Все металлы цвета за исключением металлов

Обновлено: 28.09.2024

Цель : сформировать у учащихся представления о специфических свойствах металлов. Их положении в ПСХЭ, нахождении в природе, значении для человека.

Учебно – воспитательные задачи:

  1. ознакомит учащихся со свойствами металлов в связи с их положением в ПСХЭ и строением их атомов и кристаллических решеток, распространением металлов в природе, использованием их человеком.
  2. продолжить формирование научнро-материалистического мировоззрения на основе раскрытия причинно-следственных связей.
  3. развитвать логическое мышление, мировоззрение, память, речь на основе самостоятельного анализа учебного материала.

Оборудование, наглядные пособия : образцы металлов, ПСХЭ, модели кристаллических решеток, таблица «Металлическая связь».

Тип урока: урок усвоения новых ЗУН

Методы: беседа, работа с учебником, демонстрация коллекций, демонстрация изобразительных наглядных пособий, моделей.

I. Организационный момент (1-2 мин)

II Актуализация ЗУН (5-6 минут)

- Какие вещества-неметаллы вам известны? Каковы их общие свойства?

- Где располагаются неметаллы в ПСХЭ?

- Чем, на ваш взгляд, металлы отличаются от неметаллов?

Работа с ПСХЭ (определение металлов и неметаллов).

III Изучение нового материала (25-30 минут)

Рассказ учителя, демонстрация на ПСХЭ, работа учащихся с коллекциями, запись учащимися основных положений в тетрадь.

- из 118 химических элементов, известных на настоящее время 88 элементов относятся к металлам. Металлы имеют ряд общих свойств, таких как металлический блеск, электропроводность и другие, с которыми мы более подробно познакомимся на этом уроке.

Рассказ учителя о металлов в древности.

- какое место занимают металлы в ПСХЭ Д.И. Менделеева?

Металлы, в основном, располагаются в левой и нижней части периодической таблицы.

У атомов металлов на наружном энергетическом уровне обычно находится от одного до 3 электронов. Их атомы обладают, как правило, большим радиусом. Атомы металлов, в отличие от атомов неметаллов легко отдают наружные электроны, т.е. являются сильными восстановителями и в соединениях с неметаллами проявляют положительную степень окисления. Поэтому атомы металлов превращаются в растворах в положительно заряженные ионы.

Если брать для сравнения строение кристаллической решетки, то у металлов она состоит из нескольких слоев атомов, между которыми свободно перемещаются оторвавшиеся от атомов электроны. Между этими частицами возникает связь, т.е. электроны как бы цементируют отдельные слои положительно заряженных ионов, которые находятся в узлах кристаллических решеток металлов. Так как электроны находятся в постоянном движении, то при столкновении с положительно заряженными ионами последние превращаются в нейтральные атомы, а затем вновь в ионы. Благодаря наличию свободных электронов металлы хорошо проводят ток. Запись определения в тетрадь:

- Кристаллические решетки, в узлах которых находятся положительно заряженные ионы и некоторое число нейтральных атомов, между которыми передвигаются относительно свободные электроны, называют металлическими. Связь, которую осуществляют эти относительно свободные электроны между ионами металлов, образующих кристаллическую решетку, называют металлической.

Общая характеристика металлов:

  1. все металлы могут существовать в форме простых веществ
  2. некоторые из них, как и неметаллы, имеют аллотропные модификации.
  3. атомы металлы соединяются друг с другом посредством металлической связи.
  4. тип кристаллической решетки – металлическая.

Физические свойства металлов.

Великий русский ученый М.В. Ломоносов так говорил о металлах:

«Металлом называются твердое, непрозрачное и светлое тело, которое на огне плавить и холодное ковать можно». О каких физических свойствах металлов идет речь?

  1. Почти все металлы твердые тела. Исключение – жидкий металл – ртуть. Металлы различны по твердости – самый твердый – хром, самый мягкий – рубидий.
  2. Непрозрачность – металлы имеют цвет от белого до темно-серого, за исключением двух общеизвестных металлов – желтой окраски (золото) и красной окраски (меди).
  3. Плавить можно – металлы бывают легкоплавкие и тугоплавкие. Самый легкоплавкий металл – ртуть (-39), тугоплавкий – вольфрам (3420).
  4. пластичность – способность металлов изменять форму при ударе. Прокатываться в тонкие листы и вытягиваться в проволоку. Самый пластичный металл – золото.
  5. Плотность – самый легкий металл – литий, самый тяжелый – осмий. По плотности все металлы можно разделить на легкие и тяжелые.
  6. Электропроводность. Лучшие проводники электричества – серебро, медь, олово, алюминий, железо.
  7. Теплопроводность – лидер – серебро.

Нахождение металлов в природе и общие способы их получения.

Самым распространенным металлом в Земной коре является алюминий, за ним следует железо, кальций, натрий, калий. Содержание остальных металлов незначительно.

1. Общая характеристика элементов металлов

Из \(118\) известных на данный момент химических элементов \(96\) образуют простые вещества с металлическими свойствами, поэтому их называют металлическими элементами .

Металлические химические элементы в природе могут встречаться как в виде простых веществ, так и в виде соединений. То, в каком виде встречаются металлические элементы в природе, зависит от химической активности образуемых ими металлов.

Металлические элементы, образующие химически активные металлы ( Li–Mg ), в природе чаще всего встречаются в виде солей (хлоридов, фторидов, сульфатов, фосфатов и других).

Соли, образуемые этими металлами, являются главной составной частью распространённых в земной коре минералов и горных пород.

shutterstock_499534720.png

calcite-728720_640.png

В растворённом виде соли натрия, кальция и магния содержатся в природных водах. Кроме того, соли активных металлов — важная составная часть живых организмов. Например, фосфат кальция Ca 3 ( P O 4 ) 2 является главной минеральной составной частью костной ткани.

Металлические химические элементы, образующие металлы средней активности ( Al–Pb ), в природе чаще всего встречаются в виде оксидов и сульфидов.

гематит.png

galena-337703_640.png

Металлические элементы, образующие химически неактивные металлы ( Cu–Au ), в природе чаще всего встречаются в виде простых веществ.

Stringer156_nugget.jpg
silver-4437577_640.png
самородная платина.png
Рис. \(7\). Самородное золото Au Рис. \(8\). Самородное серебро Ag Рис. \(9\). Самородная платина Pt

Исключение составляют медь и ртуть, которые в природе встречаются также в виде химических соединений.

1024px-MoreMalachite.png

В Периодической системе химических элементов металлы занимают левый нижний угол и находятся в главных (А) и побочных (Б) группах.

Рис. \(13\). Положение металлов в Периодической системе. Знаки металлических химических элементов расположены ниже ломаной линии B — Si — As — Te

В электронной оболочке атомов металлов на внешнем энергетическом уровне, как правило, содержится от \(1\) до \(3\) электронов. Исключение составляют только металлы \(IV\)А, \(V\)А и \(VI\)А группы, у которых на наружном энергетическом уровне находятся соответственно четыре, пять или шесть электронов.

В атомах металлов главных подгрупп валентные электроны располагаются на внешнем энергетическом уровне, а у металлов побочных подгрупп — ещё и на предвнешнем энергетическом уровне.

Радиусы атомов металлов больше, чем у атомов неметаллов того же периода. В силу отдалённости положительно заряженного ядра атомы металлов слабо удерживают свои валентные электроны.

Рис. \(14\). Характер изменения радиусов атомов химических элементов в периодах и в группах. Радиусы атомов металлов существенно больше, чем радиусы атомов неметаллов, находящихся в том же периоде

Главное отличительное свойство металлов — это их сравнительно невысокая электроотрицательность (ЭО) по сравнению с неметаллами.

Таблица электроотрицательности RU (1).png

Рис. \(15\). Величины относительных электроотрицательностей (ОЭО) некоторых химических элементов (по Л. Полингу). ОЭО металлических химических элементов уступает соответствующей величине неметаллических химических элементов

Атомы металлов, вступая в химические реакции, способны только отдавать электроны, то есть окисляться, следовательно, в ходе превращений могут проявлять себя в качестве восстановителей .

Все металлы цвета за исключением металлов

Положение в периодической системе

1. Типичные металлы – s - элементы: IА - IIА группы (искл.Н)

2. Нетипичные металлы: р-элементы: IIIА гр. (кроме В), IV гр – Ge , Sn , Pb ; V гр.- Sb , Bi ; VI гр.- Po .

3. Переходные металлы: d -элементы – все элементы побочных подгрупп; f - элементы: лантоноиды, актиноиды.

У атомов металлов небольшое количество электронов (ē) на внешнем энергетическом уровне и большие радиусы атомов ( R )

Кристаллическая решетка – металлическая: состоит из чередующихся в пространстве атомов и положительных ионов, внутри-общие электроны– «электронный газ».

Тип химической связи – металлическая.

Металлические (восстановительные) свойства в группе (А п/гр) усиливаются (растет R атома , и электроны легче отрываются), в периоде – ослабляются (растет заряд ядра, электроны внешнего уровня сильнее удерживаются).

Восстановительные свойства уменьшаются (активность металлов уменьшается)

Li, Cs,Rb,K, Ba, Ca, Na, Mg, Al, Mn, Cr, Zn, Fe, Cd, Co, Sn, Ni, Pb, H2, Cu, Ag, Hg, Pt, Au

Физические свойства

Наличие свободных электронов обуславливает:

  • Металлический блеск (непрозрачность)-ē отражают световые лучи, большинство металлов в порошкообразном состоянии теряют свой блеск, за исключением алюминия и магния.
  • Цвет Большинство металлов светло-серого цвета (Исключение: золото - желтое, медь- красная, цезий - светло-желтый)
  • Электропроводность (свободные ē приобретают направленное движение) Лучшие проводники электричества: Cu , Ag , далее Au , Al , Fe. С повышением температуры – электропроводность понижается, т.к. усиливаются колебания атомов, электронам трудно перемещаться.
  • Теплопроводность
  • Пластичность
  • Плотность ( Самый легкий - Li , самые тяжелые - Os и Ir)
  • Температура плавления ( самый легкоплавкий - Hg −39 °C , самый тугоплавкий – W 3410 °C )
  • Твердость (щелочные металлы можно резать ножом, самый твердый – Cr) Большинство металлов твердые, за исключением ртути и ,условно, франция.

Получение

· Пирометаллургия- получение из руд при высоких температурах при взаимодействии с хорошими восстановителями (H2, CO,C и др.)

Выделяют два этапа: 1) Обжиг металлсодержащей руды; 2) Получение чистого металла

· Металлотермия- восстановление металлами (алюминотермия, кальцийтермия, магнийтермия и т.д.):

· Гидрометаллургия- соединения металлов переводят в раствор и восстанавливают:

· Электрометаллургия – электролиз растворов и расплавов:

Запомнить: Алюминий получают из оксида (глинозема, бокситов и т.д.) в расплаве криолита Na 3 AlF 6

Запомнить: Металлы никогда не вытесняют из Н N О3(к) H 2 SO 4(к) водород; они пассивируют Al , Cr , Fe

в) Взаимодействие с солями ( более активные металлы вытесняют менее активные из растворов их солей )
CuCl 2 + Fe = FeCl 2 + Cu;
- но если металл взаимодействует с водой, то
CuCl 2 +2К +2 H 2 O = 2К Cl + Cu (ОН)2↓+ Н2↑; т.к.: 1) 2К + 2 H 2 O = 2КОН+ Н2
2) CuCl 2 +2КОН= Cu (ОН)2↓+ 2К Cl
г) Взаимодействуют с оксидами металлов и неметаллов:

е)Другое:
Между собой образуют интерметаллические соединения, сплавы: Na 2 Sb
С органическими веществами ( со спиртами, фенолами, карбоновыми кислотами и др. )


Металлы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

  • 6 элементов в группе щелочных металлов,
  • 6 в группе щёлочноземельных металлов,
  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды + лантан,
  • 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
  • вне определённых групп бериллий и магний.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия

  1. Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
  2. Хорошая электропроводность
  3. Возможность лёгкой механической обработки
  4. Высокая плотность (обычно металлы тяжелее неметаллов)
  5. Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  6. Большая теплопроводность
  7. В реакциях чаще всего являются восстановителями.

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.

В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

  • С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

оксид лития

пероксид натрия

надпероксид калия

  • С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:
  • С серой реагируют все металлы, кроме золота и платины:
  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.

Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода

Химические свойства металлов

Трубка для опытов по вытеснению металлов водородом под давлением

Основным химическим свойством металлов является способность их атомов легко отдавать свои валентные электроны и переходить в положительно заряженные ионы.

Типичные металлы никогда не присоединяют электронов; их ионы всегда заряжены только положительно. Поэтому металлы называются «электроположительными» элементами, в отличие от «электроотрицательных» элементов — металлоидов, для которых более характерна способность при соединять электроны.

Удельный вес и температура плавления некоторых металлов

Почему типичные металлы восстановители

Легко отдавая при химических реакциях свои валентные электроны, типичные металлы являются энергичными восстановителями.

Способность к отдаче электронов проявляется у отдельных металлов далеко не в одинаковой степени. Чем легче металл отдает свои электроны, тем он активнее, тем энергичнее вступает во взаимодействие с другими веществами.

Для сравнительного изучения активности металлов можно воспользоваться различными реакциями. Особенно удобны для этой цели реакции вытеснения металлов из их солей другими металлами. Опустим, например, кусочек цинка в раствор какой-нибудь свинцовой соли. Цинк начинает растворяться, а из раствора выделяется свинец. Реакция выражается уравнением

или в ионной форме

Zn + Pb •• = Pb + Zn ••

Из уравнения видно, что эта реакция является типичной реакцией окисления-восстановления. Сущность ее сводится к тому, что атомы цинка отдают свои валентные электроны ионам Рb •• , тем самым превращаясь в ионы Zn •• , а ионы Рb •• разряжаются и выделяются в виде металлического свинца. Если поступить наоборот, т. е погрузить кусочек свинца в раствор цинковой соли, то никакой реакции не произойдет. Это показывает, что цинк более активен, чем свинец, что его атомы легче отдают, а ионы труднее присоединяют электроны, чем атомы и ионы свинца.

Сравнивая таким же способом активность свинца и меди, легко убедиться, что свинец более активен, чем медь, так как он вытесняет медь из ее солей, а медь не может вытеснять свинец:

Рb + Cu •• = Сu + Рb ••

Следовательно, из трех сравниваемых металлов — цинка, свинца и меди — наиболее активным, легче других отдающим электроны, является цинк, менее активен свинец и еще менее активна медь.

Вытеснение металлов из соединений металлами

Вытеснение одних металлов из их соединений другими металлами впервые было подробно изучено Н. Н. Бекетовым (1865 г.), расположившим металлы по их убывающей химической активности в так называемый «вытеснительный ряд». В настоящее время вытеснительный ряд Бекетова носит название ряда напряжений, так как положение каждого металла в ряду точно определяется величиной электрического напряжения, или разности потенциалов, возникающей при погружении данного металла в раствор его соли. Об измерении этих величин и их значении будет сказано несколько позже.

Для наиболее важных металлов ряд напряжений, как уже было указано , имеет следующий вид:

Уменьшение химической активности нейтральных атомов

К, Na, Са, Mg, Al, Mn, Zn, Fe, Ni, Sn, Pb, H2, Cu, Hg, Ag, Au

Уменьшение способности ионов к присоединению электронов

В этом ряду помещен и водород, так как он тоже может вытеснять некоторые металлы из растворов их солей и в свою очередь вытесняется многими металлами из растворов кислот.

Определения положения водорода в вытеснительном ряду

Для определения положения водорода в «вытеснительном ряду» Бекетовым производились следующие опыты. В колена изогнутой стеклянной трубки (рис.) помещали отдельно друг от друга раствор соли металла, кислоту и цинк. Трубку запаивали» затем наклоняли ее так, что цинк падал в кислоту и выделяющийся водород действовал под давлением на раствор соли.

Наблюдая явления, происходящие в колене трубки, наполненном раствором соли, можно было судить о том, вытесняется ли металл водородом. На основании проведенных опытов Бекетов пришел к заключению, что в «вытеснительном ряду» водород занимает место после свинца и может вытеснять(восстанавливать) следующие за ним металлы: медь, ртуть, серебро, золото из растворов их солей.

Бекетов был убежден, что реакции вытеснения водорода металлами являются обратимыми и что для каждого металла должно существовать такое давление, при котором направление реакции меняется на обратное, т. е. водород начинает вытеснять металл из раствора его соли.

Взгляды Бекетова получили позднее полное подтверждение.

Рассмотрим, например, реакцию вытеснения водорода цинком:

Константа равновесия этой реакции выражается следующей формулой:

где вместо концентрации водорода взято его давление рн2 в атмосферах. Вычисление показывает, что при обычной температуре К = 36 • 10 24 . Значит, потребовалось бы недостижимое при современной технике давление водорода, чтобы сделать ощутимой обратную реакцию, т. е. вытеснение цинка водородом. При обычном же давлении равновесие реакции практически нацело смещено вправо.

Однако для реакции

Sn + 2H • ⇄ Sn •• + H2

Это значит, что равновесие будет достигнуто, например, при концентрациях: [Sn •• ]= l г-ион/л,[Н • ] = 0,01 г-ион/л и давлении водорода рн2 = 4 ат. Следовательно, при сравнительно небольшом давлении водород может вытеснить олово из раствора его соли.

Электрохимический ряд напряжений

Ряд напряжений дает много общих указаний относительно химического поведения отдельных металлов при реакциях в растворах:

  1. Каждый металл этого ряда, а также и водород, находящийся под давлением, вытесняет (восстанавливает) все следующие за ним металлы из растворов их солей. В свою очередь сам он может быть вытеснен (восстановлен) любым из металлов, стоящих впереди него.
  2. Только те металлы, которые стоят в ряду напряжений впереди водорода, могут вытеснять его из разбавленных кислот («солей водорода»). Металлы, стоящие вправо от водорода, не способны вытеснять водород из кислот.
  3. Чем левее в ряду напряжений стоит металл, тем он активнее, тем больше его восстановительная способность в отношении ионов других металлов, тем легче он сам превращается в ионы, тем труднее восстанавливаются его ионы.

Вы читаете, статья на тему Химические свойства металлов

Похожие страницы:

Вытеснительный ряд металлов Бекетова Рассматривая способы получения водорода, мы уже отмечали, что одни металлы легко вытесняют из воды водород, другие —.

Ряд активности металлов это последовательность в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов. Примером может служить расширенный.

Химические свойства воды Из химических свойств воды прежде всего следует отметить большую устойчивость ее молекул по отношению к нагреванию. Однако.

Водород в природе Водород (Hydrogenium; ат. вес 1,008) в свободном состоянии встречается в природе лишь в незначительных количествах, главным образом.

Содержание статьи1 Химические уравнения и расчеты по ним1.1 Что такое химические уравнения1.2 Для чего нужны химические уравнения1.3 Пример решения химического.

Соединения фосфора с водородом и галогенами С водородом фосфор образует три соединения: РН3 — газообразный фосфористый водород, Р2Н4 — жидкий фосфористый.

Читайте также: