Укажите какой из металлов коррозионной пары является протектором

Обновлено: 18.05.2024


Задача 142.
Определить возможность протекания газовой коррозии железа в кислороде.
Решение:
PO2 = 1 атм;
Kp = (1/PO2mn/4) = (1/1·2·2/4) = 1;
ΔrН 0 298(FeO) = -264,8 кДж/моль;
S 0 298(FeO) = 60,75 Дж/моль·K;
S 0 298(Fe) = 27,15 Дж/моль·K;
S 0 298(O2) = 205,04 Дж/моль·K.
Стандартные энтальпии образования простых веществ равну нулю.

Газовая коррозия железа кислородом, описывается уравнением:

Значение энергии Гиббса протекающего процесса при Т = 298 К рассчитываем, используя уравнение изотермы Вант−Гоффа, которое для рассматриваемого процесса выглядит так:

Стандартную энергию Гиббса ΔrG 0 298 находим по приближенной форме уравнения Гиббса−Гельмгольца:

ΔrG 0 298 ≈ ΔrН 0 298 − 298·ΔrS 0 298 0

Значение ΔrН 0 298 вычисляем по следствию из закона Гесса:

ΔrН 0 298 = 2ΔrН 0 298(FeO) - 2ΔrН 0 298(Fe) - ΔrН 0 2982) = 2(-264,8) - (2 · 0) - 0 = -529,6 кДж.

Аналогично по справочным величинам S 0 298 находят ΔrS 0 298.

ΔrS 0 298 = 2S 0 298(FeO) - 2S 0 298(Fe) S 0 298(O2) = (2 · 60,75) - (2 · 27,15) - 205,04 = -137,84 Дж/K.

ΔrG298 ≈ ΔrG 0 298 + 2,303RTlg(1/PO2mn/4) ≈ ΔrG0298 + 2,303RTlg(1/1·2·/4).

ΔG = ΔrG 0 298 + 2,303RTlgКр = 2,303·R·T·lgКр = -529,6 + 2,303·8,31·(298·10-3)·lg1 = -529,6 + 2,303·8,31·(298·10-3)·0 = -529,6.

Какие металлы можно использовать в качестве протектора


Задача 143.
Изделие, изготовленное из свинца, эксплуатируется в нейтральном растворе хлорида калия. Какие металлы можно использовать в качестве протектора? Приведите электронные уравнения анодного и катодного процессов для одного из протекторов.
Решение:
Для предотвращения коррозии металлических конструкций применяется протекторная защита: создаётся электрический контакт защищаемой конструкции с протектором – более активным металлом. При таком контакте возникает гальваническая пара типа Ме — Pb и коррозии подвергается протектор, а не само изделие из свинца.

В нейтральной среде коррозия металла протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Стандартный электродный потенциалы свинца равен -0,136 В, поэтому в качестве протектора можно использовать металлы, стандартные потенциалы которых значительно более электроотрицательнее чем у чвинца. Для протекторной защиты свинцового изделия в качестве протектора можно использовать Zn, Al, Mg, или их сплавы, так как их стандартные электродные потенциалы равны соответственно -0,763 В, -1,660 и -2,38 В. Окисляться, т.е. подвергаться коррозии, будут цинк, алюминий и магний. Рассмотрим процесс на примере цинка.

Стандартные электродные потенциалы свинца и цинка равны соответственно -0,136 В и -0,763 В. Окисляться, т.е. подвергаться коррозии, будет цинк.

Потенциал, отвечающий электродному процесу:

В нейтральной среде, потенциал водорода равен приблизительно -0,41 В. Следовательно, ионы водорода, находящиеся в воде и в нейтральных водных средах, могут окислять только те металлы, потенциал которых меньше, чем -0,41 В, - в данном случае это может быть цинк, его потенциал намного меньше (-0,763 В).

В нейтральной среде коррозия металла протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Этот вид коррозии наиболее широко распространен в природе: он наблюдается при коррозии металлов в воде, почве и в незагрязненной промышленными газами атмосфере.

Цинк имеет более электроотрицательный стандартный электродный потенциал (-0,763 В), чем свинец (-0,136 В), поэтому он является анодом, цинк – катодом.

При коррозии пары Pb/Zn в нейтральной среде на катоде происходит кислородная деполяризация, а на аноде – окисление цинка:

Анодный процесс: Zn 0 - 2 = Zn 2+
Катодный процесс: в нейтральной среде: 1/2O2 + H2O + 2 = 2OH – (O2↑+ 2H2O + 4 = 4OH – ).

Так как ионы Zn 2+ с гидроксид-ионами ОН – образуют нерастворимый гидроксид, то продуктом коррозии будет Zn(OH)2:

Таким образом, при контакте свинца и цинка коррозии будет подвергаться цинк.

PS Ионы К + и Cl – , образуемые при диссоциации хлорида калия будут свободно находиться в нейтральном растворе.

Кислородная и водородная деполяризация при коррозии металлов


Задача 144.
Составить уравнение электродных реакций, протекающих при коррозии с кислородной и водородной деполяризацией пары: Be и Sn. Привести уравнение реакции образования вторичных продуктов коррозии.
Решение:
Стандартные электродные потенциалы бериллия и олова равны соответственно -1,690 В и -0,136 В. Окисляться, т.е. подвергаться коррозии, будет бериллий. Бериллий имеет более электроотрицательный стандартный электродный потенциал (-1,690 В), чем олово (-0,136 В), поэтому он является анодом, олово – катодом.

а) Коррозия пары металлов Ве/Sn в атмосфере влажного газа

При коррозии пары Ве — Sn в атмосферных условиях на катоде происходит кислородная деполяризация, а на аноде – окисление бериллия:

Анод Ве 0 – 2 = Ве 2+
Катод 1/2O2 + H2O + 2 = 2ОН – (кислородная деполяризация)

Так как ионы Ве 2+ с гидроксид-ионами ОН – образуют студенистую массу гидроксида, то продуктом коррозии будет Ве(OH)2:

б) Коррозия пары металлов Ве/Sn в кислой среде, например, в растворе кислоты (H2SO4)

При коррозии пары Ве — Sn в кислой среде на катоде происходит водородная деполяризация, а на аноде – окисление бериллия:

Анод: Ве 0 – 2 = Mn 2+
Катод: 2Н + + 2 = Н2 (водородная деполяризация)

Ве + 2H + = Ве 2+ + H2

Так как ионы Ве 2+ с ионами SO4 2– образуют растворимую соль, то продуктом коррозии будет ВеSO4:

Образуется сульфат бериллия и при этом выделяется газообразный водород. Происходит интенсивное разрушение бериллия.

Таким образом, при контакте бериллия и олова коррозии будет подвергаться бериллий.

Задачи для самостоятельного решения

Задачи 1–10.Определите термодинамическую возможность окисления металла М кислородом при стандартных условиях. Рассчитайте значение парциального давления кислорода, ниже которого невозможно окисление данного металла. Приведите уравнение соответствующей реакции.

Металл M Продукт окисления Металл М Продукт окисления
Ni NiO Mg MgO
Fe Fe2O3 Со СоО
Ag Ag2O Al Al2O3
Cu CuO Sn SnO
Cr Cr2O3 Pb PbO

Задачи 11–22.Расчетами стандартных ЭДС Е° коррозионного элемента и энергии Гиббса ΔrG 0 298 коррозионного процесса подтвердите возможность электрохимической коррозии при Т = 298 К изделия из данного металла в аэрированном растворе с указанными значениями рН и активностью ионов металла аM Z + . Приведите уравнения анодного и катодного процессов.

Металл рН аM Z + ·10 4 , моль/л Металл рН аM Z + ·10 4 , моль/л
Mg 6,0 Sn 7,0
Zn 8,0 Pb 6,0
Ag 3,0 Cu 3,0
Fe 4,0 Cd 5,0
Al 8,0 Co 5,0
Ni 6,0 Mn 6,0

Задачи 23–34.Контактирующие изделия, изготовленные из двух различных металлов (М1 и М2), находятся при 298 К в аэрированном растворе с указанными значениями рН и активности ионов коррозирующего металла аM Z + . Напишите уравнения электродных процессов и суммарной реакции, происходящих при данном виде электрохимической коррозии. Рассчитайте ЭДС Е 0 коррозионного элемента и энергию Гиббса ΔrG 0 298 коррозионного процесса.

М1 М2 рН аM Z + ·10 4 , моль/л М1 М2 рН аM Z + ·10 4 , моль/л
Al Fe 8,0 Ag Ni 5,0
Zn Cd 9,0 Pb Al 7,0
Fe Zn 6,0 Fe Pb 7,0
Sn Mg 7,0 Cd Mg 5,0
Ni Ag 5,0 Cu Ag 4,0
Cu Sn 4,0 Sn Zn 9,0

Задачи 35–46.В результате атмосферной коррозии указанного металла за время t образовалось m грамм его гидроксида M(OH)n. Напишите уравнения электродных процессов и суммарной реакции данного вида коррозии. Вычислите массу прокорродировавшего металла , объем поглощенного при этом газа при н.у. и силу коррозионного тока.

Металл m (M(OH)2), г t, мин Металл m (M(OH)2), г t, мин
Sn 0,018 12,5 Fe 0,125
Pb 0,112 Zn 0,262
Cd 0,241 Mn 0,304
Co 0,123 Ti 0,038 4,5
Ni 0,250 Mg 0,132 6,5
Al 0,015 2,5 Cr 0,212

Задачи 47 – 54.Рассчитайте массу прокорродировавшего металла за время t и силу коррозионного тока, если в коррозионном элементе катодный процесс протекает: а) с поглощением кислорода; б) с выделением водорода. Объемы газов приведены при Т = 298 К, р = 101,3 кПа.

Металл анода VО2, мл VН2, мл t, мин
Al 116,4 48,6 4,5
V 48,6 3,0
Mg 108,6 48,4 2,5
Мn 18,8 2,0
Zn 76,6 22,4 3,5
Fe 36,4 5,0
Сr 56,4 24,8 3,5
Co 84,2 11,2 2,0

Задачи 56–65.Приведите уравнения анодного и катодного процессов, протекающих при нарушении целостности покрытия железного изделия (j о Fe 2+ / Fe = -0,440 В) : а) во влажной атмосферной (рН=7) и б) в кислотной деаэрированной (рН=3) средах. К какому типу (анодное, катодное) относится данное покрытие и каков механизм его защитного действия? Рассчитайте ЭДС Е 0 коррозионного элемента и энергию Гиббса ΔrG 0 298 коррозионного процесса.

Задачи 66–81.Какой металл коррозионной пары М1М2 является протектором? Напишите уравнения электродных процессов и суммарной реакции электрохимической коррозии указанной пары для случаев аэрированной и деаэрированной сред с указанным значением рН. Рассчитайте ЭДС Е 0 коррозионного элемента и энергию Гиббса ΔrG 0 298 коррозионного процесса.

Коррозионная пара М1−М2 рН Коррозионная пара М1−М2 рН
Cu−Fe 6,0 Ag−Cu 4,0
Ni−Sn 9,0 Sn−Fe 6,0
Zn−Ag 8,0 Mg−Ni 5,0
Co−Pb 5,0 Fe−Zn 8,0
Cu – Ag 2,0 Au – Co 5,0
Ni – Au 5,0 Fe – Sn 8,0
Sn – Co 6,5 Zn – Cu 4,0
Cd – Fe 7,0 Pb – Ni 3,5

Задачи 82–260.Определите вид (анодное, катодное) и механизм защитного действия (механический, электрохимический) металлического покрытия П на металлическом изделии М. Приведите уравнения электродных процессов влажной атмосферной коррозии (рН = 7) изделия с данным покрытием и рассчитайте значение ЭДС коррозионного элемента при Т = 298 К, если активность ионов корродирующего металла a.

Изделие М Покрытие П a, моль/л Изделие М Покрытие П a, моль/л
Al Zn 10 −5 Ni Cd 10 −7
Zn Ni 10 −6 Sn Cu 10 −5
Cr Mg 10 −7 Cu Zn 10 −6
Fe Sn 10 −5 Co Pb 10 −5
Cd Ag 10 −6 Fe Zn 10 −4
Fe Cu 10 −5 Zn Sn 10 −7
Ni Sn 10 −7 Cu Al 10 − 3
V V 10 −6 Fe Mn 10 −5
Cd Ni 10 − 3 Cr Pb 10 −6
Mg Co 10 −7 Be Zn 10 −4
Ag Sn 10 −4 Au Ni 10 − 3

Задачи 104–121.Приведите металлы, которые можно использовать в качестве материала для анодного и катодного типов покрытия для металлического изделия М. Уравнениями опишите возможные электродные процессы электрохимической коррозии изделий с этими покрытиями в случае нарушении целостности последних, если они попадают в среду: а) кислотную аэрированную (рН=6); б) нейтральную аэрированную. Рассчитайте ЭДС Е 0 коррозионного элемента и энергию Гиббса ΔrG 0 298 коррозионного процесса.

КОРРОЗИЯ МЕТАЛЛОВ И ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ

Металлы вследствие своей высокой прочности, пластичности, износоустойчивости, тепло- и электропроводности являются наиболее важными конструкционными материалами.

В процессе эксплуатации в результате воздействия окружающей среды происходит их разрушение, так называемая коррозия.

Потери от коррозии в ведущих индустриальных странах составляют около 3-5% валового национального продукта, а затраты на возмещениекоррозионных потерь во всем мире исчисляются сотнями миллиардов долларов, поэтому раздел «Коррозия металлов и методы защиты их от коррозии» является одним из важнейших в курсе химии для инженерных специальностей.

Обычно корродируют металлы, которые встречаются в природе не в самородном состоянии, как Au, Pt, а в виде различных руд. На извлечение этих металлов из природных соединений расходуется значительное количество энергии (Ме +n + n? → Me 0 ; ΔG>0), которая накапливается в металлах, делая их термодинамически неустойчивыми, химически активными веществами (Ме 0 - n? → Me + n ; ΔG<0). В результате такого самопроизвольно протекающего коррозионного процесса металлы переходят в оксиды, гидроксиды, карбонаты, сульфиды и другие соединения и теряются безвозвратно.

Итак, коррозию можно определить как самопроизвольно протекающий окислительно-восстановительный процесс (ΔG<0) разрушения металла под воздействием окружающей среды, происходящий с выделением энергии (ΔН<0) и рассеиванием вещества (ΔS>0).

Механическое разрушение металлов, происходящее по физическим причинам, не называют коррозией, а называют эрозией, истиранием, износом.

По характеру разрушения поверхности коррозию подразделяют на сплошную и местную. Сплошная коррозия подразделяется на равномерную, если процесс окисления происходит по всей поверхности металла с одинаковой скоростью, и неравномерную – процесс окисления происходит по всей поверхности с различной скоростью на различных участках металла.

Местная коррозия подразделяется на коррозию пятнами, точечную, питтинг (углубленно-точечную), межкристаллитную (наиболее опасна, т.к. ослабляет связи между зернами структуры сплавов), растрескивающуюся, селективную (избирательную).

По механизму протекания различают следующие виды коррозии:

- электрохимическая (концентрационная, контактная, электрокоррозия);

- особые виды (биологическая, радиационная, ультразвуковая).

По характеру дополнительных воздействий различают:

- коррозию под влиянием механических напряжений;

- коррозию при трении;

- кавитационную коррозию (возникает при одновременном коррозионном и ударном воздействии агрессивной среды, когда лопаются пузырьки воздуха при работе лопастей гребного винта, роторов насосов).

Рассмотрим более подробно виды коррозии по механизму протекания.

Под химической коррозией понимают разрушение металлов окислением в окружающей среде без возникновения электрического тока в системе.

Газовая коррозия протекает при обычных условиях, но чаще при высоких температурах. Наблюдается при разливе расплавленных металлов, их термической обработке, ковке, прокатке, сварке и т.д.

Самый распространенный случай газовой коррозии – взаимодействие металла с кислородом:

Образующаяся при такой коррозии оксидная пленка в ряде случаев играет защитную функцию. Для этого она должна быть сплошной, беспористой, иметь хорошее сцепление с металлом, обладать твердостью, износостойкостью и иметь коэффициент термического расширения, близкий к этой величине для металла. Все эти качества оксидной пленки можно оценить по фактору Пиллинга-Бэдвордса (a). Металлы (щелочные, щелочноземельные), у которых a2O3, ZnO, NiO и т.д.).

При значениях a значительно больше единицы пленки получаются неслошные, лекго отделяющиеся от поверхности металла (железная окалина). Коррозионно-активными газами, кроме кислорода, являются: угарный газ, углекислый газ, сернистый ангидрид, азот, его оксиды и галогены. Например, при разливе расплавленного алюминия, происходит его взаимодействие не только с кислородом, но и с азотом воздуха.

Жидкостная коррозия протекает, как правило, в жидких неэлектролитах: спиртах, хлороформе, бензоле, бензине, керосине и других нефтепродуктах. Ускоряет процесс жидкостной коррозии сера,кислород, галогены, влага, атакже повышенная температура (коррозия поршней в двигателях внутреннего сгорания),что можно описать уравнениями : Me(II) + R1 – S – R2 → MeS + R1 – R2

Me(I) + nR – Cl → MeCl + 1/2nR – R ,

где R1 – S – R2и nR – Cl углеводороды, содержащие серу и хлор.

Электрохимическая коррозия наиболее распространенный вид коррозии. Это разрушение деталей, машин, конструкций в грунтовых, речных, морских водах, под влиянием воды (росы), под воздействием смазочно-охлаждающих жидкостей, используемых при механической обработке металлов, атмосферная коррозия и т.д.

Электрохимическая коррозия – это пространственно разделенный окислительно-восстановительный процесс разрушения металла, протекающий в среде электролита, с возникновением внутри системы электрического тока, называемого коррозионным током.

Рассмотрим химизм атмосферной коррозии стального изделия. Сталь – это сплав железа с углеродом, в котором углерода менее 2%, например, цементит (Fe3C4). При электрохимической коррозии во влажном воздухе (О2 + 2Н2О) железо и цементит образуют микрогальванопару, в которой роль анода выполняет железо, а цементит – роль катода.

Схема процесса:

Анодный процесс: Fe 0 - 2? → Fe 2+ 2 поляризация

Катодный процесс: 2H2O + O2 + 4? → 4OH - 1 деполяризация

Суммарное уравнение коррозионного процесса разрушения стального изделия, находящегося во влажном воздухе:

Для железа более характерна степень окисления (3+), поэтому процесс окисления идет дальше:

4Fe(OH)2+2H2O+O2→4Fe(OH)3, образующийся Fe(OH)3 при нагревании может терять воду.

То есть продуктами коррозии железа (ржавчина) является смесь различных соединений. Если учесть, что в воздухе присутствуют углекислый газ, сернистый газ, следовательно, могут образовываться и соли железа.

Часто из-за различной рельефности металлических конструкций, в том числе и стальных, на некоторых участках скапливается вода, при этом происходит так называемая концентрационная коррозия, обусловленная различной концентрацией деполяризатора кислорода (в случае атмосферной коррозии), водорода (в кислой среде) на различных участках металла. Там, где концентрация деполяризатора больше (края капли воды), формируется катодный участок, где концентрация деполяризатора меньше (центр капли воды) – анодный участок (рис.15).

После высыхания капли в её центре обнаруживается углубление, а иногда даже и отверстие (для пластин толщиной 0,1-0,2 мм). Такие процессы часто наблюдаются при атмосферной и почвенной коррозии железных и стальных изделий (троса, стопки листов и т.д.) – точечная коррозия, переходящая в питтинг. Следует отметить, что хотя конечный продукт коррозии (ржавчина) нерастворим, однако он не препятствует процессу растворения металла, поскольку формируется за пределами анодного участка (на границе соприкосновения его с катодами) в виде кольца внутри капли.

На практике часто встречаются случаи, когда металлы различной активности находятся в контакте друг с другом, образуя гальванопары. Кроме того, технические металлы содержат примеси других металлов, сплавы содержат различные металлы. Такой металл или сплав, находясь в среде электролита, дает множество микро - и макрогальванопар, в которых анодом является более активный металл, т.е. металл с меньшим значением электродного потенциала, именно он и подвергается коррозии.

Рассмотрим случай контактной коррозии с водородной деполяризациейцинка и меди, в сернокислой среде. Цинк и медь, имеют различные значения электродных потенциалов. Более активным в этой гальвано паре является цинк (Е 0 Zn2+/Zn = -0,76 В), он имеет меньшее значение электродного потенциала и будет анодом, т. е именно цинк будет подвергаться коррозионным процессам, менее активным металлом является медь (Е 0 Cu2+/Cu = +0,34 В), она будет катодом.

Запишем схему: (А) Zn | H2SO4 | Cu (K)

Анодный процесс: Zn 0 - 2? → Zn 2+

Катодный процесс: 2Н + + 2? → Н2 деполяризатор

Суммарное ионное уравнение: Zn + 2H + → Zn 2+ + H2

Факторы, влияющие на скорость коррозии:

а) напряжение и деформация при механической обработке металлов;

б) перемешивание агрессивной среды;

в) дифференциальная аэрация;

д) кислотность среды (рН).

Рассматривая фактор (д) обратите внимание, что электродные потенциалы металлов существенно зависят от состава электролита и рН среды. Так, в случае контактной (Al-Zn) коррозии в 1М растворе HCl

возникает гальвано пара, в которой роль анода выполняет Al, а катода- Zn, схема такого процесса: (А) Al | HCl | Zn (K)

В 0,1 М растворе HCl в этом случае большую активность имеет цинк, он будет в гальвано паре анодом, алюминий – катодом, а схему запишем так: (А) Zn | HCl | Al (K)

Электрокоррозия – протекает под действием блуждающих токов, возникает от постоянных источников тока (электротранспорт, трансформаторы, линии электропередач). Рассматривая коррозию под действием блуждающих токов, надо помнить, что место выхода тока – будет анодным участком, входа тока – катодным, участок протекания тока – нейтральной зоной. Радиус действия блуждающих токов может достигать нескольких десятков километров. Ток силой 1А за год разрушает до 3 кг алюминия, 9 кг железа, 11 кг цинка или меди, 34 кг свинца.

ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ

Потери от коррозии в мировой экономике огромны. Около 1/3 вводимого в эксплуатацию металла подвергается коррозии, при этом примерно 10% теряется безвозвратно.

Борьба с коррозией осуществляется различными методами. Наиболее рациональный и надежный путь – изготовление аппаратов и машин изкоррозионно-стойких металлических или неметаллических материалов,но из-за дороговизны таких материалов, чаще используют дешевые и доступные металлы с последующей защитой их от коррозии. Полностью избежать коррозии невозможно, но, применив определенные методы защиты, можно снизить ее воздействие.

Можно условно выделить следующие группы методов защиты металлов от коррозии:

1. Создание рациональных конструкций, т.е. таких, которые не имеют застойных зон и других мест скопления влаги, грязи и других коррозионно-агрессивных сред, допускают быструю очистку и аэрацию.

2. Легирование металлов. Это эффективный, хотя обычно дорогой метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты (Cr, Ni, W, Si, V, Mo, Re и другие), вызывающие пассивирование металла. Механизм защиты (например, в нержавеющих сталях) состоит в образовании на поверхности плотных оксидных слоев, типа шпинелей состава NiO . Cr2O, FeO . Cr2O3, которые оказываются более устойчивыми, чем просто оксиды хрома или никеля.

3. Создание аморфных структур металлов. Путь к этому способу защиты открыла сверхбыстрая закалка. Расплавленный металл из тигля подают в тончайший зазор между двумя массивными валками и подвергают формированию и резкому охлаждению. В этих условиях атомы не успевают выстраиваться в присущие металлам кристаллические решетки, фиксируется «хаос атомов», свойственный расплавленному металлу. В результате получается аморфная структура, подобная стеклу, резко возрастает коррозионная устойчивость металлов.

4. Защитные покрытия – самый распространенный метод защиты металлов от коррозии. Смысл их нанесения – изоляция от агрессивной среды. Различают неметаллические и металлические покрытия.

а) неметаллические покрытия получают нанесением на поверхность металла лака, краски, смолы, олифы, эмали или стеклоэмали. Поверхность металла покрывают также резиной, эбонитом, полимерными материалами, цементом, бетоном, оксидными пленками: ZnO, Al2O3 (оксидирование) и нитридными пленками: Fe4N, Fe2N (азотирование). Покрыть поверхность металла можно осаждением нерастворимых фосфатов этого металла: Fe(H2PO4)2 + 2 Fe 2+ ® Fe3(PO4)2¯ + 4H ( фосфатирование) или насыщением поверхности металла углеродом (цементация).

б) защитные покрытия металлами. Для этого используют коррозионно-устойчивые металлы (Sn, Zn, Al, Au, Ag, Ni, Cr и др.) Различают анодные и катодные металлические покрытия. Если защищаемый металл покрывают более активным металлом, то такое покрытие называют анодным. При нарушении покрытия разрушается металл покрытия. Рассмотрим это на примере оцинкованного железа. Составим схему коррозионного разрушения.

A: Zn 0 - 2? → Zn 2+ 2

Если защищаемый металл покрыт менее активным металлом, например, железо покрыто оловом, то такой вид покрытия называется катодным. При нарушении покрытия разрушается основной металл. Рассмотрим этот случай коррозии.

(А) Fe | 2H + | Sn (K)

A: Fe 0 - 2? → Fe 2+ 1

Fe + 2H + → Fe 2+ + H2

5. Электрохимические методы защиты:

а) защита внешним потенциалом);

б) анодная (протекторная).

Защита внешним потенциалом (чаще катодная) осуществляется подключением защищаемой конструкции к отрицательному полюсу (катоду) внешнего источника тока с очень малым напряжением (0,1 В). К положительному полюсу подсоединяется лом, который и разрушается. Этот вид защиты используют для металлических сооружений: трубопроводов, резервуаров и т.д.

Протекторная защита заключается в том, что к изделию, подвергающемуся электрохимической коррозии, подключают деталь – протектор из более активного металла, чем металл изделия. Протектор будет разрушаться, а изделие останется неизменным. Применяют в паровых котлах, для защиты корпусов морских и речных судов, трубопроводов, рельсов и т.д.

Задача. Приведите пример протекторной защиты в электролите, содержащем растворенный кислород. Составьте уравнения анодного и катодного процессов и вычислите ЭДС реакции.

Решение. Протекторная защита осуществляется путем присоединения к железу более активного металла, обычно цинка, магния и их сплавов. Таким образом, создается искусственный микрогальванический элемент. Чаще всего используют протекторную защиту в растворах электролитов (паровые котлы, химические аппараты), в морской воде и в почве (защита трубопроводов). Рассмотрим протекторную защиту от почвенной коррозии:

Среда нейтральная или слабощелочная, так как концентрация солей невелика. В этом, созданном нами, коррозионном элементе анодом служит протектор (цинк), он растворяется.

Анод: Zn 0 – 2 ® Zn 2+ .

Электроны передаются на железо. Деполяризатором в этом случае является кислород.

Катод: O2 + 2H2O + 4® 4OH - ; E 0 = 0,40 B.

ЭДС реакции определяем: DЕ = Екатода – Еанода = 0,40 – (-0,75) = 1,16 В.

Ответ: протектор Zn, он окисляется и защищает железо; DЕ = 1,16 В.

6. Воздействие на агрессивную среду. Для замедления коррозии в агрессивную среду вводят вещества, называемые ингибиторами (замедлителями). Это чаще всего органические вещества, пассивирующие поверхность металла: тиомочевина C(NH2)2S, диэтиламин C2H5 — NH — C2H5, уротропин (CH2)6N4, неорганические вещества SiO3 2- , NO2 - , Cr2O7 2- , а также освобождение воды от растворенного в ней кислорода (воду фильтруют через слой железных опилок). Либо удаляют активаторы коррозии, например, ионы Cl - , Br - , F - , SO4 2- , NO3 - .

Литература:

1. Фролов В.В. Химия. Гл.V, §51-56.

3. Общая химия под ред. Соколовской Е.М. и др. Гл.6, §1-11.

4. Абраменко В.Л. Методические указания к самостоятельному изучению темы “Коррозия и защита металлов от нее”. Луганск, 1991 г.

Недорого и эффективно — протекторная защита от ржавчины

Несмотря на повсеместное применение пластика, металлические трубопроводы по-прежнему широко применяются для транспортировки кислот, щелочей, газов, нефтепродуктов и пр. Такие сооружения со временем начинают приходить в негодность из-за атмосферной, химической и других видов коррозии. Несмотря на то, что это естественный процесс, его, тем не менее, можно замедлить. Для этого и существует протекторная защита металла от коррозии.

протекторная защита от коррозии

Причины повреждения металлических конструкций

  1. Химические реакции. Разрушение происходит при взаимодействии металла с различными химическими соединениями (кислотами, щелочами и пр.). Возникающая как продукт химической реакции ржавчина последовательно разъедает трубопровод.
  2. Электрохимические процессы. Этот вид коррозии один из самых агрессивных. Появляется, если труба или судно находится в электролите, где образовываются катоды и аноды. Возникающая ржа быстро распространяется, повреждая самый толстый металл.
  3. Атмосферные явления. При взаимодействии металла с водой, паром, воздухом выделяется оксид железа, который и разрушает сооружение.

Перед планированием работ по защите от коррозии необходимо провести оценку факторов, влияющих на металлическую поверхность.

Защита металла от коррозии

  • обработка химическими составами;
  • покрытие стенок защитными материалами;
  • предупреждение блуждающих токов;
  • организация катода или анода.
  1. Пассивные действия. Во время монтажа трубопровода до прилежащей почвы оставляют некоторый зазор. Он предупреждает попадание грунтовых вод с примесями на металлическую поверхность. Трубопровод покрывают специальными составами, которые защищают металл от негативного воздействия грунта. Затем наносят специальные химические вещества, образующие защитную пленку на металлической поверхности.
  2. Активная защита. Создается электродренажная система, защищающая трубопровод от блуждающих токов. Металлическую поверхность от разрушения защищают созданием анода или катода.

протекторная защита металлов от коррозии

Что такое протекторная защита?

Протекторная защита — вариант антикоррозийной обработки, которая предполагает контакт металлической предохраняемой поверхности с протектором – ингибитором, более активным металлом. Под воздействием воздуха ингибитор предохраняет основное изделие (трубопровод, систему водоснабжения или отопления, корпус корабля и пр.) от разрушения.

Протекторная защита металлов от коррозии является оптимальной при отсутствии возможности проведения специальных электрических линий для создания эффективной катодной защиты перед электрохимической ржавчиной либо при нецелесообразности такого метода. Применять протекторную защиту целесообразно на малогабаритных объектах либо в случаях, когда поверхность обрабатываемого сооружения покрыта изоляционным материалом.

Протектор может полностью предохранить от повреждения основной объект в случае, если показатель переходного сопротивления между объектом и окружающей средой незначительный.

Но протекторная защита от коррозии имеет положительный эффект только на каком-то расстоянии, то есть каждый из видов протекторов имеет свой радиус антикоррозийного действия. Это максимальное расстояние протектора от предохраняемого объекта.

Для антикоррозийной защиты применяют установки, которые состоят из одного или нескольких протекторов, соединительных кабелей и контрольно-измерительных участков. Если есть необходимость, то в схему включают шунты, регулирующие резисторы, поляризованные элементы. Монтируют установки ниже уровня промерзания грунта (не менее 1 метра). Располагают протектор на расстоянии 3 — 7 метров от защищаемого сооружения. Более близкое может спровоцировать повреждение изоляционного слоя солями растворяющегося ингибитора.

  1. Менее активный металл восстанавливается.
  2. Протектор окисляется, защищая основное сооружение от коррозии.

Так как во время активного взаимодействия с окружающей средой и трубопроводом протектор полностью «растворяется» или просто теряет контакт с предохраняемым сооружением, то защитный механизм периодически необходимо восстанавливать.

катодная защита

Особенности протекторной защиты

Учитывая физико-химические особенности такой защиты металлических сооружений, можно сделать вывод о нецелесообразности применения протектора в случае, если конструкция эксплуатируется в кислых средах. Протекторная защита рекомендована к применению, если сооружение находится в нейтральной среде (грунт, вода, воздух и пр.).

Чтобы защитить железный трубопровод, в качестве протектора имеет смысл использовать кадмий, хром, цинк, магний (более активные металлы). Но и при их использовании существует ряд нюансов.

Например, чистый магний имеет высокую скорость ржавления, чистый цинк из-за крупнозернистой структуры растворяется неравномерно, алюминий быстро покрывается оксидной пленкой. Чтобы предотвратить негативные явления, в чистое вещество, которое будет служить протектором, вводят легирующие составляющие. Фактически протектором выступает не чистый металл, а его сплав с другими веществами.

Магниевая защита

Чаще всего в качестве защиты применяют сплавы магния. Легирующими компонентами состава выступают алюминий (максимум 7 %), цинк (до 5 %), также вводят медь, свинец и никель, но их суммарная доля не превышает сотой части состава. В качестве протектора такие составы могут применяться в средах с показателем кислотности не выше 10,5.

Даже в составе сплава магний быстро растворяется, а потом на его верхнем слое появляются труднорастворимые соединения. Магниевые сплавы имеют существенный недостаток — после нанесения они могут спровоцировать растрескивание металлических изделий, способствовать возникновению повышенной водородной хрупкости.

станция катодной защиты

Цинковая защита

Альтернативой магниевому сплаву для защиты конструкций, расположенных в соленой воде, выступают цинковые составы. Легирующими компонентами для цинка становятся кадмий (максимальный показатель 0,15 %), алюминий (менее 0,5 %) и незначительное количество железа, свинца и меди (суммарно до 0,005 %). От влияния морской воды такой протектор будет идеальным, но в нейтральных средах протекторы из цинкового сплава быстро покроются оксидами и гидроксидами, сведя на нет весь антикоррозийный комплекс.

Цинковые сплавы выступают как протекторы от коррозии, обеспечивая максимальную взрыво- и пожарную безопасность. Этими составами целесообразно обрабатывать трубопроводы для горючих и взрывоопасных веществ, например, газа. Еще один «балл» в свой актив такие составы получают за экологическую безопасность – при анодном растворении не образуется загрязняющих веществ. Поэтому цинковые композиции часто применяются для коррозийной защиты нефтепроводов, а также для транспортирующих нефть танкеров и судов.

От воздействия проточной соленой воды обычно применяют алюминиевые составы. В сплав также вводят цинк (до 8 %), магний (до 5 %) и индий с кремнием , таллием и кадмием с незначительной долей (до 0,02 %). Добавки предупреждают возникновение окислов на алюминии. Также алюминиевые сплавы пригодны в условиях, где используется магниевая защита.

Обработка агрессивных жидкостей

Повреждение металлических конструкций происходит как снаружи, так и внутри. Даже жидкость с нейтральным уровнем кислотности (вода) может быстро разрушить трубопровод, если в ее составе содержатся бикарбонаты, карбонаты, кислород, которые являются причиной возникновения ржавчины. Обычная очистка внутренних поверхностей в таких сооружениях невозможна. Оптимальным выходом будет предварительное введение в жидкость соды, карбоната натрия или кальция. Такой обработкой воды можно снизить агрессивность транспортируемой жидкости.

Подземные емкости, изготовленные из цинковых сплавов, защищают путем введения в транспортируемую или хранящуюся среду силикатов, фосфатов или поликарбонатов. В результате химической реакции на цинковой поверхности появляется тонкая пленка, предупреждающая развитие ржавчины.

протекторная защита от коррозии трубопроводов

Преимущества и недостатки протекторной защиты

  • простота, автономность и экономичность благодаря отсутствию источника тока и использованию магниевых, алюминиевых или цинковых сплавов;
  • возможность формирования одиночных или групповых установок;
  • возможность применения протекторной защиты, как для проектируемых объектов, так и для уже эксплуатируемых конструкций;
  • организация защиты практически в любых условиях, где невозможно или нецелесообразно сооружать источники тока;
  • при правильном использовании система может работать достаточно долго без всякого обслуживания;
  • безопасность и возможность применения на взрывоопасных объектах (ввиду малости напряжений).
  1. Ограниченность применения способа в плохо проводящих ток средах.
  2. Безвозвратные потери протектора.
  3. Возможность загрязнения прилегающих территорий.

защита судов от коррозии

Как увеличить эффективность протекторов?

Чаще всего протекторные композиции применяются совместно с лакокрасочными составами, имеющими антикоррозийные свойства. Лакокрасочная защита самостоятельно не дает нужного эффекта, но при сочетании с протектором:

  • позволяет устранить изъяны покрытия металлического сооружения, которые возникают в процессе эксплуатации (вспучивание, отслоение, набухание металла, появление трещин и пр.);
  • снижает расход протекторных составов, увеличивая срок службы (при довольно высокой стоимости защитных сплавов это значимый эффект);
  • обеспечивает равномерное распределение защитного тока по поверхности металлического трубопровода.

Конечно, на эксплуатируемое судно или резервуар нанести лакокрасочный состав довольно сложно. В этом случае лучше отказаться от его применения, а использовать только протекторы.

Резюме

Практически все эффективные методы защиты от коррозии требуют расхода электрического тока. Протекторный способ позволяет предупредить ржавчину простым нанесением дополнительного слоя защитного сплава на трубу.

КОРРОЗИЯ И ЗАЩИТА МЕТАЛЛОВ

При изучении этого раздела повторите теоретический материал по теме «Гальванические элементы» и проработайте следующие вопросы: определение и классификация коррозионных процессов; химическая коррозия; электрохимическая коррозия; защита металлов от коррозии [1, 10].

Пример 1. Показать какие из ниже перечисленных металлов: а) Zn; б) Fe; в) Hg; г) Cd; д) Ag – способны подвергаться коррозии в соляной кислоте.

Решение. Коррозия должна протекать по электрохимическому механизму, т.к. соляная кислота проводит электрический ток. Данная кислота за счет ионов Н + выступает в роли окислителя. Определяем возможность коррозии, сравнивая электродные потенциалы всех перечисленных выше металлов (из табл. 9) с электродным потенциалом окислителя. При рН = 0 (кислая среда) и давлении водорода равном 1 атм = 0 (см. табл. 10).

Следовательно, коррозии будут подвергаться все металлы, у которых < 0. Это Zn, Fe и Cd. Устойчивы к кислотной коррозии будут Hg и Ag.

В качестве примера рассмотрим, какие процессы будут протекать при коррозии цинка в соляной кислоте.

Процесс окисления (на анодных участках):

Процесс восстановления (на катодных участках):

Анодные и катодные участки располагаются на поверхности цинка. Скорость анодного процесса связана со скоростью катодного. Так как скорость катодного процесса мала, о чем говорит большая величина перенапряжения выделения водорода на цинке ( = 0,83 В), то чистый цинк растворяется в кислоте медленно.

Пример 2. В чем сущность протекторной защиты металлов от коррозии? Какие из металлов Zn, Cr, Sn, Cu можно использовать в качестве протектора при защите от коррозии детали из железа во влажной атмосфере?

Решение. Сущность протекторной защиты металлов от коррозии заключается в том, что защищаемый металл соединяют с другим металлом, имеющим более отрицательный электродный потенциал. В этом случае более активный металл является анодом и подвергается окислению, а защищаемый металл является катодом и не окисляется.

Из табл. 9 приложения находим значения :

= – 0,76 В; = – 0,74 В; = – 0,44 В;

Следовательно, цинк и хром можно использовать для протекторной защиты изделия из железа:

Пример 3. Какие металлы можно использовать в качестве анодного и катодного покрытий для изделия из меди? Какое покрытие называется анодным, а какое – катодным?

Решение. Покрытие называется анодным, если величина электродного потенциала металла более отрицательна по отношению к потенциалу защищаемого металла. Металл, применяемый в качестве катодного покрытия, имеет более положительную величину электродного потенциала по отношению к потенциалу защищаемого металла.

Анодные покрытия для меди: Al, Zn, Cr, Cd.

Катодные покрытия для меди: Ag, Pd, Pt.

Пример 4. Показать какие процессы протекают при коррозии цинка в контакте с железом в соляной кислоте. Условия те же, что и в примере 1.

Решение. На поверхности раздела металл-раствор имеются участки металлического цинка и металлического железа. Определим, какой металл легче окисляется. С термодинамической точки зрения цинк легче окисляется, чем железо, что показывает сравнение их электродных потенциалов:

= – 0,44 В, = – 0,76 В (табл. 9).

Поэтому процесс окисления (анодный процесс) локализуется на поверхности цинка:

что приводит к его разрушению.

Наиболее сильный окислитель – ион Н + из раствора. Сравнивая электродные потенциалы окислителя и восстановителя = 0 В ˃ = – 0,76 В, т.е. что процесс коррозии возможен. Процесс восстановления (катодный процесс):

Определим, где располагаются катодные участки. Процесс выделения водорода локализуется там, где он протекает с наибольшей скоростью, то есть где наименьшее перенапряжение водорода. Сравним на железе и на цинке: = 0,36 В, = 0,83 В (см. табл. 11 приложения). Следовательно, катодный процесс локализуется на железе. Скорость катодного процесса на железе больше, чем на цинке, поэтому общая скорость коррозии цинка, содержащего примеси железа, намного больше, чем чистого цинка.

Пример 5. Стальное изделие (основа железо) покрыто оловом. Какой из металлов будет подвергаться коррозии: а) в кислой среде на воздухе; б) во влажном воздухе при нарушении покрытия? Составьте схемы коррозионных гальванических элементов и напишите электронные уравнения электродных процессов.

Решение. Из табл. 9 находим стандартные электродные потенциалы:

= – 0,44 В ˃ = – 0, 14 В. Следовательно, при нарушении покрытия как в кислой среде, так и во влажном воздухе, будет корродировать железо. Проверим это соответствующим расчетом.

а) кислая среда

Электродные потенциалы анодного и катодного процесса оценим, исходя из условия задачи, активность ионов металлов в растворах электролитов примем аМе n + < 10 -6 моль/л, а перенапряжение выделения водорода на данных электродах в кислой среде соответственно равны = 0,36 В и = 0,63 В (табл. 11 приложения).

В кислой среде на воздухе = 0,186 В, так как парциальное давление водорода в воздухе не 1 атм, а равно = 5 ×10 –7 атм.

На железе: = 0,186 – 0,36 = – 0,174 В;

На олове: = 0,186 – 0,63 = – 0,444 В.

Электронные уравнения электродных процессов:

А (Fe): Fe – 2 = Fe 2+

К (Fe): 2Н + + 2 = Н2 (катодная деполяризация)

б) влажный воздух (атмосферная коррозия)

Катодный процесс описывается уравнением: О2 + Н2О + 4 = 4ОН – (кислородная деполяризация). В предложенных условиях процесс с кислородной деполяризацией будет локализован на Sn. В этом случае возникнет гальванический элемент: (–) Fe | О2, Н2О | Sn (+).

КОНТРОЛЬНЫЕ ЗАДАНИЯ

221. Стальное изделие (основа – железо) покрыто цинком. Какой из металлов будет окисляться при коррозии в кислой среде и влажном воздухе при нарушении покрытия? Напишите электронные уравнения на аноде и катоде.

222. Изделия из луженого и оцинкованного железа эксплуатируются в атмосфере влажного воздуха. Составьте схемы коррозионных микрогальванических элементов и напишите электронные уравнения электродных процессов при нарушении покрытий.

223. Алюминиевая пластинка опущена в разбавленный раствор серной кислоты. Начавшееся выделение водорода быстро прекращается. Если к алюминиевой пластинке в растворе кислоты прикоснуться серебряной пластинкой, то на последней начнется бурное выделение водорода. Поясните этот процесс, составьте электронные уравнения реакций, протекающих на аноде и катоде.

224. Какие металлы: Fe, Ag, Pd, At можно использовать в качестве протектора при защите от коррозии детали из меди (Cu) эксплуатируемой в морской воде? В чем сущность протекторной защиты металлов от коррозии?

225. Напишите уравнения катодного процесса, протекающего при коррозии изделия из бронзы (Cu + Sn + Pb) во влажном воздухе. Составьте схему коррозионного гальванического элемента.

226. Укажите ряд металлов, которые можно использовать в качестве катодного и анодного покрытий для изделия из железа. Какое покрытие называется анодным, а какое – катодным?

227. В раствор хлороводородной (соляной) кислоты опустили железную пластинку, частично покрытую никелем. В каком случае процесс коррозии железа протекает интенсивнее? Составьте схемы коррозионных гальванических элементов и напишите электронные уравнения электродных процессов.

228. Две железные пластинки, частично покрытые одна цинком, другая серебром, находятся во влажном воздухе. На какой из этих пластинок быстрее образуется ржавчина? Почему? Напишите электронные уравнения анодного и катодного процессов коррозии пластинок. Укажите продукты коррозии.

229. Напишите электронные уравнения процесса коррозии луженого железа (Fe – Sn) в нейтральной водной среде при свободном доступе воздуха. Целостность покрытия нарушена.

230. Стальное изделие (основа – железо) покрыли оловом. Какое это покрытие – анодное или катодное? Напишите электронные уравнения электродных процессов коррозии при нарушении покрытия во влажном воздухе и кислой среде (соляная кислота). Укажите продукты коррозии.

231. Как протекает атмосферная коррозия стального изделия (основа – железо), покрытого слоем кадмия в случае нарушения покрытия? Напишите электронные уравнения электродных процессов. Укажите продукты коррозии.

232. Лопатки паровых турбин изготовлены из конструкционной стали (основа – железо), содержащей марганец, олово, медь, эксплуатируются во влажной атмосфере. Используя значения стандартных электродных потенциалов, определите, какая составляющая стали будет корродировать в первую очередь. Напишите электронные уравнения электродных процессов.

233. Резьбовое крепежное изделие из инструментальной стали (основа – железо), содержащей кобальт и медь, покрыто цинком. Напишите электронные уравнения анодного и катодного процессов коррозии во влажном воздухе. К какому типу (анодному или катодному) относительно основного металла относится это покрытие?

234. Изделие из сплава железа с хромом, легированного марганцем, эксплуатируется в кислой среде. Какая составляющая сплава будет корродировать в первую очередь? Напишите электронные уравнения процессов на аноде и катоде.

235. Какой из процессов:

1) Fe 3+ + 1 = Fe 2+ ;

протекает на катодных участках при коррозии железных изделий в атмосферных условиях?

236. Стальной сосуд (основа железо) покрытый серебром имеет глубокие царапины. Напишите электронные уравнения процессов на аноде и катоде при коррозии сосуда в растворе соляной кислоты. Какой металл растворяется при коррозии? Какое это покрытие анодное или катодное?

237. Какие из частиц: Al 3+ ; O2; H + ; Cu будут принимать электроны при коррозии алюминиевых деталей с медными включениями в кислой среде? Составьте схему коррозионного гальванического элемента и напишите электронные процессы на аноде и катоде.

238. Корпус водяного насоса из сплава марки АЛ 19 (основа – алюминий), содержащего титан, цинк и марганец, эксплуатируется во влажной атмосфере. Какая составляющая сплава будет корродировать в первую очередь? Напишите электронные уравнения электродных процессов.

239. На стальное изделие (основа – железо) нанесено многослойное покрытие (Ni, Cu, Ag). Целостность покрытия нарушена. Какой из металлов будет корродировать в первую очередь?

240. В контакте с какими из ниже приведенных металлов никель будет корродировать: Zn, Fe, Cu, Ag?

ЭЛЕКТРОЛИЗ

Для решения задач, посвященных электролизу, необходимо иметь ясное представление об окислительно-восстановительных реакциях, электродах и элек­тродных потенциалах, об электродных процессах окисления и восстановления, поляризационных явлениях на электродах, уметь рассчитывать величину элек­тродных потенциалов по условиям электрохимического процесса с учетом попра­вок на электрохимическое перенапряжение [1…5, 10].

Электролиз – это окислительно-восстановительный процесс, протекающий на электродах при пропускании электрического тока через раствор или расплав электролита. При этом в раствор помещают как минимум два электрода. Один из них подсоединен к положительному полюсу источника тока и служит анодом, а другой – к отрицательному и служит катодом, на поверхности которого происхо­дит восстановление.

Для того, чтобы ток непрерывно протекал в цепи на границе раздела металл – электролит, должны протекать электрохимические процессы: прием электронов на катоде и отдача электронов на аноде.

Пример 1. Какие процессы происходят на графитовых электродах при электролизе расплава СаС12? Рассчитайте величину UT (теоретическое напряже­ние разложения), необходимое для проведения электролиза. Электроды графитовые при Т = 1050 K.

Решение. Большое влияние на протекание процессов электролиза оказыва­ет природа электродов и, прежде всего, анодов. Различают нерастворимые и рас­творимые аноды. Рассмотрение электрохимических процессов электролиза сле­дует начинать с процессов окисления на аноде, т.к. возможно его растворение (окисление) и переход ионов в катодное пространство и восстановление их на катоде.

Нерастворимые (инертные) аноды изготавливают из угля, графита, Pt, Аu. При электролизе нерастворимые электроды не посылают электронов во внешнюю цепь, электроны посылаются в результате окисления анионов или молекул воды при электролизе водных растворов электролитов.

При рассмотрении процессов электролиза введем условные обозначения: вертикальной чертой разделим анодное и катодное пространства, электроды обозначим стрелками с указанием рядом материала, из которого они изготовлены. Возможные электродные процессы, которые мы сравниваем, подчеркнем горизонтальной чертой, а процесс, который преимущественно имеет место на аноде и катоде, заключим в рамку.

Расплавы щелочей и солей хорошо диссоциируют на ионы при высоких температурах. Схема электролиза:

Так как электролиз – несамопроизвольный процесс, то ΔGT > 0. ΔGT этого процесса определяется по формуле

где UT – теоретическое напряжение (напряжение разложения), необходимое для проведения процесса электролиза

где n – число электронов, участвующих в процессе окисления.

Используя формулу (1), находим UТ (n = 2)

Пример 2. Какие возможные процессы могут иметь место на платиновых (инертных) электродах при прохождении электрического тока через дистиллиро­ванную воду?

Решение. Вода является слабым электролитом, поэтому в окислительно-восстановительных процессах на электродах участвуют в основном молекулы во­ды по схеме:

станд. усл.; Н2О; рН = 7

В результате электролиза воды среда около катода становится щелочной (рН > 7), а около анода – кислой (рН < 7). Процесс электролиза выразится уравне­нием:

Пример 3. Составьте схему и напишите уравнения электродных процессов, протекающих на гладких платиновых электродах (с учетом перенапряжения) при электролизе водного раствора хлорида калия в стандартных условиях, при актив­ности ионов = 1 моль/л, среда кислая (рН < 7) за счет добавления кислоты с целью уменьшения сопротивления раствора, температура 298 K, плотность тока i = 10 A/м 2 .

Решение. При электролизе водных растворов электролитов происходит «конкуренция» между растворенным веществом и растворителем – водой за уча­стие в электрохимическом процессе на электродах. Поэтому состав продуктов окисления на аноде и восстановления на катоде зависит от природы электролита и других факторов. О том, какие частицы (ионы вещества или молекулы воды) будутв первую очередь разряжаться на электродах, можно судить по величине их электродных потенциалов. Из нескольких возможных процессов будет протекать тот, осуществление которого сопряжено с минимальной затратой энергии. В соответствии с этим действует правило: на аноде в первую очередь будут окисляться восстановленные формы систем с наименьшей алгебраической величиной электродного потенциала φ (наиболее активный восстановитель), а на катоде восстанавливаться окисленные формы электрохимических систем, имеющих наибольшую алгебраическую величину электродного потенциала, т.е. наиболее активный окислитель.

Перенапряжение кислорода при его образовании на аноде заключается в смещении его потенциала в сторону положительных значений от равновесного потенциала кислородного электрода при соответствующем рН (табл. 10 приложения). Водород на катоде выделяется при потенциале более отрицательном, чем равновесный потенциал, отвечающий рН данного раствора. Перенапряжние водорода очень сильно зависит от природы катода, состояния его поверхности и плотности тока (табл. 11 приложения).

Электродный потенциал окисления или восстановления молекул воды, в случае электролиза водных растворов электролитов, с учетом перенапряжения выделения кислорода и водорода обозначим через φ i .

При рассмотрении процессов на аноде и катоде следует использовать спра­вочные данные (табл. 10, 11, 12 приложения).

Прохождение электрического тока через электрохимическую ванну создает некоторую разность потенциалов между электродами, направленную против внешней ЭДС:

Возникновение обратной ЭДС при электролизе составляет сущность поля­ризации при электролизе. Причина её – поляризациякаждого электрода, которая заключается в сдвиге потенциала электрода от исходного равновесного значения, отвечающего определенной плотности тока.

Соль хлорид калия в водном растворе диссоциирует на ионы, которые пе­реходят соответственно в анодное и катодное пространства.

Схема процесса электролиза водного раствора хлорида калия:

KС1 = K + + Сl – ; Н2О; станд. усл.; рН

Пример 4. Составьте схему и напишите уравнения электродных процессов, протекающих на железных электродах (c учетом перенапряжения) при электролизе водного раствора сульфата алюминия в атмосфере воздуха, при активности ионов аА1 3+ =1 моль/л (среда нейтральная рН = 7), температуре 298 K плотности тока i = 10 А/м 2 .

Решение. Если водный раствор электролита содержит анионы кислородных кислот (SО4 2– ; NO3 – ; СО3 2– ; РО4 3– ; СIO4 – ; МnO4 – ; Сr2О7 2– и др.), то на аноде окисляются не эти ионы, а молекулы воды в случае использования инертных электродов.

Схема процесса электролиза:

Атмосф. возд. ; рН

В данном примере происходит окисление железного анода и ионы Fe 2+ «переходят» в катодное пространство и восстанавливаются на катоде.

Пример 5. Какие вещества и в каком количестве будут выделяться на гра­фитовых (инертных) электродах и образовываться в растворе при электролизе 1 М водного раствора MgCl2 (условия стандартные и рН = 7), если пропускать ток силой I = 10 А в течение τ = 6часов, aMg 2+ = 1 моль/л?

Решение. Составим схему электролиза:

На аноде выделяется хлор, а на катоде – водород, а в растворе образуется гидроксид магния Mg(OH)2.

Количество образовавшихся веществ можно рассчи­тать по данным задачи, используя законы электролиза, открытые М. Фарадеем. Смысл этих законов следующий:

Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе.

Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние.

Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы.

Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение.



Читайте также: