Восстановители металлов из их оксидов

Обновлено: 04.10.2024

Восстановление твердых оксидных фаз относится к топохимическим реакциям, протекающим на межфазной границе восстанавливаемого оксида и его продукта. Скорость химических взаимодействий зависит от состояния и размера поверхности раздела фаз.

Механизм и кинетическая схема восстановления металлов

Из оксидов газами

Общепринятые представления о механизме реакций восстановления металлов из их оксидов обобщены в настоящее время в адсорбционно-каталитической теории, предложенной Чуфаровым Г.И. и развитой в работах Ростовцева С.Т., Есина О.А., Гельда П.В. и других ученых. В основе ее лежит положение о первостепенной роли адсорбции в процессах восстановления.

Согласно данной теории механизм восстановления включает три стадии:

1) адсорбцию восстановителя на реакционной поверхности;

2) кристаллохимический акт, включающий переход кислорода решетки оксида к адсорбированным молекулам восстановителя с одновременной перестройкой решетки исходного оксида в решетку продукта восстановления;

3) десорбцию газообразного продукта восстановления.

Этот механизм представляется схемой:

Суммарный процесс соответствует реакции:

По адсорбционной теории реагируют с оксидами только те молекулы газа-восстановителя, которые адсорбировались на поверхности оксида.

Адсорбция происходит на активных центрах. Идет отрыв атомов (ионов) кислорода от катионов металла, образование адсорбционных комплексов (например, ), из которых формируются молекулы продукта восстановления, десорбирующиеся в газовую фазу.

Потеря кислорода оксидом ведет к образованию пересыщенного твердого раствора низшего оксида в высшем или раствора металла в оксиде при протекании последней ступени восстановления. Такой раствор неустойчив и распадается. Результатом является появление кристаллов новой фазы, которые в дальнейшем растут.

С точки зрения адсорбционно-каталитической теории процесс восстановления является автокаталитическим, т.е. образование твердого продукта реакции приводит к ускорению процесса его образования.

Автокатализ связан с локализацией реакции на границе раздела фаз оксид – твердые продукты восстановления, которая является своеобразным катализатором, возникающим в ходе самого процесса. В условиях, соответствующих кинетическому режиму процесса, как правило, при восстановлении наблюдается характерный для автокатализа максимум скорости на определенном этапе восстановления. Типичные кинетические зависимости изменения скорости процесса и изменения степени восстановления во времени t приведены на рис. 16. Как видно, можно выделить три периода, характерных для топохимических реакций:

Рис. 16. Кинетика топохимических реакций

I – индукционный период, характеризующийся малыми скоростями процесса, связанными с трудностями зарождения новой фазы;

II – автокатализ, связанный с ускорением реакции из-за постоянно увеличивающейся поверхности раздела двух твердых фаз и деформацией сопрягающихся решеток фаз;

III – период замедления процесса; уменьшение скорости связано с уменьшением количества старой фазы и поверхности раздела.

Следует отметить, что при отсутствии торможений в зарождении новой фазы I и II периоды могут отсутствовать.

С кинетической точки зрения восстановление оксидов газами является сложным гетерогенным процессом, включающим следующие стадии:

1) подвод восстановителя из ядра газового потока к наружной поверхности восстанавливаемого оксида; это этап внешней диффузии, или внешней массопередачи;

2) диффузия восстановителя к реакционной зоне через макро- и микропоры, дефекты решетки слоя твердого продукта восстановления; это этап внутренней диффузии или внутренней массопередачи;

3) собственно химическая реакция восстановления с кристаллохимическим превращением исходного оксида в низший или металл (по адсорбционно-каталитическому механизму);

4) отвод газообразных продуктов восстановления в газовый поток путем внутренней и внешней массопередачи.

Из этой схемы следует, что восстановление является совокупностью двух видов процессов:

– взаимодействия газов с оксидами на реакционной поверхности;

– диффузии газов между ядром потока и реакционной поверхностью.

В зависимости от того, какой из этих процессов протекает наиболее медленно (является лимитирующим), наблюдается:

– либо неодинаковое влияние одних и тех же факторов на скорость восстановления;

– или отсутствие влияние некоторых из них в определенных условиях.

Различное соотношение скоростей диффузии и реакции восстановления приводит к двум типам восстановления: ступенчатому и зональному.

Ступенчатость и зональность являются проявлением справедливости принципа последовательности превращений А. А. Байкова, который для системы Fe–O представляется схемой (при T > 570 °C):

При ступенчатом типе восстановления наблюдается строгая повременная последовательность в смене отдельных ступеней восстановления во всем объеме куска (зерна) оксида. Это означает: если обеспечить свободную доставку восстановителя в любой участок зерна восстанавливаемого оксида, например, Fe2O3, то все зерно Fe2O3 вначале превратится в Fe3O4, затем в FeO и только после этого появится Fe.

При зональном типе восстановления наблюдается пространственное разделение ступеней восстановления. Это означает: если кусок (зерно) Fe2O3 подвергнуть восстановлению в условиях затрудненной диффузии газов, то в какой-то момент времени частично восстановленный гематит окажется состоящим из зон, соответствующих отдельным ступеням восстановления. При этом на поверхности куска может быть железо, под ним зоны FeO и Fe3O4; внутри сохраняется ядро Fe2O3. Границы зон по ходу восстановления, по мере обеспечения их необходимым количеством восстановителя продвигаются друг за другом к центру куска.

Ступенчатый тип процесса характерен для кинетического режима и реализуется при измельченном материале, находящемся во взвешенном состоянии в газовом потоке, или при наличии высокопористого оксида.

Зональный характер восстановления наблюдается при восстановлении плотных материалов в условиях диффузионного режима. В реальных условиях идеальное расположение зон может быть нарушено вследствие разного рода макродефектов (трещины, поры и др.), имеющихся в рудных материалах, по которым газ может диффундировать внутрь оксида. При этом получается “размытая” (вплоть до центра зерна) реакционная зона.

Следует иметь в виду, что при сопоставимых скоростях реакции восстановления и диффузии процесс может идти в смешанном (переходном) режиме, или диффузионно-кинетическом режиме. Именно в этом режиме процесс характеризуется наиболее сложными кинетическими закономерностями.

Химические свойства основных оксидов


Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочи Основные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидами Реагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3 CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

CuO + Al2O3(реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:


Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe 2+ можно окислить до иона Fe 3+ ).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO


Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

CuO + CO = Cu + CO2


4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O


4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al = Al2O3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO


Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

Понятие о металлургии: общие способы получения металлов

Металлургия — это наука о промышленных способах получения металлов. Различают черную и цветную металлургию.

Черная металлургия — это производство железа и его сплавов (сталь, чугун и др.).

Цветная металлургия — производство остальных металлов и их сплавов.

Широкое применение находят сплавы металлов. Наиболее распространенные сплавы железа — чугун и сталь.

Чугун — это сплав железа, в котором содержится 2-4 масс. % углерода, а также кремний, марганец и небольшие количества серы и фосфора.

Сталь — это сплав железа, в котором содержится 0,3-2 масс. % углерода и небольшие примеси других элементов.

Легированные стали — это сплавы железа с хромом, никелем, марганцем, кобальтом, ванадием, титаном и другими металлами. Добавление металлов придает стали дополнительные свойства. Так, добавление хрома придает сплаву прочность, а добавление никеля придает стали пластичность.

Основные стадии металлургических процессов:

  1. Обогащение природной руды (очистка, удаление примесей)
  2. Получение металла или его сплава.
  3. Механическая обработка металла

1. Нахождение металлов в природе

Большинство металлов встречаются в природе в виде соединений. Наиболее распространенный металл в земной коре — алюминий. Затем железо, кальций, натрий и другие металлы.

2. Получение активных металлов

Активные металлы (щелочные и щелочноземельные) классическими «химическими» методами получить из соединений нельзя. Такие металлы в виде ионов — очень слабые окислители, а в простом виде — очень сильные восстановители, поэтому их очень сложно восстановить из катионов в простые вещества. Чем активнее металл, тем сложнее его получить в чистом виде — ведь он стремится прореагировать с другими веществами.

Получить такие металлы можно, как правило, электролизом расплавов солей, либо вытеснением из солей другими металлами в жестких условиях.

Натрий в промышленности получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl = 2Na + Cl2

Калий получают пропусканием паров натрия через расплав хлорида калия при 800°С:

KCl + Na = K↑ + NaCl

Литий можно получить электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl = 2Cs + CaCl2

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий получают из оксида восстановлением алюминием в вакууме при 1200 °C:

4BaO+ 2Al = 3Ba + Ba(AlO2)2

Алюминий получают электролизом раствора оксида алюминия Al2O3 в криолите Na3AlF6:

3. Получение малоактивных и неактивных металлов

Металлы малоактивные и неактивные восстанавливают из оксидов углем, оксидом углерода (II) СО или более активным металлом. Сульфиды металлов сначала обжигают.

3.1. Обжиг сульфидов

При обжиге сульфидов металлов образуются оксиды:

2ZnS + 3O2 → 2ZnO + 2SO2

Металлы получают дальнейшим восстановлением оксидов.

3.2. Восстановление металлов углем

Чистые металлы можно получить восстановлением из оксидов углем. При этом до металлов восстанавливаются только оксиды металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо получают восстановлением из оксида углем:

2Fe2O3 + 6C → 2Fe + 6CO

ZnO + C → Zn + CO

Оксиды металлов, расположенных в ряду электрохимической активности до алюминия, реагируют с углем с образованием карбидов металлов:

CaO + 3C → CaC2 + CO

3.3. Восстановление металлов угарным газом

Оксид углерода (II) реагирует с оксидами металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо можно получить восстановлением из оксида с помощью угарного газа:

3.4. Восстановление металлов более активными металлами

Более активные металлы вытесняют из оксидов менее активные. Активность металлов можно примерно оценить по электрохимическому ряду металлов:

Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Активные металлы вытесняют менее активные из растворов их солей.

Например , при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

Медь покроется белыми кристаллами серебра.

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4 + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

3.5. Восстановление металлов из оксидов водородом

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Как правило, взаимодействие оксидов металлов с водородом протекает в жестких условиях – под давлением или при нагревании.

4. Производство чугуна

Чугун получают из железной руды в доменных печах.

Печь последовательно загружают сверху шихтой, флюсами, коксом, затем снова рудой, коксом и т.д.


1- загрузочное устройство, 2 — колошник, 3 — шахта, 4 — распар, 5 — горн, 6 — регенератор

Доменная печь имеет форму двух усеченных конусов, соединенных основаниями. Верхняя часть доменной печи — колошник, средняя — шахта, а нижняя часть — распар.

В нижней части печи находится горн. Внизу горна скапливается чугун и шлак и отверстия, через которые чугун и шлак покидают горн: чугун через нижнее, а шлак через верхнее.

Наверху печи расположено автоматическое загрузочное устройство. Оно состоит из двух воронок, соединенных друг с другом. Руда и кокс сначала поступают в верхнюю воронку, а затем в нижнюю.

Из нижней воронки руда и кокс поступают в печь. во время загрузки руды и кокса печь остается закрытой, поэтому газы не попадают в атмосферу, а попадают в регенераторы. В регенераторах печной газ сгорает.

Шихта — это железная руда, смешанная с флюсами.

Снизу в печь вдувают нагретый воздух, обогащенный кислородом, кокс сгорает:

Образующийся углекислый газ поднимается вверх и окисляет кокс до оксида углерода (II):

CO2 + С = 2CO

Оксид углерода (II) (угарный газ) — это основной восстановитель железа из оксидов в данных процессах. Последовательность восстановления железа из оксида железа (III):

Последовательность восстановления оксида железа (III):

FeO + CO → Fe + CO2

Суммарное уравнение протекающих процессов:

При этом протекает также частичное восстановление примесей оксидов других элементов (кремния, марганца и др.). Эти вещества растворяются в жидком железе.

Чтобы удалить из железной руды тугоплавкие примеси (оксид кремния (IV) и др.). Для их удаления используют флюсы и плавни (как правило, известняк CaCO3 или доломит CaCO3·MgCO3). Флюсы разлагаются при нагревании:

и образуют с тугоплавкими примесями легкоплавкие вещества (шлаки), которые легко можно удалить из реакционной смеси:

Получение металлов из оксидов с помощью восстановителей: водорода, алюминия, оксида углерода (II). Роль металлов и сплавов в современной технике

Для получения металлов из оксидов используются различные восстановители. Использование водорода позволяет получать активные металлы, не восстанавливаемые оксидом углерода (II). Также этот способ применяется для получения металлов с низким содержанием примесей, например, для химической лаборатории. Стоимость этого способа довольно высока. В качестве примера можно привести реакцию восстановления меди из оксида меди (II) при нагревании в струе водорода:

С указанием степени окисления элементов:

Cu +2 O + H2 0 = Cu 0 + H2 +1 O

Хотя реакция обратимая, но проведение ее в токе водорода, и, как следствие, удаление паров воды из зоны реакции позволяет сместить равновесие вправо и добиться полного восстановления меди.

Железо, поступающее в школьную лабораторию, часто на этикетке имеет надпись: «Восстановлено водородом»:

Способ восстановления металлов алюминием получил название «алюминотермия» или «алюмотермия». Алюминий является еще более активным восстановителем. Этим способом получают хром, марганец:

При реакции оксида железа (III) с порошком алюминия (смесь необходимо поджечь магниевой лентой) выделяется много тепла:

Алюминотермией получают некоторое количество кальция. Обратите внимание, что в электрохимическом ряду напряжений кальций находится левее алюминия, но это не делает невозможным данный способ — не следует забывать, что ряд напряжений говорит о возможности или невозможности протекания реакций только в растворах.

Оксид углерода (II) применяется наиболее широко. Например, при выплавке чугуна в доменной печи восстановителями являются кокс и образующийся оксид углерода(II). Суммарное уравнение получения железа из красного железняка:

Чистые металлы в современной технике используются сравнительно редко. Чистые медь и алюминий применяются для изготовления электрических проводов. Цинк, никель, хром, золото наносятся на поверхность стальных изделий для защиты от коррозии и придания красивого внешнего вида.

Сплавы обладают более высокой прочностью. Легкие сплавы на основе алюминия, например, дуралюмины (содержат медь и магний) — особенно широко применяются в изготовлении летательных аппаратов, автомобилей, скоростных судов.

Сплавы на основе железа — чугун и сталь — основные конструкционные материалы современной техники. Чугун, благодаря более низкой стоимости, устойчивости к коррозии, хорошим литейным качествам широко применяется для изготовления станков, печных плит, декоративных садовых решеток и пр.

Сталь хорошо обрабатывается и обладает высокой прочностью. Добавление в сталь легирующих добавок позволяет придавать ей особые свойства: высокую твердость, устойчивость к коррозии (нержавеющие стали), кислотам (кислотоупорные), высоким температурам (жаропрочные) и т. д.

Сплавы на основе меди — латуни и бронзы — обладают хорошей теплопроводностью, устойчивостью к коррозии (в том числе в морской воде), красивым внешним видом. Применяются для изготовления радиаторов, в судостроении, для декоративных целей.

Сплавы олова и свинца — припо́и — обладают более низкой температурой плавления, чем олово и свинец в отдельности. Используются при пайке.

Химические свойства металлов


Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Таблица «Химические свойства металлов»

Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb

Cu, Hg, Ag, Pt, Au

Восстановительная способность металлов в свободном состоянии

Возрастает справа налево

Взаимодействие металлов с кислородом

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Взаимодействие с водой

Выделяется водород и образуется гидроксид

При нагревании выделяется водород и образуются оксиды

Водород из воды не вытесняют

Взаимодействие с кислотами

Вытесняют водород из разбавленных кислот (кроме HNO3)

Не вытесняют водород из разбавленных кислот

Реагируют с концентрированными азотной и серной кислотами

С кислотами не реагируют, растворяются в царской водке

Взаимодействие с солями

Не могут вытеснять металлы из солей

Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей

Взаимодействие с оксидами

Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов

Читайте также: