Все металлические конструкции должны быть заземлены

Обновлено: 17.05.2024

Заземление цеха является обязательным требованием для обеспечения защитных мер электробезопасности и обеспечивается присоединением электроустановок (шкафов управления, корпусов электродвигателей, станков и т.п.) к заземляющему устройству (ЗУ), состоящее из заземлителя и заземляющих проводников. Для заземления оборудования цеха на пром. предприятиях используются различные виды заземлителей - естественные и искусственные. Первые представляют собой проложенные непосредственно в земле металлические трубопроводы и металлоконструкции самого цеха, а вторые — вертикальные и горизонтальные заземлители (стальные уголки, стержни и трубы), которые специально применяются для заземления.

Как осуществляется заземление в цехе?

В соответствии с ПУЭ, все электроустановки необходимо заземлять путем присоединения корпусов оборудования или отдельных элементов установки к заземляющему устройству в соответствии со схемой заземления цеха (см.рисунок).

Однако, для того чтобы ЗУ выполняло свою защитную функцию, перед его реализацией выполняется проект молниезащиты и заземления производственного цеха. В проекте производятся расчеты молниеприемника, а так же сопротивления вертикальных и горизонтальных электродов, полное сопротивление ЗУ, исходя из удельного сопротивления грунта, размеров вертикального (длина, диаметр) и горизонтального (длина, ширина) электродов, а так же их заглубления.

Далее в соответствии с проектом, выполняется монтаж заземления цеха. Вначале снаружи здания роют траншею, в которую забиваются вертикальные электроды так, чтобы верхняя их часть выступала со дна траншеи на 200 мм. Далее к ним привариваются горизонтальные заземлители, при этом сварные швы, находящиеся в земле, должны быть покрыты битумом. После сварки ЗУ соединяются с главной заземляющей шиной (ГЗШ), при помощи гибкого изолированного или неизолированного проводника расчетного сечения, например провод ПуГВ, который подключается при помощи болтового соединения. Кроме того, к ГЗШ так же производится подключение защитных проводников и проводников системы уравнивания и выравнивания потенциалов.

Заземление производственного цеха

Внутри цеха в качестве проводников для заземления применяются металлические конструкции, металлические оболочки и экраны кабелей, стальные трубы электропроводки и трубопроводы. На предприятиях, где невозможно использовать элементы самого здания, в соответствии с проектом выполняется контур из стальной полосы, проложенной открыто по стенам на расстоянии 0,4–0,6 мм от пола по периметру производственного цеха (контур заземления в цеху) и соединенный с ГЗШ.

К данному контуру или к ГЗШ производится подключение всех электроустановок (станков, электродвигателей и т.п. оборудования), при этом заземляющий проводник выбирается сечением, что и основные жилы кабеля или в соответствии с ПУЭ таблицей 1.7.5.

Наименьшие сечения защитных проводников
Сечение фазных проводников, мм 2 Наименьшее сечение защитных проводников, мм 2
S £ 16 S
16 < S £ 3516
S > 35 S/2

Таким образом, выполняется заземление станков и пр. технологического оборудования в цеху под одной системой, которая обеспечивает защиту от нахождения их электропроводящих частей под напряжением.

Важно отметить, что защитное заземление может не выполняться для электроприборов на напряжение до 42 В переменного тока и 100В постоянного тока.

Заземление в цехе

Все металлические конструкции должны быть заземлены

ЗАЗЕМЛЕНИЕ И ЗАЩИТНЫЕ МЕРЫ
ЭЛЕКТРОБЕЗОПАСНОСТИ


ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

1.7.1. Настоящая глава Правил распространяется на все электроустановки переменного и постоянного тока напряжением до 1 кВ и выше и содержит общие требования к их заземлению и защите людей от поражения электрическим током при повреждении изоляции.

Дополнительные требования приведены в соответствующих главах ПУЭ.

1.7.2. Электроустановки в отношении мер электробезопасности разделяются на:

электроустановки выше 1 кВ в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю);

электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);

электроустановки до 1 кВ с глухозаземленной нейтралью;

электроустановки до 1 кВ с изолированной нейтралью.

1.7.3. Электрической сетью с эффективно заземленной нейтралью называется трехфазная электрическая сеть выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4.

Коэффициентом замыкания на землю в трехфазной электрической сети называется отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землей в этой точке до замыкания.

1.7.4. Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

1.7.5. Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление.

1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.

1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности.

1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.

1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.

1.7.10. Замыканием на землю называется случайное соединение находящихся под напряжением частей электроустановки с конструктивными частями, не изолированными от земли, или непосредственно с землей.

Замыканием на корпус называется случайное соединение находящихся под напряжением частей электроустановки с их конструктивными частями, нормально не находящимися под напряжением.

1.7.11. Заземляющим устройством называется совокупность заземлителя и заземляющих проводников.

1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.

1.7.13. Искусственным заземлителем называется заземлитель, специально выполняемый для целей заземления.

1.7.14. Естественным заземлителем называются находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий и сооружений производственного или иного назначения, используемые для целей заземления.

1.7.15. Магистралью заземления или зануления называется соответственно заземляющий или нулевой защитный проводник с двумя или более ответвлениями.

1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.

1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.

1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока.

Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников.

В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.

1.7.19. Зоной растекания называется область земли, в пределах которой возникает заметный градиент потенциала при стекании тока с заземлителя.

1.7.20. Зоной нулевого потенциала называется зона земли за пределами зоны растекания.

1.7.21. Напряжением на заземляющем устройстве называется напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземляющее устройство и зоной нулевого потенциала.

1.7.22. Напряжением относительно земли при замыкании на корпус называется напряжение между этим корпусом и зоной нулевого потенциала.

1.7.23. Напряжением прикосновения называется напряжение между двумя точками цепи тока замыкания на землю (на корпус) при одновременном прикосновении к ним человека.

1.7.24. Напряжением шага называется напряжение между двумя точками земли, обусловленное растеканием тока замыкания на землю, при одновременном касании их ногами человека.

1.7.25. Током замыкания на землю называется ток, стекающий в землю через место замыкания.

1.7.26. Сопротивлением заземляющего устройства называется отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

1.7.27. Эквивалентным удельным сопротивлением земли с неоднородной структурой называется такое удельное сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.

Термин "удельное сопротивление", применяемый в настоящих Правилах, для земли с неоднородной структурой следует понимать как "эквивалентное удельное сопротивление".

1.7.28. Защитным отключением в электроустановках до 1 кВ называется автоматическое отключение всех фаз (полюсов) участка сети, обеспечивающее безопасные для человека сочетания тока и времени его прохождения при замыканиях на корпус или снижении уровня изоляции ниже определенного значения.

1.7.29. Двойной изоляцией электроприемника называется совокупность рабочей и защитной (дополнительной) изоляции, при которой доступные прикосновению части электроприемника не приобретают опасного напряжения при повреждении только рабочей или только защитной (дополнительной) изоляции.

1.7.30. Малым напряжением называется номинальное напряжение не более 42 В между фазами и по отношению к земле, применяемое в электрических установках для обеспечения электробезопасности.

1.7.31. Разделительным трансформатором называется трансформатор, предназначенный для отделения сети, питающей электроприемник, от первичной электрической сети, а также от сети заземления или зануления.


ОБЩИЕ ТРЕБОВАНИЯ

1.7.32. Для защиты людей от поражения электрическим током при повреждении изоляции должна быть применена, по крайней мере, одна из следующих защитных мер: заземление, зануление, защитное отключение, разделительный трансформатор, малое напряжение, двойная изоляция, выравнивание потенциалов.

1.7.33. Заземление или зануление электроустановок следует выполнять:

1) при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока - во всех электроустановках (см. также 1.7.44 и 1.7.48);

2) при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока - только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Заземление или зануление электроустановок не требуется при номинальных напряжениях до 42 В переменного тока и до 110 В постоянного тока во всех случаях, кроме указанных в 1.7.46, п. 6, и в гл. 7.3 и 7.6.

1.7.34. Заземление или зануление электрооборудования, установленного на опорах ВЛ (силовые и измерительные трансформаторы, разъединители, предохранители, конденсаторы и другие аппараты), должно быть выполнено с соблюдением требований, приведенных в соответствующих главах ПУЭ, а также в настоящей главе.

Сопротивление заземляющего устройства опоры ВЛ, на которой установлено электрооборудование, должно соответствовать требованиям:

1) 1.7.57-1.7.59 - в электроустановках выше 1 кВ сети с изолированной нейтралью;

2) 1.7.62 - в электроустановках до 1 кВ с глухозаземленной нейтралью;

3) 1.7.65 - в электроустановках до 1 кВ с изолированной нейтралью;

4) 2.5.76 - в сетях 110 кВ и выше.

В трехфазных сетях до 1 кВ с глухозаземленной нейтралью и в однофазных сетях с заземленным выводом источника однофазного тока установленное на опоре ВЛ электрооборудование должно быть занулено (см. 1.7.63).

1.7.35. Для заземления электроустановок в первую очередь должны быть использованы естественные заземлители. Если при этом сопротивление заземляющих устройств или напряжение прикосновения имеет допустимые значения, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве, то искусственные заземлители должны применяться лишь при необходимости снижения плотности токов, протекающих по естественным заземлителям или стекающих с них.

1.7.36. Для заземления электроустановок различных назначений и различных напряжений, территориально приближенных одна к другой, рекомендуется применять одно общее заземляющее устройство.

Для объединения заземляющих устройств различных электроустановок в одно общее заземляющее устройство следует использовать все имеющиеся в наличии естественные, в особенности протяженные, заземляющие проводники.

Заземляющее устройство, используемое для заземления электроустановок одного или различных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т. д.

1.7.37. Требуемые настоящей главой сопротивления заземляющих устройств и напряжения прикосновения должны быть обеспечены при наиболее неблагоприятных условиях.

Удельное сопротивление земли следует определять, принимая в качестве расчетного значения, соответствующее тому сезону года, когда сопротивление заземляющего устройства или напряжение прикосновения принимает наибольшие значения.

1.7.38. Электроустановки до 1 кВ переменного тока могут быть с глухозаземленной или с изолированной нейтралью, электроустановки постоянного тока - с глухозаземленной или изолированной средней точкой, а электроустановки с однофазными источниками тока - с одним глухозаземленным или с обоими изолированными выводами.

В четырехпроводных сетях трехфазного тока и трехпроводных сетях постоянного тока глухое заземление нейтрали или средней точки источников тока является обязательным (см. также 1.7.105).

1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

В обоснованных случаях рекомендуется выполнять защитное отключение (для переносного ручного электроинструмента, некоторых жилых и общественных помещений, насыщенных металлическими конструкциями, имеющими связь с землей).

1.7.40. Электроустановки до 1 кВ переменного тока с изолированной нейтралью или изолированным выводом источника однофазного тока, а также электроустановки постоянного тока с изолированной средней точкой следует применять при повышенных требованиях безопасности (для передвижных установок, торфяных разработок, шахт). Для таких электроустановок в качестве защитной меры должно быть выполнено заземление в сочетании с контролем изоляции сети или защитное отключение.

1.7.41. В электроустановках выше 1 кВ с изолированной нейтралью должно быть выполнено заземление.

В таких электроустановках должна быть предусмотрена возможность быстрого отыскания замыканий на землю (см. 1.6.12). Защита от замыканий на землю должна устанавливаться с действием на отключение (по всей электрически связанной сети) в тех случаях, в которых это необходимо по условиям безопасности (для линий, питающих передвижные подстанции и механизмы, торфяные разработки и т. п.).

1.7.42. Защитное отключение рекомендуется применять в качестве основной или дополнительной меры защиты, если безопасность не может быть обеспечена путем устройства заземления или зануления, либо если устройство заземления или зануления вызывает трудности по условиям выполнения или по экономическим соображениям. Защитное отключение должно осуществляться устройствами (аппаратами), удовлетворяющими в отношении надежности действия специальным техническим условиям.

1.7.43. Трехфазная сеть до 1 кВ с изолированной нейтралью или однофазная сеть до 1 кВ с изолированным выводом, связанная через трансформатор с сетью выше 1 кВ, должна быть защищена пробивным предохранителем от опасности, возникающей при повреждении изоляции между обмотками высшего и низшего напряжений трансформатора. Пробивной предохранитель должен быть установлен в нейтрали или фазе на стороне низшего напряжения каждого трансформатора. При этом должен быть предусмотрен контроль за целостью пробивного предохранителя.

1.7.44. В электроустановках до 1 кВ в местах, где в качестве защитной меры применяются разделительные или понижающие трансформаторы, вторичное напряжение трансформаторов должно быть: для разделительных трансформаторов - не более 380 В, для понижающих трансформаторов - не более 42 В.

При применении этих трансформаторов необходимо руководствоваться следующим:

1) разделительные трансформаторы должны удовлетворять специальным техническим условиям в отношении повышенной надежности конструкции и повышенных испытательных напряжений;

2) от разделительного трансформатора разрешается питание только одного электроприемника с номинальным током плавкой вставки или расцепителя автоматического выключателя на первичной стороне не более 15 А;

3) заземление вторичной обмотки разделительного трансформатора не допускается. Корпус трансформатора в зависимости от режима нейтрали сети, питающей первичную обмотку, должен быть заземлен или занулен. Заземление корпуса электроприемника, присоединенного к такому трансформатору, не требуется;

4) понижающие трансформаторы со вторичным напряжением 42 В и ниже могут быть использованы в качестве разделительных, если они удовлетворяют требованиям, приведенным в п. 1 и 2 настоящего параграфа. Если понижающие трансформаторы не являются разделительными, то в зависимости от режима нейтрали сети, питающей первичную обмотку, следует заземлять или занулять корпус трансформатора, а также один из выводов (одну из фаз) или нейтраль (среднюю точку) вторичной обмотки.

1.7.45. При невозможности выполнения заземления, зануления и защитного отключения, удовлетворяющих требованиям настоящей главы, или если это представляет значительные трудности по технологическим причинам, допускается обслуживание электрооборудования с изолирующих площадок.

Изолирующие площадки должны быть выполнены так, чтобы прикосновение к представляющим опасность незаземленным (незануленным) частям могло быть только с площадок. При этом должна быть исключена возможность одновременного прикосновения к электрооборудованию и частям другого оборудования и частям здания.

Расчет заземления

Без грамотно рассчитанного контура заземления (ЗК) надеяться на эффективность работы защитной конструкции было бы большой ошибкой. Только убедившись в том, что для токов стекания подготовлена цепочка с минимальным сопротивлением можно быть уверенным в безопасности людей, работающих на линии. Поэтому так важно сразу же разобраться со всеми тонкостями и особенностями расчета контуров заземления.

Цель расчета защитного заземления

Обустраиваемое на стороне потребителя заземляющее устройство предназначено для защиты не только персонала, обслуживающего электроустановки, но и рядовых пользователей.

Важно! Опасный потенциал может попасть на металлические части оборудования во время работы с ним совершенно случайно (из-за повреждения изоляции проводов, например).

Полноценный расчет заземления гарантирует образование надежного контакта защитного устройства с землей, приводящего к растеканию тока и снижению уровня опасного напряжения.

Таким образом, назначение расчета заземляющих устройств – создание условий, исключающих риск поражения живых организмов высоким потенциалом путем его снижения в точке замыкания. В отсутствие хорошо просчитанного и функционального заземлителя любое прикосновение к корпусу поврежденного оборудования равнозначно прямому контакту с фазной жилой.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

контурзаземления в виде треугольника

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.

линейная схема контура заземления

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.

модульно-штыревое заземление

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).

Обратите внимание: Для надежной защиты от коррозии все резьбовые элементы стержней покрываются графитной пастой, входящей в комплект фирменной поставки.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

Дополнительное замечание: Перед проведением расчета также потребуется знать величину сопротивления грунта Ом на участке проведения монтажных работ.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска).

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

Полезное замечание: Минимальную длину штырей вычисляют с учетом технических требований (необходимостью получения требуемого сопротивления стеканию в землю).

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

одиночный вертикальный заземлитель

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Расчет заземления

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

сопротивление вертикальных заземлителей

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

удельное сопротивление

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:

где Rн – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Пример расчета заземления

В качестве «классического» примера расчета заземления рассмотрим вариант ЗУ с учетом заданных исходных данных, то есть проведем вычисления для одиночного металлического штыря. Сразу оговоримся, что такие простейшие конструкции применяются при организации повторного заземления высоковольтных опор. В рассматриваемой ситуации согласно положениям ПУЭ (смотрите п.1.7.103.) сопротивление растеканию тока не может быть более 15, 30 и 60 Ом для напряжений 660, 380 и 220 Вольт соответственно.

Расчет одиночного заземляющего элемента для опоры ВЛ 380 Вольт

Согласно оговоренной ранее методике сначала по таблице выбирается тип вертикального штыря со следующими характеристиками:

  • Материал – сталь.
  • Форма – округлый стержень диаметром 16 мм.
  • Длина L — 2,5 метра.

Обратите внимание: В качестве грунта в соответствие с таблицей выбирается полутвердая глина с удельным сопротивлением ρ, равным 60 Ом на•метр.

Глубина траншеи берется равной полметра. Затем из той же таблицы находится поправочный коэффициент, вводимый для средней климатической зоны. Его значение при фактической длине стержней до 2,5 метров с учетом промерзания грунта в данной местности составляет ψ=1,45. Показатель нормированного сопротивления для этого типа ЗУ равен 30 Омам. Следующий показатель – удельное сопротивление грунта находится по формуле:

ρ (по факту) = ψ•ρ = 1.45х60 = 87 Ом•метр

Полученные расчетные данные выглядят так:

  1. заглубление одиночного штыря в грунт составляет h = 0,5l + t = 0,5х2,5 + 0,5 = 1,75 метра;
  2. его сопротивление для нашего примера (смотрите формулы выше) составляет не более 30 Ом, что соответствует требования ПУЭ для данного напряжения.

Когда одного заземляющего штыря для опоры ВЛ недостаточно – допускается добавлять еще один или даже несколько прутьев. В этом случае потребуется другая методика, используемая для линейного контура или треугольной конструкции.

Расчет переносного заземления

Перед расчетом переносного заземления (ПЗ) следует учесть, что для этого типа защитных приборов требования к сопротивлению стеканию тока еще более высокие, чем у стационарных ЗУ (фото ниже).

Обратите внимание: Самое главное в этой ситуации – правильно рассчитать сечение заземляющих проводов переносного устройства, определяющих эффективность его действия.

переносное заземление

При решении этой проблемы, прежде всего, следует научиться различать сети и установки с различными действующими напряжениями. Провода ПЗ (согласно требованиям действующих стандартов) должны выдерживать продолжительный нагрев при замыкании в питающих линиях трехфазного и однофазного напряжения. Для электроустановок с этим показателем до 1000 Вольт выбирается шина сечением не менее 16 кв. мм.

В сетях, где напряжение превышает 1000 Вольт, предельная величина сечения проводов ПЗ не должна быть менее 25 мм2. Точный расчет этого значения производится обычно по следующей формуле:

S = ( Iуст √tф ) / 272

где Iуст – это ток короткого замыкания;

tф – время его действия в секундах;

272– коэффициент, указывающий на тип металла проводника и отличающийся для разных токов КЗ (для меди, в частности он равен 250, а в расчетах взят с небольшим запасом).

В случаях, когда действующее напряжение не превышает 6-10 кВ – требуемое для надежной защиты сечение провода колеблется в пределах от 120 до 185 мм2. Поскольку комплект переносных заземлений с такими шинами будет очень тяжелым и неудобным в работе – согласно ПУЭ допускается использовать несколько ПЗ с меньшим сечением. При подготовке рабочего места такие заземления включаются в защищаемую цепь параллельно.

В последнем случае в формулу подставляются максимальные значения по времени воздействия тока короткого замыкания, а в трехфазных цепях искомая величина определяется для каждой их фаз. Во втором случае особое внимание уделяется аккуратности обустройства ПЗ, чтобы избежать недопустимого в условиях наложения защитного заземления межфазного замыкания.

Дополнительная информация: При обустройстве переносной конструкции не допускается применять кабель в изоляции, не позволяющей визуально контролировать состояние рабочих жил.

Помимо этого комплект такого заземления обязательно оснащается достаточно «мощными» зажимами, посредством которых элементы переносной конструкции надежно закрепляются на токопроводящих частях. Для их фиксации на заземляющих проводах должны применяться крепления, позволяющие обходиться без переходных элементов. Такая предусмотрительность позволит увеличить площадь контакта и повысить надежность имеющегося соединения. В этом случае конструкция способна выдержать значительные по величине токи и сохранить свою работоспособность в течение длительного времени.

При наложении такого заземления в трехфазных силовых цепях с напряжениями выше 1000 Вольт для получения более надежного контакта допускается использовать сварку. В исключительных случаях согласно ПУЭ разрешено болтовое сочленение, но только при условии предварительной пайки контактной зоны. В заключение отметим, что в рассмотренной ситуации для образования надежного соединения потребуется комплексный подход (ограничиваться только одной пайкой, например, не допускается).

Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части

Защитное заземление – заземление, выполняемое в целях электробезопасности.

Защитное заземление —это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления —снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. При длительном прохождении тока сопротивление тела снижается до 500 – 300 Ом.

Примечание: сопротивление тела человека постоянному току от 3 до 100 кОм.

risunok1.png

Расчеты, приведенные на рисунках, весьма приблизительны, но показывают оценить эффективность защитного заземления.

Существенное влияние на ток, проходящий через человека, оказывает величина тока короткого замыкания и сопротивление системы заземления. Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.

1. Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

risunok2.png

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Заземлители

1.Естественные

- водопроводные трубы, проложенные в земле (ХВ)

- металлические конструкции здания и фундаменты, надежно соединенные с землей

- металлические оболочки кабелей

- обсадные трубы артезианских скважин

- газопроводы и трубопроводы с горючими жидкостями

- алюминиевые оболочки подземных кабелей

- трубы теплотрасс и горячего водоснабжения

Соединение с естественным заземлителем должно быть не менее чем в двух разных местах.

2. Искуственные

Контурные


При контурном заземлении обеспечивается выравнивание потенциалов в защищаемой зоне и уменьшается напряжение шага.

Выносные: групповые и одиночные

Позволяют выбрать место с минимальным сопротивлением грунта.

Традиционно, для искусственных заземлителей применяют угловую сталь толщиной полки не менее 4 мм, стальные полосы толщиной не менее 4 мм или прутковую сталь диаметром от 10 мм.

Широкое распространение в последнее время получили глубинные заземлители с омедненными или оцинкованными электродами, которые по долговечности и затратам на изготовление заземлителя существенно превосходят традиционные методы.

Особая проблема - создание качественного заземления в условиях вечной мерзлоты. Здесь стоит обратить внимание на системы электролитического заземления, позволяющие эффективно решить проблему.

risunok3.png

Основная система уравнивания потенциалов.

Построение основной системы уравнивания потенциалов – создание эквипотенциальной зоны в пределах электроустановки с целью обеспечения безопасности персонала и самой электроустановки при срабатывании системы молниезащиты, заносе потенциала и коротких замыканиях.

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2 ) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;

3 ) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;

4)металлические трубы коммуникаций , входящих в здание…

5 ) металлические части каркаса здания;

6 ) металлические части централизованных систем вентиляции и кондиционирования….

7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9 ) металлические оболочки телекоммуникационных кабелей.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов. (ПУЭ п. 1.7.82)

risunok4.png

Несоединенный с ГЗШ элемент конструкции, инженерной системы, независимой системы рабочего заземления ( FE ) и тд. – грубейшее нарушение целостности основной системы уравнивания потенциалов. Появление разности потенциалов ( возможность искры ) – угроза жизни персонала и безопасности объекта.

Примечание: разрядник, указанный на рисунке – специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов. Например: серии «KFSU», «EXFS..» компании DEHN.

Система дополнительного уравнивания потенциалов

- должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток (ПУЭ п. 1.7.83).

risunok5.png

Система дополнительного уравнивания потенциалов значительно улучшает уровень электробезопасности в помещении. Короткие проводники защитного заземления и уравнивания потенциалов, сведенные на шину, формируют эквипотенциальную зону по принципу аналогично основной системы уравнивания потенциалов.

risunok6.png

Как видно из рисунков, схема электропитания претерпевает существенные изменения. Чрезвычайно важно обеспечить соединение контактов заземления розеток и клемм заземления стационарных приборов на шину дополнительного уравнивания потенциалов. При этом, даже если не будет выполнено соединение корпусов приборов с шиной ( безалаберная эксплуатация, особенно переносных приборов ) система сохранит свою эффективность по безопасности. Ситуация, когда земли розеток и приборов не подключены к шине, а сторонние проводящие части гарантированно соединены с шиной уравнивания потенциалов, в разы ухудшает электробезопасность в помещении даже по сравнению с классической схемой питания.

Сторонняя проводящая часть - проводящая часть, не являющаяся частью электроустановки.

Если формально подходить к определению, то и металлическая дверная ручка и петли на деревянной двери в деревянном доме являются сторонними проводящими частями.

При формировании дополнительной системы уравнивания потенциалов возникает вопрос, что подключать, а что не подключать на шину дополнительного уравнивания потенциалов, чтобы добиться необходимого уровня электробезопасности и не делать систему слишком громоздкой. Здесь, с точки зрения здравой логики, можно руководствоваться двумя принципами:

  1. Фактическая ( потенциальная ) возможность связи с «землей».
  2. Возможность появления потенциала на сторонней проводящей части при аварии электрооборудования в процессе эксплуатации.

Примеры сторонних проводящих частей подключаемых / не подключаемых к шине дополнительного уравнивания потенциалов:

Сторонняя проводящая часть

Металлическая полка, закрепленная на стене из непроводящего материала.

risunokа.png

Металлическая полка, закрепленная на стене из железобетона.

risunok7b.png

(потенциальная связь с «землей» за счет крепежа к стене)

На полке расположен электроприбор.

risunok7v.png

(возможность появления потенциала при аварии прибора с классом изоляции I)

Металлическая тумбочка с резиновыми (пластиковыми) колесиками на бетонном полу.

risunok7g.png

Металлическая тумбочка с резиновыми колесиками на бетонном полу.

В помещении грязь и пыль в сочетании с повышенной влажностью.

risunok7d.png

(потенциальная связь с «землей» за счет загрязнения и повышенной влажности)

Некоторое количество вопросов с уравниванием потенциалов возникает по ванным и душевым помещениям. Современные требования и рекомендации по устройству системы дополнительного уравнивания потенциалов изложены в циркуляре № 23/2009.

Широкое применение пластиковых труб породило закономерный вопрос: является ли водопроводная вода сторонней проводящей частью и возможен ли занос потенциала через воду….

Ответ, содержащийся в циркуляре, несколько настораживает: « … Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть . »

К сожалению, вода нормального качества из наших кранов течет не всегда и лучше перестраховаться, используя токопроводящие вставки на отводах от стояков водопровода подключив их к шине дополнительного уравнивания потенциалов, чтобы не подключать отдельно каждый кран. Этот метод в качестве рекомендуемого описан в этом же циркуляре.

Практика выполнения дополнительной системы уравнивания потенциалов.

Фактически наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:

Вариант 1. С использованием стандартных коробок уравнивания потенциалов ( КУП ).

Вариант 2. Стальная шина 4х40 ( 4х50 ) с приварными болтами опоясывающая помещение.

Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.

Вариант 4. Использование шины заземления в РЩ ( для небольших помещений ).

Вариант 5. С использованием специализированного щитка типа ЩРМ – ЩЗ

( встроенный щиток с шиной 100 мм 2 ( Cu ) со степенью защиты IP54 ).

Главные требования нормативов по устройству шины дополнительного уравнивания потенциалов содержат два требования:

- возможность осмотра соединения

- возможность индивидуального отключения

  1. Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м.( ? ). Сечение 4 мм 2 Сu ( ПВ-1, ПВ-3 ). См. ПУЭ 1.7.82 рис. 1.7.7.
  2. Для электроустановки здания, где применяются негорючие ( ВВГ нг –FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПВ-1, ПВ-3 ( проводники уравнивания потенциалов от дополнительной системы уравнивания потенциалов до ГЗШ или щитовой шины заземления ). Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
  3. Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и тд. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант - короба фирмы DKC в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.

МЕД. ГОСТ Р 50571.28 п. 710.413.1.6.3 « Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…»

risunok8.png

Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом № 5, схема которого представлена на рисунке.

Читайте также: