Температура металла при температуре воздуха

Обновлено: 09.05.2024

- при контроле сплошности изоляции трубопровода с помощью приборов вскрытие производят в местах выявленных повреждений изоляции;

- при отсутствии на предприятии средств инструментального контроля подземных трубопроводов вскрытие проводят из расчета один участок на длину трубопровода не более 250 м.

15.3 При проведении ремонтно-монтажных работ на подземных трубопроводах должен быть установлен контроль за выполнением требований проекта в отношении компенсации температурных деформаций, качества применяемых материалов, сварных швов, антикоррозионного покрытия и своевременного составления всей необходимой документации по этапам проводимых работ.

15.4 Стальные подземные технологические трубопроводы должны быть защищены от почвенной коррозии и коррозии блуждающими токами.

Приложение А (обязательное).

Минимальная температура в зависимости от толщины стенки трубы при напряжении в стенке от внутреннего давления [ ], °С

ТУ 4112-091-00220302 и ударная вязкость при температуре минус 70°С, если температура стенки ниже минус 30°С

Приложение Б (обязательное). Регламент проведения в зимнее время пуска (остановки) и испытаний на герметичность трубопроводов, расположенных на открытом воздухе или в неотапливаемых помещениях и эксплуатируемых под давлением

Б.1 Пуск (остановка) или испытание на герметичность в зимнее время, т.е. повышение (снижение) давления в трубопроводе при повышении (снижении) температуры стенки должны осуществляться в соответствии с графиком на рисунке Б.1.


494 × 328 пикс.   Открыть в новом окне

- давление пуска; - давление рабочее; - минимальная температура воздуха, при которой допускается пуск трубопровода под давлением ; - минимальная температура, при которой сталь и ее сварные соединения допускаются для работы под давлением в соответствии с требованиями приложения А, таблица А.1

Достижение давлений и следует осуществлять постепенно, по 0,25 или 0,25 в течение часа с 15-минутными выдержками давлений на ступенях 0,25 (0,25 ); 0,5 (0,5 ); 0,75 (0,75 ), если нет других указаний в проектной документации.

Допускаемая средняя температура наиболее холодной пятидневки с обеспеченностью 0,92 в районе расположения трубопровода

Скорость подъема (снижения) температуры должна быть не более 30°С в 1 ч, если нет других указаний в технической документации.

Приложение В (рекомендуемое). Расчетно-экспериментальные методы и средства защиты трубопровода от вибрации

В.1 Технические решения по снижению пульсации потока, вибрации трубопровода и виброзащите окружающих объектов

Вибрацию снижают уменьшением или снятием возмущающих воздействий. При этом необходимо в первую очередь устранить резонансные колебания пульсирующего потока и отстроить от возможного совпадения резонансы потока и механической системы.

а) изменение длин и диаметров участков трубопроводной системы, если это допускается компоновкой системы;

б) установка диафрагм, которые рассеивают энергию колебаний газа и изменяют амплитудно-частотный спектр газа в трубопроводной системе. Ориентировочно диаметр расточки диафрагм составляет 0,5D. Оптимальный диаметр расточки диафрагмы d, обеспечивающий эффективное гашение пульсации, для однофазных потоков может быть определен по формуле

в) установка буферных емкостей с целью уменьшения амплитуды пульсации давления за счет рассеивания энергии, затрачиваемой на возбуждение массы газа в объеме буферной емкости, и изменения спектра собственных частот колебаний. Для наиболее эффективного гашения колебаний буферную емкость устанавливают непосредственно у источника возбуждения колебаний (цилиндр компрессора). На несколько цилиндров одной ступени целесообразно устанавливать общую емкость;

г) установка акустических фильтров в тех случаях, когда возникает необходимость в значительном снижении колебаний, а требующиеся для этого габаритные размеры буферной емкости превышают допустимые по условиям компоновки. Акустический фильтр характеризуется четким дискретным спектром полос пропускания и гашения частот колебаний газа;

д) изменение температуры и давления нагнетания компрессора, если это возможно по технологии работы. От этих параметров зависят величины плотности продукта и скорости звука, влияющие на частотный спектр системы;

е) интерференционный способ гашения пульсаций, который эффективен в очень узкой полосе частот колебаний. Этот способ предусматривает применение специальных ответвлений или петель, длину которых подбирают равной нечетному числу полуволн;

ж) сочетание в одной трубопроводной системе различных способов гашения пульсаций. Так, возможна установка диафрагм на входе в емкость или на выходе из емкости. При этом размеры емкости могут быть уменьшены примерно на 30% по сравнению с емкостью без диафрагмы. Дополнительные потери давления при установке диафрагмы меньше, чем дополнительные потери при резонансных колебаниях.

Последовательность проведения отстройки от резонансных колебаний, а также снижения колебаний давления газа представляет собой итерационный процесс внесения изменений в конструкцию трубопроводной системы с последующей проверкой эффективности изменений расчетом по специальным программам.

ВЛИЯНИЕ КЛИМАТИЧЕСКИХ УСЛОВИЙ НА КАЧЕСТВО ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ.

Большое влияние на качество и долговечность лакокрасочных покрытий оказывают климатические условия при выполнении окрасочных работ:

  • температура воздуха;
  • температура окрашиваемой поверхности;
  • влажность воздуха;
  • увлажнение поверхности.

Для большинства лакокрасочных материалов естественной сушки рекомендуемый температурный интервал нанесения находится в диапазоне от 5 до 35ºС. Увеличение температуры воздуха или окрашиваемой поверхности сказывается, главным образом, на скорости испарения растворителей или химической реакции отверждения. Поэтому для сокращения времени сушки и отверждения обычно стараются использовать более высокую температуру. Однако при этом не стоит забывать, что скорость испарения растворителей не должна быть чрезмерно большой, так как в покрытии могут возникнуть внутренние напряжения, отрицательно влияющие на его свойства. Кроме того, при слишком быстром удалении растворителей из верхнего слоя покрытия вязкость этого слоя возрастает и образуется поверхностная пленка, что затрудняет удаление растворителей из нижних слоев. При дальнейшей сушке пары оставшегося растворителя, стремясь улетучиваться, раздувают образовавшуюся пленку, и в ней появляются мелкие пузыри, поры и другие дефекты. При правильном температурном режиме нанесения и сушки улетучивание растворителей происходит постепенно. Скорость реакции в химически отверждающихся лакокрасочных материалах в еще большей степени зависит от температуры. Быстрое отверждение материала при повышении температуры может привести к большим внутренним напряжениям в покрытии, которые обычно успевают релаксировать при более медленной сшивке.

При выполнении работ на открытых площадках необходимо учитывать возможный нагрев окрашиваемой поверхности солнечным излучением. Разница между температурой воздуха и температурой металла может достигать 20ºС. Быстрое испарение растворителей из лакокрасочного материала на нагретой поверхности или быстрое химическое отверждение может препятствовать получению гладкого равномерного покрытия, т.к. отдельные капли лакокрасочного материала будут высыхать, не успев растечься по поверхности. Поэтому при выполнении контроля климатических условий обязательно следует измерять температуру окрашиваемой поверхности.

При температуре воздуха или окрашиваемой поверхности ниже 5ºС полного отверждения покрытий может не происходить. Многие из лакокрасочных материалов химического отверждения могут при температуре ниже 5ºС образовать покрытие за счет испарения входящих в них растворителей, однако образование необратимого сшитого покрытия при этом не происходит. При температуре ниже 5ºС следует применять только материалы физического отверждения, учитывая при этом увеличение времени сушки при понижении температуры.

В случае выполнения окрасочных работ при отрицательных температурах недопустимо присутствие льда и инея на окрашиваемой поверхности. Также недопустимо выполнять окрашивание во время осадков (дождя, снега) или по еще влажной поверхности.

Водяной пар является одним из компонентов окружающего воздуха, но его содержание очень сильно изменяется в зависимости от климатического района (от 3% во влажных тропических районах до 2 % в Антарктиде). Чем выше температура, тем больше влаги может содержаться в воздухе. Однако при каждой конкретной температуре в воздухе может удерживаться влага не более определенного максимального значения. Например, при нормальном давлении в 1м3 воздуха при температуре минус 20ºС может удерживаться 1,07 г воды, а при 20ºС – 17,31 г. В случае понижения температуры избыток влаги будет оседать на поверхности, в случае повышения температуры начинается процесс испарения воды с поверхности и увеличение абсолютного содержания воды в воздухе.

Для практических целей обычно пользуются значениями не абсолютной влажности, а относительной влажности воздуха, которая характеризует опасность выпадения избытка влаги (конденсата) на поверхности.

Относительная влажность воздуха – это отношение количества водяного пара, присутствующего в данном объеме воздуха при данной температуре, к максимальному количеству водяного пара, которое этот объем воздуха может удержать при данной температуре.

Относительная влажность (RH) обычно выражается в процентах. На открытом воздухе относительная влажность обычно изменяется от 50% до 100%. При относительной влажности 100% воздух называется насыщенным.

Температура, при которой воздух становится насыщенным и водяной пар, присутствующий в воздухе, начинает конденсироваться в жидкое состояние, называется точкой росы (конденсации). Вода, которая конденсируется из воздуха может оседать на поверхности, в том числе окрашенные или подготовленные к окрашиванию.

Конденсация воды на поверхности обычно происходит при снижении температуры воздуха. Чем больше исходная относительная влажность воздуха, тем меньший перепад температур требуется для конденсации воды на поверхности. На открытом воздухе конденсация наиболее вероятна в спокойные ясные вечера, когда происходит снижение температуры. Большая вероятность конденсации при изменчивой погоде.

Конденсация также имеет место на холодных поверхностях, окруженных теплым влажным воздухом, например, на наружной поверхности цистерн, если они заполнены холодной жидкостью.

Влага, сконденсированная на поверхности, может привести к нежелательным последствиям:

  • вызвать коррозию металла;
  • нарушить смачиваемость поверхности лакокрасочным материалом;
  • уменьшить сцепление лакокрасочного покрытия с окрашиваемой поверхностью;
  • вызвать образование в лакокрасочной пленке дефектов (пор, кратеров, сморщивания).

Конденсация влаги на свежеокрашенной поверхности может вызвать сильное пузырение или шелушение покрытия. Причиной подобного эффекта является смешение воды с растворителями, входящими в лакокрасочный материал, и проникновение ее внутрь жидкой лакокрасочной пленки к поверхности металла, вследствие чего нарушается сцепление лакокрасочного покрытия с металлом.

Основным требованием для исключения конденсации влаги при проведении окрасочных работ является повышение температуры поверхности по отношению к точке росы по крайней мере на 3º. Если разница между температурой поверхности и точкой росы ниже 3º, то вероятность конденсации считается высокой.

При относительной влажности воздуха выше 85% резко снижается скорость испарения растворителей из лакокрасочной пленки: при влажности воздуха близкой к 100% испарения растворителей практически не происходит. Растворители в этом случае могут диффундировать в нижние (ранее нанесенные) слои и вызвать их повреждение – пузырение и шелушение.

Поэтому непременным условием при проведении окрасочных работ является обеспечение относительной влажности воздуха ниже 85%. Если относительная влажность воздуха 85% и выше, то условия для окрашивания считаются критическими.

Рассказать друзьям:

Научный форум dxdy

Кстати, мне попадались люди, которые путают понятия "металл" и "железо". И соответственно, "железяками" в просторечии иногда могут называть любой металл неизвестного состава.

А как быть с испарением? Например, на металле был лёд, а при сильном ветре он испаряется быстрее и соответственно температура металла должна упасть. Как посчитать на сколько?

nds
Лед не так быстро испаряется, чтобы говорить о заметном влиянии потери быстрых молекул. И потом ветер с поверхностью льда все равно находятся в термическом равновесии.
Человек способен в голом виде просидеть в сауне при температуре чуть выше 100 градусов. И даже простоять на морозе при минус 40. Правда без резких движений. Но он не может даже залезть в бочку с водой в 45 градусов. И способен просидеть только пару минут в воде 10 градусов без заметного переохлаждения. То есть все зависит от соотношения теплопроводности на контакте двух сред и теплоемкости этих сред.
Кстати, в олимпиадной задачке, которую я дал про теплообменник, это можно даже посчитать.
topic122608.html

Может. Зафиксированный рекорд выше

DimaM
Давайте только без фанатизма.
Тренированные на холод - это скорее народ с тюленим слоем жира.
Физику еще никто не отменял. Если обычного нежирного человека засунуть на несколько минут в холодную воду, он скорее всего простудится, получит воспаление легких.
Я понимаю о чем вы говорите. Сам бегал на лыжах в мороз в одних плавках и так-же в метель спускался на горных лыжах в чем мать родила. Но не простужался исключительно напряжением силы воли. Сейчас бы таких подвигов не повторил. А тренированные люди еще намазываются тюленим жиром. И не один раз во время заплыва.

А насчет горячей воды. Белок начинает сворачиваться при температуре 42 градуса, а вот если он обернут в толстый слой сала, тогда другое дело. Я пробовал в корейской бане просидеть в горячей 40 градусной бочке. Больше 2-х минут не сидел. Как-то не хотелось рисковать здоровьем.

Мы тут вообще физику обсуждаем, или кое чем меряемся?

Вы делаете излишне категоричные утверждения. Я привожу примеры обратного. Насчет "мерянья" не понимаю: я не утверждаю, что проделывал это лично .

DimaM
Я делаю не категоричные, а среднестатичтически утверждения.
Среднестатистический человек может продержаться без воздуха от силы минуту. Тренированный 5-6 минут. А рекорд мира 22 минуты.
Когда я говорю человек способен. Я естественно не имею ввиду рекордсмена мира.
Я имею ввиду обычного среднего человека. Не вижу тут никакой категоричности.


быстрее, чем при слабом ветре или при отсутствии оного.
Кстати, наветренная сторона (с которой дует ветер) должна быть теплее подветренной при прочих равных условиях. Космические аппараты при спуске с орбиты горят с фронтальной стороны, оставаясь вполне холодными с другой.

Последний раз редактировалось realeugene 17.11.2017, 13:35, всего редактировалось 1 раз.

Кстати, наветренная сторона (с которой дует ветер) должна быть теплее подветренной при прочих равных условиях. Космические аппараты при спуске с орбиты горят с фронтальной стороны, оставаясь вполне холодными с другой.

Вопрос только в том, насколько именно теплее. Всё-таки гиперзвуковых ветров не бывает, даже, в Сибири.

Последний раз редактировалось Gleb1964 17.11.2017, 14:27, всего редактировалось 2 раз(а).

Если рассматривать как установившийся процесс, то металл тут и не при чем.
Но если потом кто-то захочет оценить температуру по ощущениям при прикосновении, то здесь теплопроводность материала проявиться. При большей теплопроводности как-бы более толстый слой материала вовлекается в процесс ощущения, учитывая то, что при прикосновении рука потеряет часть тепла, что и будет создавать ощущение, но это самое тепло от руки одновременно изменит температуру поверхности предмета. Для материала с низкой теплопроводностью температура поверхности измениться сильнее за счет меньшей толщины слоя, вовлеченного в процесс. Для металла ощущение разницы температур будет сильнее за счет высокой теплопроводности. Шероховатость поверхности тоже должна играть роль, потому что от нее зависит эффективная площадь пятна контакта и тепловое сопротивление.

Шероховатость поверхности тоже должна играть роль, потому что от нее зависит эффективная площадь пятна контакта и тепловое сопротивление.

6.5. Технология сварки стыков труб

6.5.1. Сварку стыков труб рекомендуется начинать сразу после прихватки. Промежуток времени между окончанием выполнения прихваток и началом сварки стыков труб из низколегированных теплоустойчивых сталей перлитного класса, а также мартенситного и мартенситно-ферритного классов должен быть не более 4 ч. Непосредственно перед сваркой необходимо проверить состояние поверхности стыка и в случае необходимости зачистить его в соответствии с указаниями п.6.2.4.

6.5.2. Стыки труб (деталей) из низколегированных теплоустойчивых сталей перлитного класса, а также мартенситного и мартенситно-ферритного классов следует сваривать без перерыва.

При вынужденных перерывах в работе (авария, отключение тока) необходимо обеспечить медленное и равномерное охлаждение стыка любыми доступными средствами (например, обкладкой листовым асбестом), а при возобновлении сварки следует подогреть стык (если это требуется) до температуры, указанной в табл.6.3. Эту температуру нужно поддерживать до окончания сварки.

Не допускается никаких силовых воздействий на стык до завершения его сварки и проведения термообработки, если таковая необходима.

Примечание. Сварное соединение трубопроводов из теплоустойчивых сталей, выполненное с перерывом, должно быть обязательно проконтролировано УЗД по всему периметру шва.

6.5.3. Во всех случаях многослойной сварки разбивать шов на участки необходимо с таким расчетом, чтобы стыки участков ("замки" швов) в соседних слоях не совпадали, а были смещены один относительно другого, и каждый последующий участок перекрывал предыдущий. Размер смещения и перекрытия "а" (рис.6.8) при автоматической сварке под флюсом должен быть не менее 50 мм, при всех других способах сварки - 12-18 мм.

6.5.4. Ручную дуговую сварку следует выполнять возможно короткой дугой, особенно при использовании электродов с основным покрытием, для которых длина дуги должна быть не более диаметра электрода. В процессе сварки необходимо как можно реже обрывать дугу. Перед гашением дуги сварщик должен заполнить кратер путем постепенного отвода электрода и вывода дуги назад на 15-20 мм на только что наложенный шов. Последующее зажигание дуги производится на кромке трубы или на металле шва на расстоянии 20-25 мм от кратера.

6.5.5. При ручной дуговой сварке во избежание зашлаковки металла шва около кромок труб следует наплавлять возможно более плоский валик.

6.5.6. В процессе сварки должны быть обеспечены полный провар корня шва и заделка кратера. По окончании наплавки каждого валика необходимо полностью удалить шлак после его охлаждения (потемнения). При обнаружении на поверхности шва дефектов (трещин, скоплений пор и т.п.) дефектное место следует удалить механическим способом до "здорового" металла и при необходимости заварить вновь.

6.5.7. Для придания сварному соединению надлежащего внешнего вида верхние слои шва следует выполнять по специальной технологии, изложенной в приложении 12.

Независимо от технологии наложения облицовочного слоя, выполненного ручной дуговой сваркой, он должен отвечать следующим требованиям:

выпуклость (усиление) шва следует выдерживать в пределах, указанных в приложении 12; для труб с толщиной стенки более 20 мм максимальный размер выпуклости может составлять 5 мм;

В стыковых швах, выполненных автоматической сваркой, при толщине стенки до 8 мм допускается выполнять шов без выпуклости (шов накладывается заподлицо с трубой).

6.5.8. Во время сварки элементов из подкаливающихся сталей (труб из сталей марок 15ХМ, 12Х1МФ, 15Х1М1Ф, 12Х2МФСР, 10Х9МФБ, 12X11В2МФ и литья аналогичного состава) следует заглушать концы труб или закрывать задвижки на трубопроводе.

6.5.9. При температуре окружающего воздуха ниже 0°С сваривать и прихватывать стыки трубопроводов и труб котлов необходимо с соблюдением следующих требований:

а) минимальная температура окружающего воздуха, при которой может выполняться прихватка и сварка элементов котлов и трубопроводов в зависимости от марки стали, приведена в табл.6.4;

б) стыки труб, которые при положительной температуре полагается сваривать с подогревом и термообрабатывать (см. табл.6.3 и 17.1), при отрицательной температуре должны быть подвергнуты термообработке непосредственно после сварки; перерыв между сваркой и термообработкой допускается при условии поддержания в это время в стыке температуры сопутствующего подогрева;

Требования к температуре окружающего воздуха при сварке и прихватке элементов котлов и трубопроводов

Примечание. При сварке деталей из сталей разных марок требования по допустимой температуре окружающего воздуха принимаются по стали, для которой допустимой температурой окружающего воздуха является более высокая температура.

г) металл в зоне сварного соединения перед прихваткой и сваркой должен быть просушен и прогрет с доведением его температуры до положительной. В случае сварки на трассе трубопроводов из углеродистых и низколегированных конструкционных сталей стык может не прогреваться, если не требуется подогрева стыка согласно табл.6.3;

д) подогрев стыков при прихватке и сварке производится в тех же случаях, что и при положительной температуре окружающего воздуха, но температура подогрева должна быть на 50°С выше указанной в табл.6.3;

е) во время всех термических операций (прихватки, сварки, термообработки и т.д.) стыки труб должны быть защищены от воздействия осадков, ветра, сквозняков до полного их остывания.

Примечание. При сварке в местных укрытиях типа будок, кабин, палаток температурой окружающего воздуха считается температура внутри укрытия на расстоянии 0,5-0,8 м от стыка по горизонтали.

6.5.10. При сварке трубопроводов и других массивных металлоконструкций из ферромагнитных сталей довольно частым явлением бывает так называемое "магнитное дутье", которое значительно затрудняет ведение процесса сварки и приводит к образованию дефектов в сварном шве. Сущность этого явления состоит в том, что магнитное поле, созданное посторонними источниками тока, которые обычно присутствуют вблизи места сварки, взаимодействует с магнитным полем самой сварочной дуги и нарушает ее стабильное горение. Действие постороннего магнитного поля может быть настолько сильным, что отклонение сварочной дуги не позволяет сварщику наложить сварной шов.

Для устранения или уменьшения магнитного дутья могут быть применены следующие мероприятия: выполнять сварку, когда это возможно, на переменном токе; крепить обратный провод возможно ближе к месту сварки; надежно заземлять свариваемое изделие; ограждать место сварки металлическими экранами для защиты от посторонних магнитных полей.

Если эти меры не приводят к устранению магнитного дутья, то следует использовать более радикальные способы борьбы с этим явлением, один из которых сводится к следующему.

На трубу, подлежащую сварке, или на обе трубы, подготовленные к стыковке либо уже состыкованные, наматывают провод (индуктор) (6-8 витков), подключают к источнику постоянного тока (сварочному преобразователю, выпрямителю) и пропускают через индуктор ток 200-300 А в течение 2-3 мин. Если после этого магнитное поле вокруг труб исчезнет, что проверяется стальной проволокой диаметром 1-1,6 мм и длиной примерно 0,5 м, то проволока не должна притягиваться к трубе. Если проволока притягивается, то надо пропустить через индуктор ток в обратном направлении, т.е. присоединить токоподводящие провода к противоположным выводам индуктора.

6.5.11. Сваренный и зачищенный стык труб с толщиной стенки 6 мм и более сварщик должен заклеймить присвоенным ему клеймом. Клеймо ставят на самом сварном шве вблизи верхнего "замка" (на площадке размером около 20x20 мм, зачищенной абразивным камнем или напильником) или на трубе на расстоянии 30-40 мм от шва.

Если стык сваривают несколько сварщиков, каждый ставит свое клеймо в верхнем конце того участка, который он выполнял. Если стык сваривают по технологии, при которой каждый сварщик должен накладывать швы (слои) в разных местах или по всему периметру стыка (например, при сварке поворотных стыков труб большого диаметра), клеймо ставят все сварщики, выполнявшие этот стык, в одном месте, желательно на его верхнем участке.

При зачистке стыка для ультразвукового контроля место расположения клейма не зачищается; если клеймо было сошлифовано, то его необходимо восстановить.

Для стыков труб из углеродистых сталей диаметром 200 мм и более с рабочим давлением до 2,2 МПа (22 ) клеймо может наплавляться сваркой. Клеймение стыков трубопроводов диаметром более 100 мм из перлитных сталей можно производить также с помощью металлической пластины размером 40x30x2 мм, на которой выбивается клеймо сварщика (сварщиков); пластина прихватывается около верхнего "замка" шва вертикального стыка или в любом месте по периметру горизонтального стыка непосредственно к сварному шву или к трубе на расстоянии не более 200 мм от шва. Пластина должна быть изготовлена из малоуглеродистой стали (марок 10, 20, Ст2, Ст3).

7. Ручная дуговая сварка труб из углеродистых и низколегированных сталей

7.1. Сварка трубопроводов пара и горячей воды, на которые распространяются правила Госгортехнадзора России

7.1.1. Конструкция сварного соединения должна отвечать требованиям п.6.2.1. Могут быть применены конструкции сварного соединения в соответствии с рис.7.1. Такие конструкции получаются, если в соединении Тр-6 стачивается нижний пояс на одной (рис.7.1, а) или на обеих трубах (рис.7.1, б).

Почему металлические предметы всегда прохладные на ощупь, даже если находятся в теплом помещении?

Вспомните, насколько горячей кажется ложка в чашке горячего чая. Деревянная ложка, даже если ее нагреть до той же температуры, не будет казаться столь горячей.

Все дело в высокой теплопроводности металла. Температура тела 36,6°C (правда, верхние слои кожи немного холоднее). Если прикоснуться к более холодному предмету, тепло начнет перетекать в него. Температура вблизи поверхности кожи снизится, и мы почувствуем прохладу (или сильный холод, если контраст велик).

Отдаваемое нашим телом тепло нагревает верхние слои холодного предмета. Но если он обладает высокой теплопроводностью (как металл), то энергия быстро растекается по всему объему, рост температуры оказывается незначительным, и перетекание тепла продолжается — мы чувствуем, что предмет остается холодным.

При низкой теплопроводности (как у дерева) внешние слои прогреваются очень быстро — иногда так быстро, что мы даже не обращаем внимания на то, что несколько секунд предмет кажется чуть прохладным. После этого теплоотдача почти останавливается, и мы чувствуем, что предмет согрелся.

С горячими предметами всё обстоит с точностью до наоборот.

Высокая теплопроводность металлов объясняется наличием в них свободных электронов — тех самых, что обеспечивают электропроводность металлов. Электроны в металлах в отличие от атомов не остаются на месте, а быстро перемещаются по всему объему, перенося при этом тепло.

Батарей 11.05.2011 09:02 Ответить

То есть теплопередача осуществляется свободными электронами? А можно ссылочку на более подробную информацию об участии электронов в проведении тепла? И чем в таком случае объяснить высокую теплопроводность и низкую электропроводность алмаза?

Vladimir_V Батарей 17:26 Ответить

Это вопрос уже несколько за пределами темы. Ключевой момент - теплопроводность, а уже ее генезис - вторичен.
Кстати, недавно появился новый материал - вспененный никель с микрокапсулами. Теплопроводность - как у пенопласта. А ведь это металл!
Но такой металл будет на ощупь много теплее любого дерева.

taras Vladimir_V 12:32 Ответить

Металлическая пена и электричество проводит плохо. А тепло электроны всё таки даже в сплошном металле переносят хуже, чем электрический заряд.

taras Батарей 12:31 Ответить

Тем, что электроны - не единственный переносчик. Электроны проводимости - лучший переносчик, из имеющихся в твёрдых телах. Но ещё лучше тепло переносятся молекулами жидкости или газа. Или атомами в случае одноатомного газа, или металлического расплава. Но не всегда, а только при эффективной конвекции. Если греть сверху, то тепло атомами и молекулами жидкостей и газов переносится очень плохо. Поэтому то вата - хороший тепло-изолятор: там очень затруднена конвекция. И несколько хуже, чем электроны, но иногда тоже не плохо тепло переносится атомами кристалла. Если убрать один переносчик, то определяющее значение получает следующий. В кристалле алмаза тепло хорошо передают атомы самого кристалла, в металле они бы это делали не хуже, да вот беда - электроны проводимости уже переносят слишком большую тепловую мощность и самому кристаллу остаются крохи.

aif 18.05.2011 14:44 Ответить

Все просто. В металлах переносят тепло в основном электроны (смотреть Видемана -Франца закон). В алмазе нет свободных электронов, и теплопроводность осуществляется за счет колебаний атомов в решетке (фононы).

В ответе не всё правильно, хотя сама ссылка на теплопроводность предметов, как причину, правильная. Главная "фишка" в том, что нервные клетки, служащие датчиками температуры, расположены не в предмете, конечно, а в вашей коже и мерят, фактически, не температуру предмета, а температуру кожи, касающуюся предмета. А дальше как было обьяснено: если теплопроводность предмета высокая, то поверхностная часть кожи, где находятся нервные клетки, меняет температуру в сторону температуры предмета, и, разумеется, чем выше теплопроводность предмета, тем это изменение выше. Поэтому при комнатной температуре, которая ниже температуры тела, когда кожа соприкосается только с воздухом, температура того слоя кожи человека, где располагаются нервные клетки, достаточно далека от температуры воздуха, так как теплопроводность воздуха очень маленькая, но мы воспринимаем "показания" нервных клеток как температуру воздуха. Но вот мы коснулись поверхности металла, имеющего ту же комнатную температуру, и из-за повышения теплопроводности понижается температура кожи, и мы чуствуем это, но воспринимаем как то, что металл холоднее.

silly_sad 16.09.2011 11:52 Ответить

вообще рубрика гениальная.
но этот ответ мне категорически не понравился -- его способен понять только тот (кто уже знает о теплопроводности (додумать то (чего автор стыдливо умалчивает) (типо так станет понятнее детем. ага!)))

а вообще типовое отношение к детям.
и никаких им картинок не доросли ещё!

хотя теплопроводность вполне объяснима на пальцах

taras silly_sad 12:59 Ответить

taras silly_sad 13:01 Ответить

"хотя теплопроводность вполне объяснима на пальцах" Ну попробуй объяснить. Я кандидат наук. Но даже я скорей всего НЕ пойму. Поймёт ли Хоккинг? Чёрт его знает.

Neznayka 29.03.2012 15:18 Ответить

Согласен с silly_sad, очень даже непонятно многое, не то что детям.

belyvil 09.09.2012 22:27 Ответить

очень прекрасные обьяснения, вообще ничего не понятно о чем тут коментируют детям. прежде чем сказать нужно думать

taras belyvil 13:03 Ответить

balexei 19.10.2012 22:45 Ответить

Q33NY 03.03.2013 17:31 Ответить

Ещё хочется уточнить, что температурные рецепторы кожи чувствуют не столько температуру, сколько её изменение. То есть ощущение тепла - это повышение температуры рецепторов, ощущение холода - понижение. Доказывается просто:
Берём ёмкость с холодной водой, ёмкость с тёплой водой и какой-нибудь предмет промежуточной температуры. Если подержать руку в холодной воде, а затем потрогать предмет, он покажется тёплым. Если подержать руку в тёплой воде, а затем потрогать предмет, он покажется холодным.

роткив Q33NY 22:16 Ответить

taras Q33NY 13:09 Ответить

У человека они чувствуют именно температуру. Доказывается просто: попробуй залезть в прохладную воду и постепенно её нагреть до 40-ка градусов. Как бы медленно вода ни нагревалась, ты почувствуешь тепло. У лягушек тепловые рецепторы чувствуют производную температуры по времени. Доказывается просто: берём двух лягушек, одну бросаем в кипяток, она выпрыгивает, вторую бросаем в холодную воду и варим на медленном огне, она спокойна. Другое дело, что чем разница в температуре контрастнее, тем легче её почувствовать. Но одномоментно между двумя точками, разделёнными в пространстве, а производную температуры по времени человек не способен почувствовать вообще. Доказывается также просто: попробуй схватиться за нагретое жало паяльника, больно станет только секунд через 5. А металлурги умудрялись даже совать руки в расплав и не чувствовать при этом вообще ничего. А фокус прост: тепловая инерция больше нервной. То есть чтоб даже кожа нагрелась, нужно как минимум несколько секунд, а сравнение происходит на масштабе долей секунды, максимум где то пары третий.

T_Im 12.05.2017 23:56 Ответить

ИМХО, в объяснении упущен главный ключевой момент: теплое помещение (следовательно, и находящиеся в нем металлические предметы), как правило, _заведомо_ холоднее человеческого тела (20+C и 30+C, почему так получилось - это уже другой детский вопрос). И уже из этого факта и высокой теплопроводности металла следует ощущение холода.

taras T_Im 13:16 Ответить

Чтоб почувствовать перепад в жалкие 6 градусов, нужна гиря где то под центнер. А перепад между кожей кистей рук и снегом я, например, ощущаю, когда он превышает 60 градусов. Между той же кожей и воздухом - начиная с 80-ти градусов. И или как правило, что значит обычно, то есть всё таки не всегда, или заведомо. Крокодил зелёный не может быть синим как морковка.

taras 10.10.2017 12:19 Ответить

f_const 20.11.2017 09:32 Ответить

Значение имеет не только теплопроводность, но и теплоемкость, они в этом процессе на равных правах. На всякий случай приведу здесь точный результат, а уж как его объяснять детям - это отдельный вопрос. Пусть два тела с разной теплоемкостью, теплопроводностью и температурой приходят в соприкосновение по плоской поверхности. В точке контакта температура принимает значение, равное среднему взвешенному из температур тел, причем веса равны корням из произведений теплоемкости на теплопроводность. Т.е., если у нас есть тело с высокой теплопроводностью, но низкой теплоемкостью, оно тоже может быть на ощупь теплым. Температура точки контакта далее не меняется (если теплопроводности и теплоемкости постоянны, не зависят ни от температуры, ни от координаты). Это можно вывести качественным способом: на границе тел образуется своего рода общий тепловой резервуар, в котором температура близка к однородной, причем этот резервуар распространяется вглубь тел на глубины порядка корня из температуропроводности (это теплопров. деленная на теплоемкость), умноженной на время контакта. Складывая внутренние энергии частей резервуара, относящихся к разным телам, и деля на суммарную их теплоемкость, мы как раз и получим то, что написано выше.

Интересно, что температура точки контакта со временем не меняется.
То, что мы, прикасаясь к холодному предмету, со временем перестаем чувствовать холод - это следствие дополнительных факторов: конечности размера предмета (часть теплового резервуара со стороны предмета в конце концов не сможет дальше расширяться, т.е. предмет, грубо говоря, уже весь прогрелся), переноса тепла кровью (тепловой резервуар со стороны нашего тела достиг области, где перенос тепла уже не чисто теплопроводностью) или попросту снижения нервной реакции.
Интересны варианты с переменной по глубине теплопроводностью. Тот же ход размышлений приведет нас к тому, что температура точки контакта будет меняться в зависимости от того, какие области со временем включаются в тепловой резервуар. Здесь можно привести такие наглядные примеры. Если мы берем в руки кусок фольгированной теплоизоляции при комнатной температуре и ниже, мы сначала ощущаем холод - очень недолго, доли секунды, а потом - тепло. Можно сделать и наоборот - например, накрыть на холоде металлический предмет нетолстой тканью. Сначала будем ощущать слабую прохладу, со временем - более сильный холод.

icWasya 06.05.2019 20:19 Ответить

Есть ещё класс веществ, которые хорошо проводят электрический ток, но плохо проводят тепло - сверхпроводники. Тепло сначала передаётся кристаллической решотке, а уж затем электронаь, которые разносят его по всему объёму. Свободных(почти) электронов - полно, но они никак не взаимодействуют с атомами. Жаль на ощупь это проверить нельзя :(

Читайте также: