Твердые металлы и их свойства

Обновлено: 05.07.2024

Твердые сплавы - гетерогенные материалы, в которых частицы высокотвердых тугоплавких соединений (чаще всего карбиды, реже нитриды или бориды переходных металлов; наиболее широко используют карбиды вольфрама, титана, тантала, хрома или их сочетаний) сцементированы пластичным металлом-связкой (кобальтом, никелем, железом и их сплавами). Твердые сплавы обладают высокой твердостью и износостойкостью и сохраняют эти свойства при температуре 900 - 1500 °С.

Классификация

Литые твердые сплавы получают методом литья. К данной группе относят стеллиты (хром, вольфрам, никель, углерод; основа - кобальт), сормайты (хром, никель, углерод; основа - железо), стеллитоподобные сплавы (основа - никель). Для наплавки их выпускают в виде литых стержней или прутков различного химического состава.

В безвольфрамовых твердых сплавах карбид вольфрама заменяется либо на какой-либо другой твердый материал, например, нитрид, борид, силицид, либо на карбид иного тугоплавкого металла, например, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена.

Свойства твердых сплавов

Основным практически полезными свойствами сплавов данной категории являются высокая твердость, износостойкость и прочность. В некоторых случаях важную роль играет жаропрочность и жаростойкость, а также тугоплавкость.

Свойства сплавов изменяются в зависимости от группы, к которой относится тот или иной твердый сплав. Для сплавов ВК большую роль играет размер зерна карбида вольфрама. С уменьшением размера зерна возрастает твердость, но уменьшается прочность при изгибе и вязкость сплава (при одинаковом процентном соотношении карбида вольфрама и кобальта) и наоборот соответственно. Сплавы группы ТК, легированные карбидом титана, обладают лучшей стойкостью против окисления, более высокой твердостью и жаропрочностью по сравнению с группой ВК. Однако, имеют более низкую вязкость, прочность при изгибе, а также тепло- и электропроводность. Одновременное добавление карбидов тантала и титана (группа ТТК) увеличивает прочность сплавов при изгибе по сравнению с группой ТК.

Технологические свойства сплава, а именно, его высокая пластичность позволяют без проблем обрабатывать монель давлением как в горячем, так и в холодном состоянии. Также обладает хорошей свариваемостью. А вот механическую обработку необходимо осуществлять с низкой скоростью резания и подачей вследствие быстрого нагартовывания материала.

Марки твердых сплавов

Среди вольфрамсодержащих твердых сплавов наиболее распространенными марками являются ВК - сплавы на основе карбида вольфрама с кобальтом в качестве металла-связки, ТК - сплавы на основе карбида вольфрама с кобальтом в качестве металла-связки и добавлением карбида титана, ТТК - то же, что и ТК плюс карбид тантала.

В общем случае марки вольфрамсодержащих твердых сплавов формируются следующим образом: буква В - карбид вольфрама (WC), Т - карбид титана (TiC), ТТ - карбиды титана и тантала (TaC), КНТ - карбонитрид титана, К - кобальт (Co), Н - никель (Ni); цифры после букв - содержание этих веществ в процентах, а для букв ТТ - сумму содержания карбидов титана и тантала; содержание карбида вольфрама не указывается, оно определяется по разности.

В безвольфрамовых сплавах в качестве связующего металла используют никель в смеси с 20- 25% молибдена.

Химический состав некоторых марок приведен в таблице.

Марка Состав, %
WC TiC TaC Co
ВК6 94 - - 6
ВК8 92 - - 8
ВК10 90 - - 10
Т30К4 66 30 - 4
Т15К6 79 15 - 6
Т5К12 83 5 - 12
ТТ7К12 81 4 3 12
ТТ8К6 84 8 2 6
ТТ20К9 71 8 12 9
ТН20 - 80 - (Ni+Mo) - 20
КНТ16 - 84 - Ti(C,N) - (Ni+Mo) - 20

Достоинства / недостатки

    Достоинства:
  • обладают высокой твердостью и износостойкостью;
  • имеет достаточно высокие прочностные характеристики;
  • имеют хорошие показатели жаропрочности и жаростойкости;
  • являются тугоплавкими материалами.
    Недостатки:
  • карбид вольфрама, являющийся основой большинства твердых сплавов, имеет высокую стоимость;
  • по сравнению с быстрорежущими сталями имеют меньшую вязкость и достаточно чувствительны к ударным нагрузкам.

Области применения

Спеченные твердые сплавы широко применяются для обработки материалов резанием, для оснащения горного инструмента, быстроизнашивающихся деталей машин, узлов штампов, инструмента для волочения, калибровки, прессования и так далее. В качестве примера самых распространенных изделий из твердых сплавов можно привести резцы и буровые головки. Инструмент, полностью изготовленный из твердого сплава, очень дорог, поэтому из него изготовляют лишь режущую или изнашиваемую часть. Державки же инструмента изготовляют из обычной конструкционной или инструментальной стали.

Литые твердые сплавы применяются значительно реже по сравнению со спеченными. Они получили распространение при производстве фильер и некоторых буровых инструментов.

Продукция из твердых сплавов

Промышленность выпускает сырье для производства твердых сплавов в виде порошкообразных смесей. Широкое распространение получили смеси твердосплавные ВК6 и ВК8. В дальнейшем смеси формуются и спекаются, в результате чего получаются штабики или готовые изделия требуемой формы. Штабики служат исходным сырьем для производства полуфабрикатов, например, листов, пластин, прутков и других изделий.

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Свойства металлических изделий

Свойства металлических изделий

Свойства металлических изделий зависят от металлов, входящих в их состав. Речь идет про тепло- и электропроводность, хрупкость или, наоборот, пластичность, а также свариваемость, ковкость и другие. Металлические изделия широко используются как в промышленности, так и в быту.

Выбор металлов определяется назначением изделия и тем, в каких условиях оно будет эксплуатироваться. Более подробно о свойствах металлических изделий читайте в нашем материале.

Общая характеристика металлических изделий

Современная металлургическая промышленность предлагает большое разнообразие видов металлических изделий. К самым распространенным из них относится металлический прокат, то есть изделия, которые производят на специальных станках методом горячей либо холодной прокатки.

Общая характеристика металлических изделий

Все разновидности металлического проката объединяются общим понятием «сортамент». Сортамент принято разделять на четыре группы: листовой, сортовой, трубы и специальные виды проката. К последним относятся бандажи, колеса, шары, периодические и гнутые профили. По способу обработки поверхности выделяют калиброванный, шлифованный, зеркальный и матовый сортамент.

Говоря о свойствах металлических изделий, стоит отметить, что сортовой прокат обладает самой разнообразной номенклатурой, где принято выделять простые и фасонные профили.

Прокатные цеха изготавливают примерно две тысячи размеров простых профилей, более тысячи фасонных общего потребления, а также около полутора тысяч размеров профилей специального назначения. Простыми называют профили с сечением в виде геометрических фигур, таких как круг, полукруг, овал, сегмент, шестигранник, квадрат, треугольник, полоса плоского сечения, пр.

Прокат сложного поперечного сечения обозначают как фасонные профили. В данной группе выделяют профили общего или массового потребления и специального назначения. К первым относятся уголки, швеллеры, двутавровые балки, шестигранные профили, пр. Тогда как вторые представлены трамвайными и железнодорожными рельсами широкой и узкой колеи, профилями сельскохозяйственного машиностроения, нефтяной и электропромышленности, пр. Из цветных металлов обычно производятся простые профили.

Размеры являются еще одним важным нюансом, о котором не стоит забывать, говоря на тему свойств металлических изделий. Сортовой прокат делят на:

  • Крупный. Сюда относят круглую сталь диаметром 80–250 мм, квадратную со стороной 70–200 мм, периодические арматурные профили № 70–80, угловая сталь с шириной полок 90–250 мм, швеллеры и двутавровые балки обычные и облегченные высотой 360–600 мм. Также в эту категорию входят специальные широкополочные двутавры и колонные профили высотой в пределах 1 000 мм, шестигранная сталь до № 100, железнодорожные рельсы массой 43–75 кг на метр длины изделия, полосовая сталь шириной не более 250 мм, пр.
  • Средний. Речь идет о круглой стали диаметром 32–75 мм, квадратной со стороной 32–65 мм и шестигранной до № 70. Здесь же представлен стальной периодический арматурный профиль № 32–60, двутавровые балки высотой до 300 мм, швеллеры высотой 100–300 мм, рельсы узкой колеи Р18 – Р24, штрипсы с сечением до 8×145 мм и фасонные профили.
  • Мелкий. Такая круглая сталь имеет диаметр 10–30 мм, квадратная со стороной 3,2–31 мм, сюда же относят периодический арматурный профиль.

В качестве элементов строительных конструкций применяют листовую и сортовую сталь. Нередко используют вторичные профили, то есть сварные, для изготовления которых соединяют полосы или листы, и гнутые. Для изготовления вторых прибегают к холодной гибке полос и листов.

Технологические свойства металлических изделий

Технологические свойства металлов являются частью их общих физико-химических свойств. Их важно учитывать во время проектирования и производства изделий с улучшенными характеристиками для данного металла или сплава.

Технологические свойства металлических изделий

Вот ключевые технологические свойства материалов и металлических изделий:

    • Обрабатываемость резанием. Предполагает возможность обработки металла или сплава при помощи резца, абразива. Для оценки этого показателя учитывают скорость затупления резца во время работы на определенных режимах резания при получении поверхности необходимой шероховатости. Данный параметр фиксируют в процентах от обрабатываемости стали или свинцовистой латуни повышенной обрабатываемости резанием – здесь все зависит от того, идет речь о сталях или о медных сплавах.
    • Обрабатываемость давлением в горячем и холодном состоянии. Для замера данного показателя используют различные технологические пробы: на осадку, на изгиб, на вытяжку сферической лунки, пр. Обязательно учитываются пластичность, твердость, упрочнение материала при конкретной температуре обработки.
    • Свариваемость. Так называют способность металлов и сплавов образовывать неразъемные соединения, соответствующие необходимым механическим характеристикам. Для оценки свариваемости сопоставляют качества сварных соединений со свойствами основного материала металлического изделия. Чем больше методов сварки может использоваться при работе с конкретным металлом и чем шире выбор среди режимов такой обработки, тем выше показатель свариваемости. Данную характеристику проверяют за счет рассмотрения структуры, механических свойств, вероятности растрескивания металла шва в зоне шва.
    • Литейные свойства. Речь идет о сочетании таких показателей, как температура плавления, кипения, заливки и кристаллизации, плотность и жидкотекучесть расплава, литейная усадка, пр.
    • Жидкотекучесть представляет собой способность металла заполнять литейную форму и зависит от вязкости, поверхностного натяжения, температуры заливки расплава. Если этот показатель высокий, удается легко заполнить расплавом сложную литейную форму.
    • Усадка является разницей между моделью и отливкой в соответствии с их линейными размерами. Чем она ниже, тем меньше вероятность, что в металле появятся усадочные раковины.
    • Пластичность, также известная как деформируемость, обозначает способность металла изменять форму в результате гибки, ковки, штамповки, прессования таким образом, чтобы не страдала целостность материала заготовки. За счет оптимальных показателей и учета данного свойства удается производить металлические изделия без видимых и скрытых дефектов.
    • Упрочняемость металлов и сплавов зависит от их способности становиться более прочными в результате термической, механической обработки.
    • Закаливаемость – это повышение твердости стали в процессе закалки. Есть разновидности металла с плохой закаливаемостью – они остаются недостаточно твердыми после подобной обработки.

    Закаливаемость

      Прокаливаемость – так называют глубину проникновения закалки при обработке массивных изделий. Дело в том, что разные слои металла охлаждаются неравномерно: его поверхность, которая вступает в контакт с закалочной жидкостью, остывает быстрее остального объема. Вполне логично, что медленнее всего остывает центр изделия. Чем выше критическая скорость закалки, тем ниже прокаливаемость стали.

    Углеродистые стали отличаются высокой критической скоростью, из-за чего страдает прокаливаемость. Учитывая данное свойство, их не используют для производства массивных металлических изделий, так как здесь важны хорошие механические характеристики по всему сечению. Для таких целей обычно выбирают легированную сталь, поскольку она отличается более высокой прокаливаемостью.

    Термическое старение предполагает изменение растворимости углерода в железе в зависимости от температуры. Деформационное старение происходит в сплаве, подвергнутом пластической деформации при температуре ниже показателя рекристаллизации. В обычных условиях подобный процесс занимает не менее 15 суток, тогда как при +200…+350 °C на него уходит несколько минут.

    Перед проведением искусственного старения закаленных и отпущенных при низкой температуре изделий осуществляют механическую обработку при +100…+180 °C. Последняя предполагает выдержку в течение 18–35 часов и постепенное охлаждение. Естественное старение происходит на открытом воздухе под навесом, где металлические изделия меняют свои свойства на фоне перепадов температуры, влажности, давления воздуха. На весь процесс уходит от трех месяцев до двух лет. Именно так защищают от дальнейших изменений станины прецизионных станков, корпусные детали ответственного назначения, рамы роялей и пианино. В результате снижается внутреннее напряжение металлов, стабилизируются размеры и форма заготовки.

    Механические свойства металлических изделий

    Речь идет о характеристиках материала, позволяющих ему противостоять воздействию внешних сил. Такие нагрузки бывают статическими, динамическими или циклическими, то есть повторно-переменными. По направлению действия силы принято выделять деформации растяжения, сжатия, изгиба, скручивания и среза. В реальной жизни изделие испытывает на себе воздействие сразу нескольких сил, при этом возникает упругая или пластическая деформация. Первая является обратимой, тогда как вторая необратима.

    Механические свойства металлических изделий

    Основными механическими свойствами металлических изделий считаются прочность, твердость, пластичность, упругость, вязкость. Также на производствах определяют усталость или выносливость металлов, ползучесть и другие показатели.

    VT-metall предлагает услуги:

    Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

    Статические испытания на растяжение позволяют оценить следующие прочностные свойства материала: предел пропорциональности, упругости, текучести, прочности. Также рассматривается пластичность, которая предполагает относительное удлинение и относительное сужение образца. Для испытания используют образцы, отвечающие требованиям ГОСТ по форме и размерам. В процессе проверки на растяжение их растягивают до разрыва при помощи плавно возрастающей нагрузки. А напряжение, при котором происходит течение пластичного металла/сплава, является пределом текучести и выражается в МПа.

    Рекомендуем статьи по металлообработке

    Твердостью называют способность твердого тела противостоять внедрению в его поверхность другого более твердого тела. На производствах в этом случае принято пользоваться тремя методами испытания – все они названы в честь своих изобретателей. Речь идет о методах Бринелля (НВ), Роквелла (HRA, HRB, HRC) и Виккерса (HV). Они позволяют косвенно судить о прочности материалов, стойкости к износу. Также перечисленные подходы дают возможность контролировать качество и сохранение необходимых свойств металлических изделий после термического и химико-термического воздействия и обработки давлением.

    Способность металлов сопротивляться ударным, циклическим (повторно-переменным) нагрузкам и нагрузкам при высоких температурах считаются основными свойствами.

    Для определения ударной вязкости прибегают к помощи маятниковых копров, где перебивается стандартный образец с надрезом. По работе, затраченной на излом образца (в ДЖ), можно судить об ударной вязкости металла или сплава (KCU, KCV и КСТ).

    Циклические испытания на усталость помогают оценить те материалы и детали оборудования, которые испытывают многократные повторно-переменные нагрузки. Речь идет о нагружении – разгружении, растяжении – сжатии, закручивании в противоположные стороны, пр. Усталостному разрушению подвержены, например, пружины, рессоры, валы, шатуны. Способность материала противостоять усталости называют выносливостью. Она оценивается числом циклов нагрузка – разгрузка, которые металл способен выдержать до наступления усталостного разрушения.

    Функционирование деталей в условиях высокой температуры и нагрузки приводит к ползучести материала. Тогда наиболее значимым свойством металлического изделия становится стойкость сплава к ползучести.

    Физические свойства металлических изделий

    В стандартных условиях все металлы, кроме франция и ртути, имеют твердое состояние. Нагревание до определенной температуры приводит к их плавлению, а достижение еще более высоких показателей вызывает переход в газообразное состояние. Твердость, температура плавления металлов зависят от их пространственной кристаллической решетки. Наиболее мягкими являются щелочные металлы – их можно разрезать даже ножом. Самыми твердыми считаются металлы VIВ-группы, главным представителем которой является хром. По твердости он близок к алмазу и может резать стекло.

    Физические свойства металлических изделий

    Такое свойство металлических изделий, как электропроводность, объясняется наличием в металле свободных электронов – наложение электрического тока приводит к их направленному перемещению. Металлы являются проводниками первого рода, так как сохраняют изначальную структуру при проведении тока. Нагревание приводит к снижению электропроводности, поскольку колебательное движение ионов усиливается, соответственно, перемещение электронов затрудняется. Охлаждение позволяет повысить электропроводность, при абсолютном нуле она стремится к бесконечности. Данное явление принято называть сверхпроводимостью.

    Теплопроводность представляет собой характеристику, которая обеспечивается взаимодействием электронов проводимости с ионами, расположенными в узлах кристаллической решетки. Описанная выше электропроводность и теплопроводность взаимосвязаны – если у металла высокий первый показатель, то и второй находится на аналогичном уровне.

    Пластичность – это легкость деформации металлов, которая проявляется наиболее ярко при высоких температурах. Дело в том, что под внешним воздействием одни слои в кристаллах легко перемещаются относительно других, что не приводит к разрыву. Данное свойство позволяет изготавливать такие металлические изделия, как листы, проволока, кроме того, металлы можно ковать и прессовать. Наиболее пластичны золото, серебро и медь. Чтобы произошла деформация материалов с механической прочностью, изделия из них должны испытывать серьезные нагрузки.

    Физические свойства металлических изделий

    По плотности металлы делят на легкие и тяжелые. Если данный показатель ниже 5 г/см 3 , металл относят легким, при его превышении – к тяжелым. Самым легким является литий, его плотность составляет 0,53 г/см 3 , а самым тяжелым – осмий с плотностью 22,6 г/см 3 . Легкими считаются щелочные, щелочноземельные металлы, а еще бериллий, алюминий, скандий, иттрий и титан, тогда как все остальные называют тяжелыми.

    Магнитные свойства имеют все металлические изделия, так как металлы являются магнетиками. Они изменяют либо приобретают магнитный момент под действием стороннего магнитного поля. Магнитные свойства измеряют при помощи остаточной индукции, коэрцитивной силы и магнитной проницаемости, также известной как магнитная восприимчивость.

    На основе магнитных свойств металлы делят на три группы:

    • Диамагнетики – выталкиваются из магнитного поля и ослабляют его.
    • Парамагнетики – втягиваются в магнитное поле, усиливают его, но незначительно.
    • Ферромагнетики – способны серьезно усиливать магнитное поле.

    В первую категорию входят медь, серебро, золото, кремний, бериллий и металлы подгруппы цинка, галлия, германия. Они выделяются отрицательной магнитной восприимчивостью, а под действием внешнего магнитного поля в них возникает направленная навстречу ему намагниченность.

    Ко второй группе относят металлы с небольшой положительной восприимчивостью, это преимущественно щелочные и щелочноземельные. Они намагничиваются в направлении внешнего поля. Ферромагнетики – это металлы с высокой магнитной восприимчивостью, а именно железо, кобальт, никель.

    Нужно понимать, что существуют металлы и сплавы, которые не относятся ни к одной из данных групп. Это ряд редкоземельных металлов, которых называют антиферромагнетиками, и ферриты, то есть соединения оксида железа, пр.

    Почему следует обращаться именно к нам

    Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

    Наши производственные мощности позволяют обрабатывать различные материалы:

    • цветные металлы;
    • чугун;
    • нержавеющую сталь.

    При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

    Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

    Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

    Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

    Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

    Технологические свойства металлов и сплавов


    Технологические свойства металлов и сплавов определяют пригодность материала для конкретного вида обработки и в целом возможность его использования в том или ином производственном цикле. Добавление в металл или сплав сторонних элементов напрямую влияет на их основную характеристику. Для определения технологических свойств необходимо провести испытания.

    В нашей статье мы расскажем, какими бывают указанные свойства, как проявляют себя примеси, а также приведем пример производственных испытаний, которые выявляют пригодность материала к использованию в производстве.

    Понятие металлов и сплавов

    К технологическим свойствам металлов и сплавов относятся:

    • высокая обрабатываемость (ковкость, штампуемость, возможность резки, пайки, сварки и т. п.);
    • прочность;
    • твердость;
    • ударная вязкость и пр.

    Все металлы делятся на черные и цветные.

    Технологические свойства чистых металлов зачастую не позволяют использовать их для промышленных и технических нужд. Поэтому в основном применяются сплавы.

    Сплав состоит из двух и более затвердевших расплавленных металлов и других веществ.

    Помимо металлов, в составе сплавов могут присутствовать, к примеру, углерод, кремний, другие элементы.

    Используя разные комбинации металлов и неметаллов, можно получать материалы с различными технологическими свойствами, которыми не обладают составляющие сплав компоненты.

    Технологические свойства сплавов могут отличаться от характеристик составляющих их металлов. Они могут быть:

    • более прочными и твердыми;
    • обладать более высокой или, напротив, более низкой температурой плавления;
    • более коррозионно-устойчивыми;
    • менее подверженными высокотемпературному воздействию;
    • оставаться прежнего размера при нагревании или охлаждении и пр.

    Чтобы увеличить твердость железа, в него добавляют углерод. Менее 2 % углерода содержится в сталях, более 2 % – в чугуне. Для придания металлам и сплавам такого технологического свойства, как коррозионная устойчивость, в них добавляют хром, твердость достигается за счет добавления вольфрама, износостойкость – марганца, прочность – ванадия.

    Определение и виды технологических свойств металлов и сплавов

    Технологические свойства металлов и сплавов определяют их способность меняться под воздействием горячих или холодных способов обработки. В их основе лежат физико-механические характеристики материалов.


    Выделяют такие технологические свойства металлов и сплавов, как:

    • О+бработка при помощи резки;
    • подверженность деформациям за счет ковкости, штампуемости, загибов, перегибов, отбортовки и пр.;
    • свариваемость;
    • литейные свойства;
    • способность к пайке;
    • упрочняемость и т. п.

    Именно от технологических свойств металлов и сплавов зависит, как поведет себя заготовка в процессе обработки.

    Остановимся более подробно на основных технологических свойствах.

    Свариваемость.

    Это технологическое свойство металлов и сплавов, благодаря которому они образуют друг с другом прочные соединения. Соединяются заготовки за счет расплавления материала и его последующего охлаждения. В зависимости от источника нагрева деталей сварку делят на газовую, дуговую, электроконтактную, ультразвуковую и пр.

    Деформируемость.

    Под этим технологическим свойством понимают способность металлов и сплавов меняться под воздействием пластических деформирующих операций, таких как гибка, ковка, штамповка, прокат, прессование и др. При этом целостность заготовок не нарушается. На это свойство материалов влияют их химический состав, механические свойства, скорость деформации, температура, при которой выполняются операции и т. п. Способ деформации выбирают после выполнения технологических испытаний, в процессе которых оценивают деформируемость различных сплавов и металлов.

    Литейные свойства.

    Это технологические свойства (жидкотекучесть, усадка и ликвация), учет которых позволяет изготавливать отливки деталей и изделий без возникновения трещин, усадочных раковин и других дефектов.


    Жидкотекучесть.

    Металлы и сплавы, находясь в жидком состоянии, заполняют все полости, узкие и тонкие места литейных форм и принимают четкое объемное изображение очертаний отливок. На это технологическое свойство металлов и сплавов влияют химический состав материала заготовки, температура заливки, вязкость, поверхностное натяжение. Помимо характеристик обрабатываемых металлов, жидкотекучесть зависит от качества внутренней полости формы, ее шероховатости, теплопроводности и пр. Это свойство при использовании песчаных сухих форм гораздо выше, чем при применении сырых металлических.

    Усадкой называют такое технологическое свойство металлов и сплавов, за счет которого их объем уменьшается при затвердевании отливок. Степень усадки выражается в процентах, для разных металлов она варьируется в пределах 1-2 %. На нее влияют химический состав материала и температура заливки (чем она выше, тем сильнее усадка).

    При усадке в отливках образуются усадочные раковины и рыхлости. Во избежание появления подобных дефектов используют литейные формы с дополнительными устройствами – прибылями, за счет которых в формы постоянно поступает жидкий металл.

    В процессе кристаллизации металлы и сплавы в отливках становятся неоднородными по химическому составу. Эта неоднородность называется ликвацией. Она может быть зональной – наблюдаемой на отдельных заготовках, и внутрикристаллической – распространяющейся на отдельные зерна.

    Для устранения последней используют термическую обработку, первой – механическую, в процессе которой при заливке жидкого металла в форму его механически перемешивают. Ликвация зависит от скорости охлаждения заготовки, если она остывает равномерно, то этот дефект не образуется.

    Технологическое свойство металлов и сплавов, благодаря которому они способны создавать прочные и герметичные соединения за счет пайки. Если спаиваемые детали предполагается использовать в области радио- и электротехники, то материалы, из которых они изготовлены, должны обладать такими свойствами, как электропроводность, индуктивность и пр.

    Рекомендуем статьи:

    Упрочняемость.

    Так называют технологическую характеристику материалов, благодаря которой их механические свойства повышаются при термической и химико-термической обработке. Упрочняемость включает в себя закаливаемость, прокаливаемость и незакаливаемость.

    Закаливаемость.

    Это свойство означает, что материалы воспринимают закалку, оно характерно для углеродистых и легированных сталей, в которых содержание углерода превышает 0,3 %, а также для чугуна, сплавов цветных металлов, бронзы, латуни и других сплавов.

    Прокаливаемостъ.

    Прокаливаемость означает глубину закалки, воспринимаемую металлами и сплавами и определяемую в соответствии с требованиями ГОСТ 5657-69. На эту характеристику влияют химический состав обрабатываемых материалов, температура нагрева и способ охлаждения.

    Незакаливаемость.


    Означает, напротив, невосприимчивость материала (к примеру, углеродистых и других сталей с содержанием углерода в составе менее 0,3 %) к закалке. Это технологическое свойство металлов и сплавов учитывают при сварке, поскольку чем оно выше, тем более качественным будет сварное соединение. Отдельные стали устойчивы к закаливанию при нагревании и охлаждении, заготовки из них также не воспринимают закалку.

    Изменение технологических свойств на примере стали

    Наиболее распространенным материалом является сталь. На технологические свойства стальных сплавов влияет их химический состав – входящие в него примеси могут повышать или понижать отдельные характеристики материала:

    • Чем больше содержание в составе сплава углерода, тем выше его прокаливаемость и ниже восприимчивость к ковке. Ковка и прокатка возможны для металлов и сплавов, в которых присутствует не более 1,4 % этого химического элемента.
    • Марганец понижает теплопроводность металлов и сплавов и, как следствие, возможность их сваривания. Однако при равномерном медленном нагревании такие материалы прекрасно подходят для ковки.
    • Никель положительно сказывается на пластичных технологических свойствах металлов и сплавов, материалы, в которых он присутствует, хорошо поддаются ковке. Однако при нагреве никель способствует образованию окалины. Она не разрушается во время ковки, проникает в металл и снижает качество готовых изделий.
    • Хром способствует повышению прочности металлов и сплавов, следовательно, заготовки, в составе которых он присутствует, не следует обрабатывать при помощи ковки или проката, так как велика вероятность возникновения трещин.
    • Большое содержание в составе металлов и сплавов молибдена снижает такое их технологическое свойство, как теплопроводность. Этот момент важно учитывать при выборе температурного режима обработки, нагрев и охлаждение должны выполняться при строгом соблюдении предписанных технологией требований. Ковка возможна при применении более мощного оборудования
    • Ванадий же, напротив, повышает качество ковки, увеличивает устойчивость сталей к перегреву.

    Отрицательно сказываются на технологических свойствах металлов и сплавов присутствие в их составе серы и фосфора. Их высокое содержание становится причиной красноломкости (ломкости при нагревании) и хладноломкости (ломкости при охлаждении) заготовок. Несмотря на то, что полностью очистить сплавы от присутствия этих химических элементов невозможно, на производстве стремятся к максимально возможному снижению их содержания в составе.


    Технологические свойства металлов и сплавов напрямую зависят от их химического состава, поэтому, прежде чем выбрать тот или иной способ обработки, на производстве тщательно анализируют состав подлежащего обработке материала. Если этого не сделать, вероятно возникновение проблем как в процессе обработки, так и при дальнейшем использовании готовых изделий.

    Технологические испытания металлов и сплавов

    Технологические испытания включают в себя испытания на изгиб, осадку, сплющивание, бортование, загиб и т. д. Многие пробы и испытания проводятся в соответствии с разработанными и утвержденными стандартами.

    В зависимости от результатов технологических испытаний принимают решение о возможности изготовления деталей и конструкций соответствующего качества из имеющегося материала с применением той или иной операции, выполняемой на данном производстве.

    Испытание на изгиб проводится в соответствии с требованиями ГОСТ 14019-80. С его помощью определяют, способны ли металлы и сплавы выдерживать изгибание без разрушения. Образец помещают под пресс и изгибают до необходимого угла. Если угол изгиба равен 180°, то материал может выдерживать предельную деформацию. О том, что образец прошел испытание, свидетельствует отсутствие трещин, надрывов, расслоений и других дефектов

    Такое технологическое испытание проводят для листовых металлов толщиной до 3 см, а также для сортового металлопроката (прутков, швеллеров, уголков).

    Испытание на осадку выполняется в соответствии с требованиями ГОСТ 8817-82. С его помощью определяют, способны ли металлы и сплавы выдержать требуемую пластическую деформацию. Проводится оно при помощи пресса или молота, осаживающего горячий или холодный образец до заданной высоты. Для испытания используют круглые или квадратные образцы диаметром или стороной квадрата 0,3–3 см в холодном состоянии, 0,5–15 см – в горячем. Стальные образцы должны быть высотой не менее двух диаметров, из цветных металлов – не менее полутора диаметров. Об успешном прохождении испытания свидетельствует отсутствие трещин, надрывов или изломов.

    Испытание на сплющивание труб проводится в соответствии с требованиями ГОСТ 8695-75. С его помощью определяют, способны ли трубы сплющиваться до определенной высоты без появления дефектов. Для этого конец или отрезок трубы длиной 2–5 см размещают между двумя параллельными плоскостями и сплющивают. При испытании сварной трубы место соединения должно быть расположено на горизонтальной оси. Скорость сплющивания не должна превышать 2,5 см/мин. Об успешном прохождении испытания свидетельствует отсутствие трещин и надрывов.

    Испытание на бортование труб проводится в соответствии с требованиями ГОСТ 8693-80. С его помощью определяют, способны ли трубы отбортовываться на прямой угол. Для этого конец трубы помещают в оправку и отбортовывают усилием пресса до тех пор, пока не получают фланец требуемого диаметра. При испытании используют оправку с чисто обработанной рабочей поверхностью, обладающей высокой твердостью (HRC не менее 50). Радиус закругления оправки, формирующей борт, должен составлять две толщины стенки трубы (R = 2s). Об успешном прохождении испытания свидетельствует отсутствие трещин и надрывов.

    Об успешном прохождении испытания свидетельствует отсутствие трещин, надрывов, расслоений.

    Для того чтобы определить прочность сварного соединения, проводят испытание на свариваемость. Сваренный образец изгибают на определенный угол или растягивают. После чего проводят сравнение прочности сваренного и несваренного образцов из испытуемого материала.

    В статье мы рассказали о том, какое значение имеют технологические свойства металлов и сплавов, а также проведение испытаний для получения качественных, долговечных изделий и конструкций из них.

    Твердые сплавы

    К твердым сплавам относится отдельная группа соединений, которые способны сохранять свои свойства при достаточно высоких температурах, длительном механическом воздействии на другие материалы. Даже при достижении температуры в 1150 °C твердый сплав сохраняет все физические и механические свойства. Они изготавливаются из тугоплавких металлов, обладающих повышенной твердостью.

    Твердые сплавы

    Характерные особенности и маркировка

    Характерной особенностью получения подобных соединений является применение специфических технологических процессов. Таким процессом является специальное прессование. Он осуществляется тщательным перемешиванием металлических порошков с добавлением порошкового кобальта. Затем производится процесс так называемого термического спекания.

    Применяют высокотемпературное сплавление специальной шихты. Такая шихта состоит из большого числа компонентов. В нее входят: вольфрам, кобальт, битое стекло, кокс, легирующие добавки, например, хром.

    Для идентификации всего многообразия таких соединений, ГОСТ установлена следующая маркировка твердых сплавов. Марки твердых сплавов состоят из заглавных букв русского алфавита и набора цифр. Каждая буква несет свою смысловую нагрузку.

    В качестве примера можно привести следующие марки:

    • ВК2 – первая буква «В» указывает на наличие в составе вольфрама, вторая определяет наличие кобальта. Цифра указывает на процентное содержание каждого металла. В нашем случае это 2% приходится на кобальт, основу составляет вольфрам. Его содержание достигает 98%;
    • ВК6М – это также вольфрамокобальтовый твердый слав. Шестерка означает процент имеющегося кобальта. Остальные 94 процента – это вольфрам. «М» конкретизирует область применения. Она указывает на применение данного материала при производстве инструмента для обработки металлов, которые трудно, практически невозможно обработать (например, нержавеющая сталь).
    • Сплав ВК8 имеет состав: 92% стали, 8% вольфрама.
    • Т5К10 – такая маркировка указывает — этот образец включает три элемента: вольфрам, титан, кобальт. В нем содержится: вольфрама – 85%, титана – 5%, кобальта -10%.
    • Т14К8 – имеет такой же состав элементов. Но отличается их процентное содержание: вольфрам – составляет 78%, титан -14%, кобальт – 8%.
    • ТТ7К12 – в его состав входят четыре основных металла: вольфрам, титан, тантал, кобальт. Вольфрам – 81%, кобальт – 12%, остальное приходится на сплав двух оставшихся металлов.
    • Современные технологии позволили разработать уникальные соединения с добавлением таких элементов, как никель и молибден. Например, КТС-1 или ТН-20.

    Твердый сплав ВК8

    Твердый сплав ВК8

    Международная классификация ИСО все отечественные сплавы, зарубежные аналоги разделила на области применения. Эта классификация обозначается буквами латинского алфавита, которые указывают на обрабатываемый материал:

    • Н – используются для закаленной стали;
    • К – для всех видов чугуна;
    • М – применяется для нержавеющей стали;
    • N –используется для металлов, относящихся к категории цветных металлов или их соединений;
    • P –отдельной категории отливок, у которых формируется так называемая сливная стружка;
    • S – для металлов и соединений с повышенными жаропрочными характеристиками.

    Многообразие подобных материалов требует четкого разделения по характерным особенностям. Классификация твердых сплавов производится по таким признакам:

    • составу химических элементов (наименованию, процентному содержанию);
    • по технологии производства;
    • области применения.

    По присутствующим химическим элементам их делят на следующие категории:

    • вольфрамокобальтовые (маркировка ВК);
    • титановольфрамокобальтовые (ТК);
    • титанотанталовольфрамокобальтовые (ТТК).

    По применяемым технологиям получения разделяют на: спекаемые, литые, порошкообразные. Спекаемые, состоят из карбидов. Делятся на три группы:

    • однокарбидные (карбид вольфрама);
    • двухкарбидные (включающие карбиды двух металлов: титана и вольфрама);
    • трехкарбидные (сваренные из трех элементов).

    По процентному содержанию каждого элемента их делят на следующие группы.

    К первой относятся материалы, состоящие из карбида вольфрама и кобальт. Они имеют обозначения ВК. К этой многочисленной группе относятся сплав: ВК4, ВК3М, ВК6М. очень популярным является твердый сплав ВК8 и ВК3. Расшифровывается ВК3 так же, как и все вольфрамовые сплавы.

    Вторая объединяет титановольфрамовые сплавы. Имеет аббревиатуру ТК. К ней относятся: Т5К10, Т14К8.

    Третья включает все титанотанталовольфрамовые сплавы. Обозначают ТТК. Например, ТТ7К12 и другие.

    Четвертая, объединяет материалы, у которых имеется износостойкое покрытие. Они обозначаются аббревиатурой ВП. В нее входят: ВП3115, ВП3325. В основу каждого из них заложена основа известного сплава. Например, у ВПЗ115 основа – ВК6.

    Вольфрамосодержащие твердые сплавы

    Их маркируют следующим образом — ВК6, ВКЗМ, ВК6М, ВК8. Основной областью применения является изготовление режущего инструмента. Сплав ВК8 применяется для изготовления резцов.

    Комплект наконечников ВК6

    Комплект наконечников ВК6

    Он позволяет обрабатывать чугун. Используют для производства инструмента, способного осуществлять так называемую безстружковую обработку материалов.

    Титановольфрамосодержащие твердые сплавы

    Из марок Т5К10, Т14К8, Т15К6 изготавливают инструмент для высокоскоростной обработки различных видов стали. С их помощью обрабатывают металлы, различные соединения с повышенными показателями твердости и теплостойкости.

    Самым характерным примером подобного инструмента являются различного рода резцы и буровые колонки.

    Характеристики твердых сплавов

    Характеристики определяют их свойства и область применения. К ним относятся:

    • наименование и процентное содержание химических элементов;
    • физические и механические свойства;
    • особенности технологических процессов получения;

    Химический состав, процентное содержание основных элементов определяется по таблицам ГОСТ.

    Производство твердых сплавов

    Производство твердых сплавов

    К физико — механическим характеристикам относятся:

    • допустимая прочность, которая проверяется при помощи изгиба (изменяется от 1200МПа ВК2, до 2150 МПа для сплава ВК25);
    • твердость (возрастает от 89,5HRA — ВК3, достигает величины 91 HRA — ТТ20К9);
    • плотность (этот показатель колеблется от 14,9г/см 3 до 15,2г/см 3 );
    • реализуемая теплопроводность — около 51 Вт/(м×°С);
    • жаропрочность;
    • коррозийная стойкость.

    Приведенный перечень характеристик позволяет определить область использования.

    Из них изготавливают оснастку к металлорежущим станкам, бурильному оборудованию.

    ТОП-20 самых твердых металлов в мире

    ТОП-20 самых твердых металлов в мире

    Всего в мире насчитывается 94 вида металлов, различающихся по пластичности, ковкости, электропроводности, прочности. Ниже мы представим «двадцатку» самых твердых и перечислим их уникальные особенности.

    Иридий


    Это самый твердый металл на планете. Он почти не поддается обработке, но это не мешает его использованию в разных сферах промышленности. Из иридия делают комплектующие к ракетам и автомобильные детали. Его открыл в начале девятнадцатого века английский химик. Самый твердый в природе металл имеет следующие характеристики:

    • температура плавления — 2 466 градусов;
    • бело-серебристый окрас;
    • температура кипения — 4 428 градусов.

    В природе встречается мало иридия. Ученые предполагают, что его залежи располагаются ближе к ядру Земли.

    Рутений


    Металл серебристого оттенка, открытый русским химиком в 1844 году, полностью инертен. Он относится к платиновой группе и является самым редким на земле. Ученые установили, что всего в мире не более пяти тысяч тонн рутения. В году удается добывать до 18 тонн. Из-за сравнительно большой цены рутений почти не применяют в промышленности, но его выбирают:

    • для каталитических реакций;
    • защиты титана от коррозии;
    • создания устойчивого сплава с платиной.

    Высокопрочный тугоплавкий металл позволяет образовывать сложные химические соединения. Он придает золоту черный оттенок и применяется в аэрокосмической сфере.

    Тантал


    Открыт химиком из Швеции в 1804 году. Но выделить в чистом виде его смогли лишь через 120 лет и в Германии. Залежи редкого металла можно найти на западе Австралии. Сплавы с танталом не боятся попадания в агрессивную среду. Материал используют в авиакосмической и электронной промышленности, для создания атомной энергии, в составе медицинских протезов. Его считают самым плотным в мире — гарантировано высочайшее сопротивление коррозии.

    Хром


    Самый твердый и блестящий металл, который не боится кислотно-щелочного влияния, имеет голубоватый оттенок. Залежи хрома можно найти в Казахстане, Африке, на территории РФ. Открыт он был в России в 1763 году на Северном Урале.

    Хром имеет высокую температуру плавления — до 1 856 градусов. Его добывают из кимберлита. По распространенности на планете занимает 22 позицию. На производство металлических сплавов приходится до 85 % запасов хрома. Используют его и в машиностроении, при проведении научных исследований, в синтезе искусственных рубинов.

    Бериллий


    Твердый металл, открытый французскими химиком в 1798 году, имеет серебристо-белый оттенок. Бериллий — высокотоксичный, может спровоцировать аллергические реакции. К нему нельзя приближаться без средств защиты. Но зато металл подходит для упрочнения стали — достаточно добавить 0,5 %, чтобы изделия выдерживали температуру красного каления. Бериллий выбирают для создания огнеупорных материалов, реактивного топлива. Из него создают экраны для аэрокосмической промышленности.

    Осмий


    Этот тугоплавкий и твердый металл был открыт в Великобритании в 1803 году. Он включен в платиновую группу и не боится агрессивного воздействия. Осмий используется в медицине при производстве кардиостимуляторов, легочных клапанов, в военном деле и химической промышленности. Это самый тяжелый и твердый металл в таблице Менделеева. Он плохо поддается обработке.

    Рений


    Один из самых редких тугоплавких металлов высокой прочности на планете. Его открыли в 1925 году химики из Германии, но первое предположение о существовании этого элемента высказывал еще Д.И. Менделеев в конце девятнадцатого века. Количество ежегодной добычи металла сейчас достигает сорока тонн. Его используют для производства катализаторов, самоочищающихся электрических контактов. Температура плавления достигает 2 000 градусов Цельсия. Металл находит применение в авиационных и ракетных двигателях.

    Вольфрам


    Серебристо-серый цвет и высокая тугоплавкость этого металла определяют сферы его применения. Вольфрам был открыт в 1781 году шведским химиком. Его используют для изготовления элементов накаливания, хирургических инструментов, контейнеров для хранения радиоактивных материалов. Этот металл плавится при температуре до 3422 градусов Цельсия. Способность сохранять эксплуатационные свойства при экстремально высоких температурах сделала вольфрам востребованным в военной промышленности.

    Уран


    Один из наиболее твердых металлов в мире был открыт в 1840 году, но о его высоких радиоактивных свойствах узнали только через 56 лет. Французский химик Беккерель потратил годы на исследование уранового излучения.

    Залежи этого элемента в природе очень велики. Урановую руду активно добывают в Казахстане, Австралии, разных регионах России. Запасы радиоактивного элемента природного происхождения распространены в земной коре.

    Титан


    Это самый легкий и твердый металл из всех в мире. Титан удалось получить лишь в 1825 году шведским химиком. Его отличают серебристо-белый оттенок, высокая стойкость к механическим и коррозийным воздействиям. К другим свойствам относятся:

    • температура плавления — до 1 668 градусов Цельсия;
    • низкая электропроводность;
    • высокая прочность на разрыв.

    Титан выступает в роли легирующего элемента во многих сплавах, применяется в судостроительной отрасли и аэрокосмической промышленности, в медицине и машиностроении. Он содержится в виде оксидов в большей части магматических пород.

    Родий


    В ТОП самых твердых металлов входит и родий — самый дорогой из платиновой группы. Он имеет голубовато-серебристый оттенок. Родий — благородный металл с холодным, аристократическим блеском. Он содержится в никелевых и платиновых рудах, распространен в Южной Америке.

    До 81 % всех запасов направляют на изготовление каталитических фильтров-нейтрализаторов. Родий устойчив кфизическому воздействию. Механическая обработка возможна только при нагревании до 810-900 градусов Цельсия. Серная кислота и раскаленная царская водка не способны растворить этот металл. Родий легко сплавляется с другими платиноидами.

    Палладий


    Благородный металл серебристого цвета из платиновой группы. Крупнейшие месторождения находятся в Норильске (Россия), на Аляске, в Австралии, Африке и Канаде.

    Палладий используют для производства искусственных волокон, постоянных магнитов, электрических контактов в приборах. Это ковкий, тягучий металл, который не тускнеет на воздухе. Редкий элемент был открыт английским химиком в 1803 году — его обнаружили в самородной платине. Температура плавления составляет 1 554 градуса Цельсия.

    Железо


    Уникальный ковкий металл, составляющий большую часть ядра нашей планеты. Это наиболее распространенный элемент земной коры. Железо в чистом виде — довольно пластичный металл серебристо-серого цвета, который используется в разных направлениях промышленности. Он имеет малую стоимость. К характеристикам относятся:

    • плотность — 7,84 г/см3;
    • температура кипения — 2 862 градуса Цельсия;
    • температура плавления — 1 538 градусов Цельсия.

    Сталь


    Высокая твердость сплава железа с углеродом, устойчивость к коррозийному воздействию позволяют использовать разные марки инструментальной стали в промышленности. Это самый твердый металл для ножа, из которого делают сверла и другие части инструментов, механизмы для строительной сферы. Легированная высокоуглеродистая сталь относится к наиболее твердым. Помимо железа и углерода она может включать молибден, марганец, ванадий, хром.

    Платина


    Редкий драгоценный металл, который встречается в магматических месторождениях. Платина имеет цвет, переходящий от серо-стального к темно-серому. Этот минерал редко встречается в чистом виде, содержит примеси иридия и никеля, палладия. Разведанные запасы составляют около 80 000 тонн и распределяются по ЮАР, США и России.

    Платина применяется в качестве катализатора, легирующей добавки для высокопрочных сталей, в ювелирной промышленности, для производства постоянных магнитов, в виде покрытия для деталей СВЧ-техники.

    Никель


    В природе никель встречается в минералах с высоким содержанием серы или мышьяка. Это переходный элемент, который используется в металлопрокате для производства сталей. На это уходит до 68 % от общего объема добычи. Никель выбирают и для чеканки монет, при разработке аккумуляторных батарей и в гальванике, в музыкальной промышленности, медицине, химических и радиационных технологиях.

    Крупные запасы располагаются в Индонезии, на территории России, на Филиппинах. Никель плавится при температуре 1 453 градуса Цельсия. Он был открыт в Швеции в 1751 году.

    Бронза


    Это сплав меди с оловом, марганцем и другими добавками, включая свинец и фосфор. Его температура плавления варьируется от 930 до 1 140 градусов Цельсия. Бронза — пластичная и твердая. Оттенки варьируются в зависимости от состава. Различают золотистую и серебристую, красную, серую и черную бронзу. Она используется при производстве:

    • фурнитуры и элементов декора;
    • деталей для механизмов и машин;
    • многочисленных фитингов (переходники, муфты, тройники);
    • ювелирных изделий.

    Медь


    Это один из немногих элементов, которые встречаются в природе в пригодной для использования форме. Медь не требует предварительного извлечения из минеральных руд, поэтому она стала пригодной для эксплуатации очень давно. Еще до нашей эры ее использовали с оловом для получения бронзы. Сейчас медь применяется при производстве кровельных материалов, сантехнического оборудования, кабелей и электрических проводов. Этот металл плавится при температуре 1083 градуса Цельсия. Предел его текучести достигает 340 мПа.

    Алюминий


    Это широко используемый в разных отраслях промышленности и строительства цветной металл. Из него состоит около 8 % всей земной коры. Алюминий используется в аэрокосмической промышленности, при развитии городской инфраструктуры, для производства металлургического оборудования. К его главным характеристикам относятся:

    • устойчивость к коррозийному воздействию;
    • низкая плотность;
    • текучесть — до 120 мПа;
    • температура плавления — до 660 градусов.

    Золото


    Один из самых востребованных в ювелирном деле драгоценных металлов. Исторически сложилось, что золото используется в медицине, электронной промышленности и для изготовления денег. Свыше 10 % всех мировых запасов идет на производство коррозийно-стойких элементов. Геологи уверены, что недра нашей планеты скрывают свыше 80 % золотых запасов. Температура плавления металла — 1064 градуса Цельсия, а его текучесть — до 30 мПа. Золото характеризуется:

    • высокой плотностью, тягучестью;
    • хорошей полируемостью и отражающей способностью;
    • большим удельным весом;
    • низким сопротивлением электризации.

    Таблица по твёрдости Мооса


    Самые твердые металлы по шкале Мооса представлены в таблице по убыванию значений:

    Читайте также: