получаются пероксиды или надпероксиды). Все оксиды (кроме Li 2 O ) получают при нагревании смеси пероксида (или надпероксида) с избытком металла: Na 2 O 2 + 2Na → 2Na 2 O KO 2 + 3K → 2K 2 O Химические свойства Типичные основные оксиды: Взаимодействуют с водой, образуя щелочи: Na 2 О + H 2 O → 2. Взаимодействуют с кислотами, образуя соль и воду: Na 2 О + Н Cl → 3. Взаимодействуют с кислотными оксидами, образуя соли: Na 2 О + SO 3 → 4. Взаимодействуют с амфотерными оксидами, образуя соли: Na 2 О + ZnO → Na 2 ZnO 2

Соединения металлов I А группы

Оксиды щелочных металлов

Общая формула Ме 2 О

Физические свойства: Твердые, кристаллические вещества, хорошо растворимые в воде.

Li 2 O , Na 2 O – бесцветные, К 2 О, Rb 2 O – желтые, Cs 2 О – оранжевый.

Способы получения:

Окислением металла получается только оксид лития

4 Li + O 2 → 2 Li 2 O

(в остальных случаях получаются пероксиды или надпероксиды).

Все оксиды (кроме Li 2 O ) получают при нагревании смеси пероксида (или надпероксида) с избытком металла:

Na 2 O 2 + 2Na → 2Na 2 O

KO 2 + 3K → 2K 2 O

Химические свойства

Типичные основные оксиды:

Взаимодействуют с водой, образуя щелочи: Na 2 О + H 2 O →

2. Взаимодействуют с кислотами, образуя соль и воду: Na 2 О + Н Cl →

3. Взаимодействуют с кислотными оксидами, образуя соли: Na 2 О + SO 3 →

4. Взаимодействуют с амфотерными оксидами, образуя соли: Na 2 О + ZnO → Na 2 ZnO 2

Гидроксиды щелочных металлов Общая формула – МеОН Физические свойства: Белые кристаллические вещества, гигроскопичны, хорошо растворимы в воде (с выделением тепла). Растворы мылкие на ощупь, очень едкие. NaOH – едкий натр КОН – едкое кали Сильные основания - Щелочи. Основные свойства усиливаются в ряду: LiOH → NaOH → KOH → RbOH → CsOH Способы получения: 1. Электролиз растворов хлоридов: 2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2 2. Обменные реакции между солью и основанием: K 2 CO 3 + Ca(OH) 2 → CaCO 3  + 2KOH 3. Взаимодействие металлов или их основных оксидов (или пероксидов и надпероксидов) с водой: 2 Li + 2 H 2 O → 2 LiOH + H 2 Li 2 O + H 2 O → 2 LiOH Na 2 O 2 + 2 H 2 O → 2 NaOH + H 2 O 2

Гидроксиды щелочных металлов

Общая формула – МеОН

Физические свойства: Белые кристаллические вещества, гигроскопичны, хорошо растворимы в воде (с выделением тепла). Растворы мылкие на ощупь, очень едкие.

NaOH – едкий натр

КОН – едкое кали

Сильные основания - Щелочи. Основные свойства усиливаются в ряду:

LiOH → NaOH → KOH → RbOH → CsOH

1. Электролиз растворов хлоридов:

2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2

2. Обменные реакции между солью и основанием:

K 2 CO 3 + Ca(OH) 2 → CaCO 3  + 2KOH

3. Взаимодействие металлов или их основных оксидов (или пероксидов и надпероксидов) с водой:

2 Li + 2 H 2 O → 2 LiOH + H 2

Li 2 O + H 2 O → 2 LiOH

Na 2 O 2 + 2 H 2 O → 2 NaOH + H 2 O 2

Химические свойства 1. Изменяют цвет индикаторов: Лакмус – на синий Фенолфталеин – на малиновый Метил-оранж – на желтый 2. Взаимодействуют со всеми кислотами. NaOH + HCl → NaCl + H 2 O 3. Взаимодействуют с кислотными оксидами. 2NaOH + SO 3 → Na 2 SO 4 + H 2 O 4. Взаимодействуют с растворами солей, если образуется газ или осадок. 2 NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 5. Взаимодействуют с некоторыми неметаллами (серой, кремнием, фосфором) 2 NaOH +Si + H 2 O → Na 2 SiO 3 + 2H 2 ↑ 6. Взаимодействуют с амфотерными оксидами и гидроксидами 2 NaOH + Zn О + H 2 O → Na 2 [ Zn ( OH ) 4 ] 2 NaOH + Zn (ОН) 2 → Na 2 [ Zn ( OH ) 4 ] 7. При нагревании не разлагаются, кроме LiOH .

1. Изменяют цвет индикаторов:

Лакмус – на синий

Фенолфталеин – на малиновый

Метил-оранж – на желтый

2. Взаимодействуют со всеми кислотами.

NaOH + HCl → NaCl + H 2 O

3. Взаимодействуют с кислотными оксидами.

2NaOH + SO 3 → Na 2 SO 4 + H 2 O

4. Взаимодействуют с растворами солей, если образуется газ или осадок.

2 NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4

5. Взаимодействуют с некоторыми неметаллами (серой, кремнием, фосфором)

2 NaOH +Si + H 2 O → Na 2 SiO 3 + 2H 2 ↑

6. Взаимодействуют с амфотерными оксидами и гидроксидами

2 NaOH + Zn О + H 2 O → Na 2 [ Zn ( OH ) 4 ]

2 NaOH + Zn (ОН) 2 → Na 2 [ Zn ( OH ) 4 ]

7. При нагревании не разлагаются, кроме LiOH .

Соединения металлов главной подгруппы II группы Оксиды металлов II А группы Общая формула МеО Физические свойства: Твердые, кристаллические вещества белого цвета, малорастворимые в воде. Способы получения: Окисление металлов (кроме Ba , который образует пероксид) 2Са + О 2 → 2СаО 2) Термическое разложение нитратов или карбонатов CaCO 3 → CaO + CO 2 2Mg(NO 3 ) 2 → 2MgO + 4NO 2 + O 2 Химические свойства ВеО – амфотерный оксид Оксиды Mg , Ca , Sr , Ba – основные оксиды Взаимодействуют с водой(кроме ВеО), образуя щелочи( Mg ( OH ) 2 – слабое основание): СаО + H 2 O → 2. Взаимодействуют с кислотами, образуя соль и воду: СаО + Н Cl → 3. Взаимодействуют с кислотными оксидами, образуя соли: СаО + SO 3 → 4. ВеО взаимодействует со щелочами: ВеО + 2 NaOH + H 2 O → Na 2 [Ве( OH ) 4 ]

Соединения металлов главной подгруппы II группы

Оксиды металлов II А группы

Общая формула МеО

Физические свойства: Твердые, кристаллические вещества белого цвета, малорастворимые в воде.

Окисление металлов (кроме Ba , который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO 3 → CaO + CO 2

2Mg(NO 3 ) 2 → 2MgO + 4NO 2 + O 2

ВеО – амфотерный оксид

Оксиды Mg , Ca , Sr , Ba – основные оксиды

Взаимодействуют с водой(кроме ВеО), образуя щелочи( Mg ( OH ) 2 – слабое основание):

2. Взаимодействуют с кислотами, образуя соль и воду: СаО + Н Cl →

3. Взаимодействуют с кислотными оксидами, образуя соли: СаО + SO 3 →

4. ВеО взаимодействует со щелочами: ВеО + 2 NaOH + H 2 O → Na 2 [Ве( OH ) 4 ]

Гидроксиды металлов II А группы Общая формула – Ме(ОН) 2 Физические свойства: Белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов. Ве(ОН) 2 – в воде нерастворим. Основные свойства усиливаются в ряду: Ве(ОН) 2 → Mg (ОН) 2 → Ca (ОН) 2 → Sr (ОН) 2 → В a (ОН) 2 Способы получения: Реакции щелочноземельных металлов или их оксидов с водой: Ba + 2 H 2 O → Ba ( OH ) 2 + H 2 CaO (негашеная известь) + H 2 O → Ca ( OH ) 2 (гашеная известь)

Гидроксиды металлов II А группы

Общая формула – Ме(ОН) 2

Физические свойства: Белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов. Ве(ОН) 2 – в воде нерастворим.

Основные свойства усиливаются в ряду:

Ве(ОН) 2 → Mg (ОН) 2 → Ca (ОН) 2 → Sr (ОН) 2 → В a (ОН) 2

Реакции щелочноземельных металлов или их оксидов с водой:

Ba + 2 H 2 O → Ba ( OH ) 2 + H 2

CaO (негашеная известь) + H 2 O → Ca ( OH ) 2 (гашеная известь)

Химические свойства Ве(ОН) 2 – амфотерный гидроксид Mg (ОН) 2 – слабое основание Са(ОН) 2 , Sr (ОН) 2, Ва(ОН) 2 – сильные основания – щелочи. Изменяют цвет индикаторов: Лакмус – на синий Фенолфталеин – на малиновый Метил-оранж – на желтый 2. Взаимодействуют с кислотами, образуя соль и воду: Ве(ОН) 2 + Н 2 SO 4 → 3. Взаимодействуют с кислотными оксидами: Са(ОН) 2 + SO 3 → 4. Взаимодействуют с растворами солей, если образуется газ или осадок: Ва(ОН) 2 + K 2 SO 4 → Гидроксид бериллия взаимодействует со щелочами: Ве(ОН) 2 + 2 NaOH → Na 2 [Ве( OH ) 4 ] При нагревании разлагаются: Са(ОН) 2 →

Ве(ОН) 2 – амфотерный гидроксид

Mg (ОН) 2 – слабое основание

Са(ОН) 2 , Sr (ОН) 2, Ва(ОН) 2 – сильные основания – щелочи.

Изменяют цвет индикаторов:

2. Взаимодействуют с кислотами, образуя соль и воду:

Ве(ОН) 2 + Н 2 SO 4 →

3. Взаимодействуют с кислотными оксидами:

4. Взаимодействуют с растворами солей, если образуется газ или осадок:

Ва(ОН) 2 + K 2 SO 4 →

Гидроксид бериллия взаимодействует со щелочами:

Ве(ОН) 2 + 2 NaOH → Na 2 [Ве( OH ) 4 ]

При нагревании разлагаются: Са(ОН) 2 →

Соединения металлов главной подгруппы III группы Соединения алюминия Оксид алюминия Al 2 O 3 O = Al – O – Al = O Физические свойства: Глинозем, корунд, окрашенный – рубин (красный), сапфир (синий). Твердое тугоплавкое ( t° пл.=2050 ° С) вещество; существует в нескольких кристаллических модификациях. Способы получения: Сжигание порошка алюминия: 4 Al + 3 O 2 → 2 Al 2 O 3 Разложение гидроксида алюминия: 2 Al ( OH ) 3 → Al 2 O 3 + 3 H 2 O

Соединения металлов главной подгруппы III группы

Соединения алюминия

Оксид алюминия

Al 2 O 3

O = Al – O – Al = O

Физические свойства: Глинозем, корунд, окрашенный – рубин (красный), сапфир (синий).

Твердое тугоплавкое ( t° пл.=2050 ° С) вещество; существует в нескольких кристаллических модификациях.

Сжигание порошка алюминия: 4 Al + 3 O 2 → 2 Al 2 O 3

Разложение гидроксида алюминия: 2 Al ( OH ) 3 → Al 2 O 3 + 3 H 2 O

Химические свойства Al 2 O 3 - амфотерный оксид с преобладанием основных свойств; с водой не реагирует. 1) Реагирует с кислотами и растворами щелочей: Как основной оксид: Al 2 O 3 + 6 HCl → 2 AlCl 3 + 3 H 2 O Как кислотный оксид: Al 2 O 3 + 2 NaOH + 3 H 2 O → 2 Na [ Al ( OH ) 4 ] 2) Сплавляется со щелочами или карбонатами щелочных металлов: Al 2 O 3 + Na 2 CO 3 → 2 NaAlO 2 (алюминат натрия) + CO 2 Al 2 O 3 + 2 NaOH → 2 NaAlO 2 + H 2 O

Al 2 O 3 - амфотерный оксид с преобладанием основных свойств; с водой не реагирует.

1) Реагирует с кислотами и растворами щелочей:

Как основной оксид: Al 2 O 3 + 6 HCl → 2 AlCl 3 + 3 H 2 O

Как кислотный оксид: Al 2 O 3 + 2 NaOH + 3 H 2 O → 2 Na [ Al ( OH ) 4 ]

2) Сплавляется со щелочами или карбонатами щелочных металлов:

Al 2 O 3 + Na 2 CO 3 → 2 NaAlO 2 (алюминат натрия) + CO 2

Al 2 O 3 + 2 NaOH → 2 NaAlO 2 + H 2 O

Гидроксид алюминия Al ( OH ) 3 Физические свойства: белое кристаллическое вещество, нерастворимое в воде. Способы получения: 1) Осаждением из растворов солей щелочами или гидроксидом аммония: AlCl 3 + 3NaOH → Al(OH) 3 + 3NaCl Al 2 (SO 4 ) 3 + 6NH 4 OH → 2Al(OH) 3 + 3(NH 4 ) 2 SO 4 Al 3+ + 3 OH ¯ → Al ( OH ) 3 (белый студенистый) 2) Слабым подкислением растворов алюминатов: Na[Al(OH) 4 ] + CO 2 → Al(OH) 3 + NaHCO 3 Химические свойства Al ( OH ) 3 - а мфотерный гидроксид : 1) Реагирует с кислотами и растворами щелочей: Как основание Al ( OH ) 3 + 3 HCl → AlCl 3 + 3 H 2 O Как кислота Al ( OH ) 3 + NaOH → Na [ Al ( OH ) 4 ] (тетрагидроксоалюминат натрия) При нагревании разлагается: 2 Al ( OH ) 3 → Al 2 O 3 + 3 H 2 O

Гидроксид алюминия Al ( OH ) 3

Физические свойства: белое кристаллическое вещество,

нерастворимое в воде.

1) Осаждением из растворов солей щелочами или гидроксидом аммония:

AlCl 3 + 3NaOH → Al(OH) 3 + 3NaCl

Al 2 (SO 4 ) 3 + 6NH 4 OH → 2Al(OH) 3 + 3(NH 4 ) 2 SO 4

Al 3+ + 3 OH ¯ → Al ( OH ) 3 (белый студенистый)

2) Слабым подкислением растворов алюминатов:

Na[Al(OH) 4 ] + CO 2 → Al(OH) 3 + NaHCO 3

Al ( OH ) 3 - а мфотерный гидроксид :

Как основание Al ( OH ) 3 + 3 HCl → AlCl 3 + 3 H 2 O

Как кислота Al ( OH ) 3 + NaOH → Na [ Al ( OH ) 4 ]

При нагревании разлагается: 2 Al ( OH ) 3 → Al 2 O 3 + 3 H 2 O

Заполнить таблицу: Сравнительная характеристика оксидов и гидроксидов металлов главных подгрупп I - III групп Вопросы для сравнения I группа Общая формула оксида. II группа Степень окисления Ме в оксиде. 2. Физические свойства. III группа 3. Химические свойства (сравнить). 4. Способы получения оксидов. Характер оксидов Взаимодействие: а) с водой б) с кислотами в) с кислотными оксидами г) с амфотерными оксидами д) со щелочами 5. Формула гидроксида. Степень окисления Ме в гидроксиде. 6. Физические свойства 7. Химические свойства (сравнить). Характер гидроксидов 8. Способы получения гидроксидов. Взаимодействие: а) действие на индикаторы б) с кислотами в) с кислотными оксидами г) с растворами солей д) с неметаллами е) со щелочами ж) с амфотерными оксидами и гидроксидами з) отношение к нагреванию

Оксиды и гидроксиды металлов

Нажмите, чтобы узнать подробности


-82%

Характеристика ХЭ по кислотно-основным свойствам. Амфотерные оксиды и гидроксиды


В этом видеофрагменте профессор Колбочкин рассказывает о способности некоторых оксидов и гидроксидов проявлять амфотерные свойства. А разобраться с этим поможет рассказ о двуличном Алюминии. Кроме этого, профессор разъяснит, как определить, какими свойствами будет обладать тот или иной оксид или гидроксид: кислотными, основными или амфотерными. Он покажет опыт, иллюстрирующий свойства гидроксида цинка, составит соответствующие уравнения реакций и покажет элементы в Периодической системе, соединения которых проявляют амфотерные свойства.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Характеристика ХЭ по кислотно-основным свойствам. Амфотерные оксиды и гидроксиды"

Характеристика химического элемента по кислотно-основным свойствам образуемых им соединений. Амфотерные оксиды и гидроксиды

Как же определить: кислотными или основными свойствами будет обладать то или иное соединение? Это совсем несложно, достаточно просто посмотреть Периодическую систему химических элементов Д.И. Менделеева.




А что же такое амфотерные оксиды и гидроксиды. Это слово, наверняка, вы слышали, но этому понятию ранее не придавалось никакого значения. Попробуйте сами догадаться, а для этого мы проведем опыт по получению гидроксида цинка (Zn(OH)2) и исследованию его свойств. Для этого, в две пробирки нальем раствора соли хлорида цинка (ZnCl2) и добавим в каждую несколько капель раствора гидроксида натрия (NaOH). При этом можно наблюдать выпадение осадка белого цвета. Таким образом, мы получили гидроксид цинка реакцией обмена между хлоридом цинка и гидроксидом натрия.


Исследуем свойства гидроксида цинка. Для этого, в одну пробирку мы прильем соляной кислоты (HCl), и что же мы наблюдаем, осадок начинает растворяться. Во вторую пробирку прильем раствора гидроксида натрия (NaOH), и в этом случае осадок тоже растворяется.

Какой же все-таки двуличный этот гидроксид цинка: он вступает в реакции и с кислотами, и с основаниями. Значит, все гидроксиды, которые реагируют и с основаниями, и с кислотами называются амфотерными. Они могут вести себя как кислоты в реакциях со щелочами и как основания в реакциях с кислотами. Т.е. в зависимости от условий они могут проявлять как кислотные свойства, так и основные. Значит, и записать химическую формулу гидроксида цинка можно по-разному: в виде кислоты H2ZnO2 и в виде основания Zn(OH)2.

Давайте запишем уравнения этих реакций:


В первой реакции образуется соль хлорид цинка (ZnCl2), а во второй комплексная соль тетрагидроксоцинкат натрия (Na2[Zn(OH)4]).

И цинк, и его оксид будут тоже амфотерными соединениями.

Например, цинк реагирует с кислотами: если в пробирку с цинком прилить серной кислоты (H2SO4), то будет выделяться газ. В результате этой реакции образуется соль – сульфат цинка (ZnSO4) и выделяется газ – водород (H2).

Zn 0 + 2H + = Zn 2+ + H2

Цинк будет реагировать и со щелочами. Запомните, если реакция протекает в растворе, то образуется комплексная соль тетрагидроксоцинкат натрия (Na2[Zn(OH)4]), при сплавлении образуется соль – цинкат натрия (Na2ZnO2), но водород выделяется в обоих случаях.

Аналогично ведет себя и оксид цинка, т.е. он реагирует с кислотами и с основаниями.

Например, в реакции оксида цинка (ZnO) с соляной кислотой образуется соль – хлорид цинка, в реакции оксида цинка с раствором гидроксида натрия образуется опять комплексная соль – тетрагидроксоцинкат натрия, а при сплавлении с гидроксидом натрия – цинкат натрия.

ZnO + 2H + = Zn 2+ + H2O

А сейчас послушайте историю про двуличного Алюминия.

Жил да был на свете хитрец-наглец по имени Алюминий. Его владения находились между двумя могущественными королевствами. Одним королевством правил молодой жизнерадостный король Натрий. Все в его королевстве было голубым: чистое голубое небо, глубокие прозрачные голубые озера и реки, голубые цветы благоухали на голубых полях. И жили в королевстве голубоглазые веселые и добрые люди. Работалось и жилось в королевстве легко, свободно, радостно. А это вызывало сильную зависть у правительницы другого королевства – Серы. Она вся пожелтела от зависти и злобы, порой даже начинала плавиться от внутреннего жара или гореть лиловым пламенем. Наконец ее терпение лопнуло после одного пышного празднества, устроенного Натрием в честь рождения сына, и Сера объявила войну Натрию.

Натрий, никогда и никому не желавший зла, по характеру мягкий, как воск, хоть ножом его режь, не был готов к войне. Он обратился к Алюминию: «Помоги, ведь мы с тобой из одного семейства – металлов». Алюминий согласился, но решил устроить так, чтобы оба войска перебили друг друга и он завладел бы и тем, и другим королевством.

Войска Натрия и Серы сражались, не жалея сил, выделяя огромное количество теплоты. А Алюминий со своим войском все выгадывал удобную позицию: если побеждало войско Натрия, он стремился быть в его гуще, если одерживало верх войско Серы, он перекидывался на его сторону. Наконец и Натрий, и Сера поняли хитрость и двойственность замыслов Алюминия. Оба послали самых сильных воинов с приказом уничтожить негодяя и предателя.

Алюминий увидел, что с двух сторон к нему стремительно приближаются два всадника. Вскоре два копья с силой вонзились в его безвольное тело.

Как видите, алюминий тоже проявляет двойственность свойств, т.е. он тоже является амфотерным, значит, его оксид и гидроксид тоже будут амфотерными.

Алюминий, как и цинк, реагирует с кислотами. Например, в реакции с серной кислотой (H2SO4) он также образует соль – сульфат алюминия (Al2(SO4)3) и при этом выделяется газ – водород (H2).

Алюминий реагирует и со щелочами: если реакция алюминия с гидроксидом натрия (NaOH) протекает в растворе, то в этом случае, как и в случае с цинком, образуется комплексная соль тетрагидроксоалюминат натрия (2Na[Al(OH)4])


Оксид алюминия и его гидроксид ведет себя тоже двойственно. При реакции оксида алюминия (Al2O3) с соляной кислотой (HCl), он ведет себя, как основный оксид, при этом образуется соль – хлорид алюминия (AlCl3). А при взаимодействии с раствором щелочи, этот же оксид ведет себя как кислота, при этом образуется комплексная соль – тетрагидроксоалюминат натрия (Na[Al(OH)4]), или гексагидроксоалюминат натрия (Na3[Al(OH)6]), что будет верно в любом случае. А вот при сплавлении со щелочью, образуется соль – метаалюминат натрия (NaAlO2).


Гидроксид алюминия (Al(OH)3)тоже является амфотерным, поэтому он реагирует с кислотами и с основаниями.

Например, в реакции соляной кислотой (HCl), он себя ведет, как основание, при этом образуется соль – хлорид алюминия (AlCl3) и вода (H2O) , а вот в реакции с гидроксидом натрия (NaOH), он ведет себя, как кислота. Если реакция протекает в растворе, то образуется комплексная соль – тетрагидроксоалюминат натрия (Na[Al(OH)4]), или гексагидроксоалюминат натрия (Na3[Al(OH)6]), а при сплавлении другая соль – метаалюминат натрия (NaAlO2).


Будьте внимательны, посмотрите амфотерные элементы в периодической таблице. Интересно, что элементы побочных подгрупп, в промежуточной степени окисления также могут проявлять амфотерные свойства, эти элементы еще называют переходными элементами или переходными металлами.


К амфотерным элементам относятся: Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po, Cr, Mn, Fe, Zn, Cd, Au и др.

Видеоурок содержит материал об основных оксидах и гидроксидах металлов, их физических и химических свойствах.


Конспект урока "Оксиды и гидроксиды металлов"

Для всех металлов известны их оксиды и гидроксиды, а у d-элементов различные степени окисления, поэтому они образуют множество оксидов и гидроксидов. Свойства этих оксидов и гидроксидов зависят от положения металла в периодической системе, от его активности и степени окисления металла. Таким образом, все металлы образуют солеобразующие оксиды.

Известно, что чем ярче выражены металлические свойства, тем сильнее основные свойства оксидов и гидроксидов.

Для s- и p-элементов слева направо по периоду уменьшаются металлические свойства, а значит и основные свойства оксидов и гидроксидов металлов. В IA группе сверху вниз увеличиваются радиусы атомов, при отдаче электронов с внешнего уровня образуются катионы. Естественно, что степень окисления у этих элементов не изменяется, а основный характер оксидов усиливается.


Если рассмотреть изменение свойств оксидов элементов по периоду на примере элементов 3 периода, то следует отметить, что в атомах этих элементов количество энергетических уровней одинаковое, но степень окисления изменяется, то есть она возрастает, а радиус иона уменьшается, поэтому характер оксидов изменяется от основного через амфотерные к кислотному.


Например, оксиды и гидроксиды щелочных и щелочноземельных металлов проявляют ярко выраженные основные свойства, а уже оксид алюминия проявляют амфотерные свойства.

Так, оксид натрия – это основный оксид, поэтому он будет реагировать с кислотными и амфотерными оксидами, с кислотами. Например, в реакции оксида натрия с оксидом углерода (IV) образуется соль – карбонат натрия, в реакции оксида натрия с соляной кислотой образуется соль – хлорид натрия и вода.


По группе сверху вниз металлические свойства s- и p-элементов усиливаются, поэтому усиливаются и основные свойства их оксидов.


Например, в группе II A оксид бериллия проявляет амфотерные свойства, поэтому он легко растворяется в растворах кислот и щелочей. Например, в реакции оксида бериллия с соляной кислотой образуется соль – хлорид бериллия и вода, в реакции оксида бериллия с раствором гидроксида натрия образуется комплексная соль – тетрагидроксобериллат натрия.


Соединения бария и радия имеют уже ярко выраженные основные свойства, поэтому они будут реагировать с кислотными и амфотерными оксидами, а также с кислотами. Так, в реакции оксида бария с азотной кислотой образуется соль – нитрат бария и вода.


Характер гидроксида зависит также от степени окисления и радиуса иона. Чем больше степень окисления, тем меньше радиус иона.


Поэтому в ряду от гидроксида натрия до гидроксида алюминия идёт ослабление основных свойств и усиление кислотных, так как возрастает степень окисления и уменьшается радиус иона.


Например, в I A группе сверху вниз увеличивается радиус иона, степень окисления не изменяется, поэтому усиливаются основные свойства. В ряду от гидроксида лития до гидроксида цезия основные свойства будут усиливаться.


Переходные элементы, расположенные в малых периодах – это Be, Al образуют оксиды и гидроксиды, проявляющие амфотерные свойства.

Получим гидроксид алюминия и исследуем его свойства. Сначала в растворимую соль алюминия добавим щелочь, в результате у нас образуется осадок – это гидроксид алюминия.


Затем разделим этот осадок на две части: к первой части добавим соляную кислоту, осадок растворяется из-за образования растворимой соли – хлорида алюминия. Ко второй части осадка добавим гидроксид калия – осадок также растворяется, потому что образуется растворимая соль – тетрагидроксоалюминат калия.

Амфотерные оксиды и гидроксиды вступают в реакции не только с растворами щелочей, но и с твёрдыми основаниями при сплавлении.

Например, при сплавлении гидроксида хрома (III) с гидроксидом калия образуется соль – метахромит калия и вода, при сплавлении гидроксида хрома (III) с оксидом калия образуется метахромит калия и вода, при сплавлении гидроксида хрома (III) с карбонатом калия также образуется соль метахромит калия, вода и углекислый газ.


Аналогично оксид и гидроксид алюминия ведёт себя: при сплавлении оксида алюминия и гидроксида калия образуется соль – металюминат калия и вода, при сплавлении гидроксида алюминия и гидроксида калия образуется соль – метаалюминат калия и вода.


Оксид и гидроксид бериллия также проявляет амфотерные свойства, потому что они реагирует с кислотами, щелочами. Так, в реакции оксида бериллия с соляной кислотой образуется соль – хлорид бериллия и вода, в реакции гидроксида бериллия и серной кислоты образуется соль – сульфат бериллия и вода.


Большое влияние на кислотно-основные свойства оксидов и гидроксидов d-элементов оказывает степень окисления металла, поэтому с увеличением степени окисления металла кислотные свойства соответствующего оксида и гидроксида усиливаются. Например, хром образует оксиды и гидроксиды, в которых атомы хрома проявляют степени окисления +2, +3 и +6.

В оксиде CrO и гидроксиде Cr(OH)2 степень окисления хрома +2, поэтому этот оксид и гидроксид будут проявлять основные свойства. В оксиде Cr2O3 и гидроксиде Cr(OH)3 окисления хрома +3, поэтому оксид и гидроксид в этой степени окисления будут проявлять амфотерные свойства, в оксиде CrO3 и гидроксиде H2CrO4 степень окисления хрома +6 – это высшая степень окисления для атома хрома, поэтому этот оксид и гидроксид проявляют кислотные свойства.



Таким образом, с увеличением степени окисления металла происходит уменьшение радиуса иона металла, свойства оксидов и гидроксидов металлов изменяются от основных через амфотерные к кислотным.

Читайте также: