Вспомогательные металлы и сплавы

Обновлено: 04.10.2024

Основные или конструкционные материалы материалы, из которых непосредственно изготавливают зубные или челюстные протезы.

К ним предъявляются следующие требования:

1) быть безвредными;

2) химически инертными в полости рта;

3) механически прочными, пластичными, упругими;

4) сохранять постоянство формы и объема;

5) обладать хорошими технологическими свойствами (легко поддаваться паянию, литью, сварке, штамповке, полированию и протяжке и др.);

6) по цвету быть аналогичными замещаемым тканям;

7) не должны иметь какого-либо привкуса и запаха;

8) обладать оптимальными гигиеническими свойствами, т.е. легко очищаться обычными средствами для чистки зубов.

К основным материалам относятся: металлы и их сплавы, пластмассы, фарфор и ситаллы.

Металлы – определенная группа элементов, которая вступает в химическую реакцию с неметаллами, и отдает им свои внешние электроны. Для металлов характерны пластичность, ковкость, непрозрачность, металлических блеск, высокие тепло - и электропроводность.

Все металлы можно разделить на две большие группы – черные и цветные. Черные металлы имеют темно-серый цвет, большую плотность, высокую температуру плавления, высокую твердость. Цветные металлы имеют красную, желтую, белую окраску, обладают большой пластичностью, малой твердостью, низкими температурами плавления. Из большой группы цветных металлов выделяют тяжелые и легкие. К тяжелым относят свинец, медь, никель, олово, цинк и др.

Их плотность составляет 7,14-11,34. Легкие металлы – алюминий, магний, кальций, калий, натрий, барий, бериллий, и литий. Их плотность – 0,53 – 3,5. К легким металлам относят так же и титан, плотность которого равна 4,5. Обособленные группы среди цветных металлов занимают так называемые благородные и редкоземельные металлы. Металлы отличаются по типу кристаллических решеток. Чаще встречается кубическая объемно – центрированная решетка (например, у хрома, молибдена, ванадия), кубическая гранецентрированная (никель, медь, свинец) и гексагональная плотноупакованная (титан, цинк).

Сплавы - вещества, получаемые путем сплавления двух и более элементов. При этом образующийся сплав обладает совершено новыми качествами. Различают два вида сплавов: металлические и неметаллические. Металлические сплавы могут состоять либо только из металлов, либо из металлов с содержанием неметаллов. Неметаллические сплавы состоят из неметаллических веществ. Например, стекла, фарфора, ситаллов и других.

Сплавы классифицируют по числу сплавляемых элементов (компонентов): если два элемента – бинарный сплав; три – тройной сплав и т.д.

На основе совместимости атомов металлов, составляющих сплав в твердом состоянии, различают несколько типов сплавов. Наипростейший – когда при микроскопическом анализе сплава можно различить, что его зерна похожи на зерна чистых металлов; структура каждого зерна гомогенна.

Такой тип сплава называют механической смесью. Бывают металлы, которые способны взаимно растворяться друг в друге в твердом состоянии, сплавы таких металлов называют твердыми растворами. Большинство золотых стоматологических сплавов являются твердыми растворами. Существуют металлические сплавы, относящиеся к типу интерметаллических соединений. Примером последних служит стоматологическая амальгама. Наибольшее число сплавов, применяемых в стоматологии, относится к твердым растворам.

Всеметаллические сплавы, применяемые в стоматологии, можно разделить на легкоплавкие (с температурой плавления до 300°C), относящиеся к вспомогательнымматериалам, и тугоплавкие. В свою очередь, тугоплавкие делятся на благородные сплавы (с температурой плавления до 1100°С) и неблагородные сплавы, температура плавления которых превосходит 1200°С (таблица №1).

Стоматологические сплавы
БЛАГОРОДНЫЕ НЕБЛАГОРОДНЫЕ
Золотые сплавы Серебряно – палладиевые Co – Cr Ni – Cr Tj и Ti – сплавы хромоникелевые (нержавеющие стали)
Au – Pt – Pd Au - Pd Au – Pd - Ag Au – Pd – Ag – Cu Ag - Pd Ag – Pd – Cu Ag – Pd – Zn

Согласно международному стандарту ИСО 8891 – 98 к благородным сплавам относят сплавы, содержащие от 25 до 75% масс. золота и/или металлов платиновой группы, к последним относятся: платина, палладий, родий, иридий, рутений и осмий.

Золотые сплавы делят по количественному содержанию золота в них на сплавы с большим - более 75% и с малым - 45 – 60% содержанием золота. Получили широкое применение из-за высокой антикоррозийной стойкости.

В ортопедической стоматологии применяют следующие сплавы на основе золота:

а) сплав 900-916 пробы, температура плавления – 1050°C, содержит 91 % золота 4,5% меди, 4,5% серебра, материал желтого цвета, не окисляется в полости рта, обладает хорошими пластическими и литейными свойствами, применяют для изготовления коронок и мостовидных протезов;

б) сплав 750 пробы, температура плавления – 1050°С, более жесткий и упругий сплав, чем предыдущий, содержит 75% золота, 16,66% меди, 8,34% серебра, из этого сплава изготавливается плакировка для фарфоровых зубов и базисные пластинки для съемных протезов;

в) золотые сплавы с примесью платины могут содержать:

1) 75% золота, 4,15% платины, 8,35% серебра, 12,5% меди;

2) 60% золота, 20% платины, 5% серебра, 15% меди, обладают хорошими литейными качествами, применяются для изготовления каркасов бюгельных протезов, вкладок, полукоронок и кламмеров в съемных пластиночных протезах.

г) сплав 750 пробы, температура плавления – 800°С, содержит 75% золота, 5% серебра, 13% меди, 5% кадмия, 2% латуни, используется для изготовления припоя.

По механическим свойствам золотые сплавы делят на 4 типа (таблица №2):

· тип 1 – низкой прочности;

· тип 2 – средней прочности;

· тип 3 – высокой прочности;

· тип 4 – сверхпрочные сплавы.

Сплавы 1 типа рекомендуются для изготовления одноповерхностных вкладок. Поскольку они относительно мягкие и легко деформируются, необходимо обеспечить им соответствующую опору для предотвращения деформирования под воздействием жевательной нагрузки. Низкий предел текучести этих сплавов обеспечивает легкую полировку краев вкладки. Благодаря высокой пластичности они менее подвержены отколам.

Сплавы 2 типа рекомендуются для изготовления большинства видов вкладок.

Сплавы 3 типа используются для изготовления всех видов вкладок, накладок, искусственных коронок, небольших по протяженности мостовидных протезов и литых штифтов. Однако они труднее поддаются полированию.

Сплавы 4 типа используются для литых штифтов и создания искусственной литой культи под коронку, для всех видов мостовидных и съемных протезов при частичной потери зубов, для изготовления кламмеров.

Платина это самый тяжелый металл серовато-белого цвета с температурой плавления – 1770°С, является довольно мягким, ковким и вязким металлом с незначительной усадкой. Платина не окисляется на воздухе и при нагревании, не растворяется в кислотах, кроме царской водки. Применяется для изготовления коронок, штифтов, крампонов искусственных зубов. Платиновая фольга используется при изготовлении фарфоровых коронок и вкладок.

Серебро имеет белый цвет, температура плавления – 960°С. Серебро тверже золота и мягче меди. Является хорошим проводником электричества и тепла, неустойчиво к действию кислот. Применяется в составе серебряно-палладиевого сплава, который состоит из 50-60% серебра, 27-30% палладия, 6-8% золота, 3% меди, 0,5% цинка, имеет температуру плавления 1100-1200°С, обладает выраженными антисептическими свойствами, применяется для изготовления вкладок, коронок, мостовидных протезов.

В ортопедической стоматологии используют следующие неблагородные сплавы: на основе железа, хрома, кобальта, никеля; на основе меди, никеля, титана, алюминия, ниобия, тантала.

В нашей стране широко используется нержавеющая сталь, или её называют хромоникелевая (типа 1Х18Н9Т), имеет высокие физико-механические свойства, химическую стойкость, хорошо прокатывается, вытягивается и профилируется, обладает хорошей пластичностью и ковкостью после термической обработки, что имеет большое значение в процессе штамповки коронки, после закаливания не деформируется. Металл бело-серебристого цвета, температура плавления 1450°С.

Содержит: 72% железа, 18% хрома, 9% никеля, 1% титана. Хром придает сплаву коррозийную стойкость, никель пластичность, усиливает вязкость, делает его ковким. Никель, входящий в состав сплава, нельзя признать полностью биосовместимым металлом, так как он обладает токсичностью и может вызывать аллергические реакции. Для улучшения литейных свойств добавляют титан, что придает стали высокие механические свойства. Область применения: коронки, мостовидные протезы, кламмеры, ортодонтические аппараты, литые детали.

КХС – сталь кобальтохромовая. Состав: 67% – кобальт, 26% – хром, 6% – никель, остальное – Fe. Материал серебристо-белого цвета, с температурой плавления 1460°С. Некоторые кобальтохромовые сплавы, например «Vitallium» состоят из 60,6% – кобальта, 31,5 % – хрома, 6% – молибдена. В КХС может добавляться марганец и легирующий элемент - титан. Кобальт, имеет высокие механические свойства. Хром увеличивает коррозийную стойкость сплава и уменьшает его способность к потускнению.

Молибден придает сплаву металлокристаллическую структуру, что также усиливает прочность. Марганец повышает качество литья, понижает температуру плавления, способствует удалению газов и сернистых соединений. В настоящее время используют углеродсодержащие (бюгодент ССS, бюгодент ССЕ, бюгодент ССН) и не содержащие углерод (КХ-дент СS, КХ-дент СЕ, КХ-дент Сl) виды кобальтохромомолибденовых сплавов.

КХС не окисляется, не поддается ковке, но обладает отличными литейными качествами, практически не дает усадки при литье и относится к прецизионным сплавам, т.е. точным. Применяется: при изготовлении каркасов бюгельных протезов, литых мостовидных, а также металлокерамических и металлопластмассовых протезов.

Сплавы титана биологически инертны, имеют высокую удельную прочность, отличную химическую стойкость по отношению ко многим агрессивным средам, низкий коэффициент усадки при литье, не токсичны и доступны. В клиническом аспекте наибольший интерес представляют две формы титана. Это технически чистая форма титана и сплав титана - 6% алюминий - 4% ванадий. Для изготовления металлокерамических конструкций использует сплав Ti-6AG-4V. Для изготовления вкладок, штифтовых конструкций, коронок, мостовидных протезов, каркасов бюгельных протезов, имплантов, а также мелкого медицинского инструментария применяют сплавы BT1Л, ВТ5Л, ВТ6Л.

В имплантологии широко применяют следующие сплавы титана: ВТ1-00, ВТ1-010, ВТ1Л, ВТ5Л, 6ЛВТЗ-1, Ti-6AG-4V, TiNi (никелид титана). Из соединений титана в зуботехнической практике применяется двуокись титана. Она представляет собой белый порошок, который используется в качестве замутнителя при производстве пластмасс, а так же при приготовлении лаков для покрытия металлических частей зубных протезов.

Литье титановых сплавов представляет серьезную технологическую проблему. Титан имеет высокую температуру плавления (~1670°С), что затрудняет компенсацию усадки отливки при охлаждении. В связи с высокой реакционной способностью металла, литье необходимо выполнять в условиях вакуума или в инертной среде, что требует использования специального оборудования. Другая проблема заключается в том в том, что расплав имеет тенденцию вступать в реакцию с литейной формой из огнеупорного формовочного материала, образуя слой окалины на поверхности отливки, что снижает качество прилегания протеза. В титановых отливках также часто можно наблюдать внутреннюю пористость. Поэтому используются и другие технологии для изготовления зубных протезов из титана, например, такие как CAD/САМ технологии в сочетании с прокаткой и методом искровой эрозии.

Сплавы, применяемые в ортопедической стоматологии, по определенным свойствам можно разделить на две группы. К первой группе относятся сплавы, обладающие общемедицинскими свойствами. Они не должны вызывать в полости рта аллергического и токсического действия.

Во вторую входят сплавы с определенными технологическими свойствами:

- высокой антикоррозийной стойкостью;

- малой усадкой при литье;

- невысокой температурой плавления;

- ковкостью, текучестью при литье;

- возможностью паяния и сварки;

- хорошей механической и электролитической обработкой и полировкой.

Все эти требования зависят от свойств компонентов, входящих в сплав.

Различают механические, физические, технологические и химические свойства конструкционных материалов.

Механические свойства материалов – это способность материалов сопротивляться деформирующемуи разрушающему воздействию внешних механических сил в сочетании соспособностью при этом упруго и пластически деформироваться.

Деформацией называется изменение размеров и формы тела под действием приложенных к нему сил. Деформация может быть упругой и пластичной. Первая исчезает после снятия нагрузки. Она не вызывает изменений структуры, объема и свойств металлов и сплавов. Вторая не устраняется после снятия нагрузки и вызывает изменение структуры, объема, и свойств металлов и сплавов. Пластическая деформация приводит к изменению физических свойств металла, а именно: к повышению электросопротивления, уменьшению плотности, изменению электромагнитных свойств. Упрочнение металла под действием пластической деформации еще называется наклепом. Имеющие наклеп металлы более склонны к коррозионному разрушению при эксплуатации.

Выделяют следующие механические свойства: твердость, прочность, упругость, пластичность.

Твердостью называется способность тела оказывать сопротивление при внедрении в его поверхность другого тела. Это важная характеристика материала, позволяющая судить о способности материала сопротивляться износу.

Прочностью называют способность материала сопротивляться действию внешних сил, не разрушаясь и не деформируясь. Это одно из основных требований, предъявляемых к материалам, из которых изготавливаютвсе виды протезов. Прочность материала зависит от его природы, строения, размеров изготовленных из него изделий, величины нагрузок и характера ихдействия.

Упругость – это способность материала изменять форму под действием внешней нагрузки и восстанавливать форму после снятия этой нагрузки. Наглядным примером упругих свойств материала может служить растяжение металлической пружины и изгиб стальной проволоки. После устранениядействия силы все эти тела приобретают прежнюю форму.

Пластичность свойство материала, не разрушаясь, изменять форму под действием нагрузок и сохранять эту форму после того, как нагрузка перестает действовать. Этим свойством обладают многие слепочные массы, воск, металлы.

К физическим свойствам материалов относятся цвет, плотность, плавление, теплопроводность, тепловое расширение и сжатие при нагревании и охлаждении.

Цвет материала играет важную роль совпадать с цветом тех тканей, которые он замещает. Все металлы не соответствуют этому требованию, но пластмассы и фарфор, наоборот, могут быть приведены в точное соответствие с цветом близлежащих тканей.

Плотностью называется количество данного вещества, содержащегося в единице объема. Это свойство имеет большое значение при выборе материала для изготовления различных конструкций протезов. Зная плотность материала, можно легко вычислить, какой будет масса всего изделия, изготовленного из этого материала.

Плавление это переход тела из твердого состояния в жидкое под действием тепла. Твердые тела переходят в жидкое состояние при разной температуре, которая называется температурой плавления.

Тепловое расширение – это способность тел расширяться при нагревании, т.е. в большей или меньшей степени изменять линейные и объемные размеры. При охлаждении этих тел наблюдается обратное явление – уменьшение объема или сжатие. В стоматологической практике постоянно приходится иметь дело с телами, обладающими разными коэффициентами линейного и объемного расширения. Если не учесть коэффициента теплового расширения, то отлитые металлические детали не будут соответствовать заготовленной детали вследствие усадки при охлаждении.

Технологические свойства это свойства, определяющие пригодность материала к обработке и возможность применения его в тех или иных условиях. Наиболее важными для ортопедической стоматологии являются ковкость, усадка и текучесть.

Ковкость это способность материала поддаваться обработке давлением, принимать новую форму и размеры под действием прилагаемой нагрузки без нарушения целостности. Свойство ковкости присуще многим металлам и почти отсутствует у пластмасс.

Под текучестью понимают способность материала в жидком, пластифицированном или расплавленном состоянии заполнять тонкие места литьевой или прессовочной формы. Это свойство материалов в ортопедической стоматологии используется для изготовления литых деталей из металлов, протезов из пластмассы.

Усадка – это уменьшение объема отлитой или отпрессованной детали при охлаждении или затвердении материала при переходе из одного состояния в другое и хранении. Она зависит от свойств материалов, степени их нагрева и способа охлаждения.

Под химическими свойствами материалов понимают отношение материалов к другим химическим веществам, в частности, их поведение в различных средах: кислотах, щелочах, растворах солей, воде и на воздухе. К химическим свойствам относят растворимость, окисляемость, жаростойкость.

Широко известны такие явления как коррозия металла и гальванизм. Зубные протезы в полости рта постоянно подвергаются воздействию химически активных веществ. Если материал, из которого они изготовлены, будет вступать во взаимодействие с жидкостями полости рта, то он будет разрушаться, и образующиеся в результате реакции вещества, попадая в организм, могут оказать на него вредное воздействие. Поэтому основным требованием, предъявляемым к материалам, является их абсолютная химическая стойкость в полости рта.

Взаимодействие между металлом и полости рта первоначально может заключаться в некоторой адсорбции компонентов этой среды поверхностью металла. При определенных условиях адсорбция может привести к возникновению химических реакций, которые чаще всего приводят к коррозии, т.е. процессу разрушения металлов вследствие их химического или электрохимического взаимодействия с окружающей средой, ротовой жидкостью, слюной, пищей. Усилению процессов коррозии способствуют и знакопеременные нагрузки, которые претерпевают металлические конструкции в полости рта.

Вспомогательные металлы и их сплавы

К вспомогательным металлам относятся медь, алюминий, оло­во, магний и др.

'\^ Медь — металл красного цвета. Плотность 8,93 г/см 3 , темпера­тура плавления 1083°С, температура кипения 2310°С. В чистом виде хорошо куется и обладает высокой тягучестью.

В природе встречается как в самородках, так и в составе раз­личных руд.

Самородная медь легко обрабатывается, а изготовленные из нее детали имеют привлекательный вид, что способствовало исполь­зованию меди человеком намного раньше других металлов для изготовления различных орудий труда и предметов домашнего обихода.

В настоящее время медь добывают из руд. Медные руды содер­жат большое количество различных примесей, поэтому их сначала обогащают методом флотации, а затем уже получают в чистом виде.

Качество меди определяется ее примесями, которые довольно разнообразны и непостоянны. Наиболее опасными примесями меди считаются висмут и свинец. Они не растворяются в меди и образу­ют легкоплавкие эвтектики (структура, определяемая одновремен­ным затвердеванием двух фаз металла).

По существующей маркировке Государственного комитета СССР по стандартам наивысшая марка меди нулевая (МО) может содер­жать не более 0,1 % примесей. В низших по качеству марках общее количество примесей доходит до 1 %.

На поверхности чистой меди в сухой среде образуется очень тонкая пленка окислов, которая является хорошей защитой от окисления более глубоких ее слоев.

Во влажной среде или в присутствии двуокиси углерода на по­верхности меди появляется зеленоватый налет — карбонат меди, который очень ядовит для организма. С повышением температуры окисление меди усиливается.

Растворяется медь легко в серной и азотной кислотах, аммиаке и других растворителях.

Медь обладает высокой тепло- и электропроводностью, поэтому около половины всей добываемой меди идет на изготовление элек­трических проводов. Из меди также изготовляют заводскую аппа­ратуру, котлы, чаны и др.

Широкое применение в машиностроении, аппаратурной технике и других отраслях народного хозяйства нашли сплавы, в состав которых в различных пропорциях входит медь. Среди этих сплавов наиболее важными являются латунь, бронза, нейзильбер и др.

Латунь — технический сплав меди с цинком. Государственный комитет СССР по стандартам маркирует сорта латуни буквой «Л» с последующей цифрой, означающей процентное содержание меди в сплаве, например Л-90—латунь, содержащая 90 % меди и 10 % цинка. В практике эта латунь известна под названием «Томпак». По свойствам сплав близок к меди, но имеет желтоватый оттенок.

Латунь Л-68 содержит 68 % меди и 32 % цинка. В практике она называется патронной, или гильзовой, латунью. Отличается повы­шенной прочностью и твердостью по сравнению с чистой медью.

Технические латуни имеют хорошую пластичность, легко про­катываются до тончайших листов при обычной температуре, но с рекристаллизационными отжигами на некоторых промежутках. Промежуточный отжиг необходим для предупреждения коррозий­ного растрескивания, так как со временем в изделиях из латуни, содержащей участки напряжения, происходит самопроизвольное растрескивание. Промежуточный отжиг снимает участки напря­жения.

Отжиг проводят в муфельных печах при температуре не более 250. 300 °С. При более высоких температурах отжиг не только не предупреждает от образования трещин, а даже способствует их появлению, что объясняется присутствием некоторого количества свинца. Только чистую, не содержащую свинца, латунь можно под­вергать отжигу при более высоких температурах.

Бронза — сплав меди с алюминием, кремнием, бериллием или другими элементами. Соответственно присутствующему элементу бронза называется алюминиевой, кремнистой, бериллиевой и др.

Перечисленные виды бронзы сравнительно новые и отличаются от наиболее давних оловянистых более высоким коэффициентом

усадки и более высокими показателями механических и химических свойств. Кроме того, бериллиевая бронза по сравнению с другими видами имеет высокую твердость и упругость.

Нейзильбер — сплав меди с цинком, никелем и др. Содержит около 50 % меди, 18. 22 % цинка и 13,5. 16,5 % никеля.

Сплав серебристого цвета. Температура плавления 1000. 1200°С, твердость по Бринеллю 80 кг/см 2 . Обладает хорошими механиче­скими и антикоррозийными свойствами. В полости рта нейзильбер покрывается тонкой окиспой пленкой, которая предохраняет изде­лие от более глубоких разрушений.

В ортопедической практике используется для изготовления вре­менных челюстно-лицевых и ортодонтических аппаратов, а также репонирующих приспособлений.

Раньше из нейзильбера изготовляли штампованные каппы. Пос­ле внедрения в практику акриловых пластмасс применение штампо­ванных металлических капп резко сократилось.

До внедрения в стоматологическую практику нержавеющей стали были сделаны попытки изготовления из нейзильбера несъем­ных конструкций протезов (коронок, мостовидных протезов и др.). Соединение отдельных частей таких протезов осуществлялось при помощи серебряного припоя.

Для зубопротезных целей медь в чистом виде не применяется, но широко используется в различных сплавах. Она входит в состав сплавов золота, платины и припоев.

Некоторые сплавы меди нашли применение для изготовления временных ортодонтических и челюстно-лицевых аппаратов, колец для получения слепков при изготовлении трехчетвертных коронок. В челюстно-лицевой ортопедии и ортодонтии в качестве лигатур применяют латунную проволоку. Из сплавов меди изготавливают также некоторые инструменты и мелкое оборудование—молотки, кюветы и др.

\ Алюминий — металл серебристо-белого цвета. По распростра­ненности в природе занимает первое место среди металлов. 'Он входит в состав глин, полевых шпатов, слюды и других минералов.

Впервые алюминий получен Валером в 1827 г. Первый алюми­ниевый завод в СССР был построен в 1932 г., однако уже в 1935 г. СССР по производству алюминия занимал третье место в мире.

Главное достоинство алюминия —его легкость. Он почти в 3 ра­за легче меди и железа. Плотность 2,72 г/см 3 , температура плавле­ния 658 °С, температура кипения 1800 °С, коэффициент расширения при нагревании 0,0000225. Обладает хорошей электро- и теплопро­водностью, пластичностью.

Алюминий маркируется по чистоте. Алюминий высшей марки (АОО) содержит до 0,3% примесей, низшей—до 3,5 %. Постоян­ными примесями алюминия являются железо и кремний.

При обычной температуре на воздухе алюминий быстро покры­вается тонким слоем окисной пленки (А1г0з), которая в дальней­шем предохраняет его от коррозии. Чем чище алюминий, тем выше его антикоррозийные свойства.

Алюминий легко растворяется в разбавленной азотной, серной. и соляной кислотах. Весьма неустойчив к растворам поваренной соли,

Легкость и хорошая антикоррозийная стойкость металла спо­собствовали его широкому применению. В настоящее время алю­миний получил широкое распространение для алитирования — по­крытия поверхности стальных и чугунных изделий алюминием с целью защиты этих изделий от окисления при нагревании.

Стальные изделия, подвергшиеся алитированию, не окисляются на воздухе даже при нагревании до 900 °С.

По электропроводности алюминий уступает меди, но его боль­шое преимущество в легкости способствовало тому, что алюминий постепенно вытесняет медь как материал для изготовления элек­трических проводов.

Сплавы алюминия нашли широкое применение в авиационной и автомобильной промышленности, а также в других отраслях на­родного хозяйства, особенно в быту.

Среди сплавов, содержащих алюминий, получили распростра­нение сложные сплавы, наиболее важными из которых являются дюралюминий (дюраль), силумин, магнолий, уранит и др.

В стоматологической практике алюминий используется в виде алюминиевой проволоки диаметром 1,5—2 мм для изготовления проволочных шин типа шин Тигерштедта и других видов. Из алю­миниевой бронзы (сплава алюминия и меди) изготовляют несъем­ные каппы и лигатурную проволоку.

Были сделаны попытки применения сплавов алюминия—ура-ния и магналия (80 ч. алюминия и 20 ч. магния) для изготовления базисов пластинчатых протезов. Однако ввиду сложности техни­ческого характера, плохой пайки и сварки отдельных частей про­тезов, что затрудняло укрепление искусственных зубов на базисной пластинке *, мягкости алюминия и его сплавов, приводящей к де­формации базисов, а также вследствие того, что алюминий разла­гается под влиянием слюны и оказывает вредное влияние на орга­низм, алюминий и его сплавы как базисный материал не нашли применения в стоматологической практике.

Дюралюминий, или дюраль (от фр. (1иг—твердый), содержит около 94 % алюминия, 4 % меди, 1 % магния, 1 % марганца и не-

* Пайка и сварка алюминиевых сплавов образует швы, которые по проч­ности уступают основному металлу. Более надежное соединение алюминиевых частей на заклепках.

которое количество железа и кремния. Кремний и железо являются неизбежными спутниками сплава вследствие применения недоста­точно чистого алюминия. Марганец вводится для повышения анти­коррозийных свойств. Основным достоинством сплава является то, что при плотности, близкой к плотности алюминия, он имеет вы­сокую прочность и твердость. Твердость дюраля по Бринеллю 1200 гк/см 2 (почти равна твердости мягкой стали), температура плавления 605 °С.

Дюраль широко используется в авиационной промышленности, судостроении и других отраслях народного хозяйства. До внедре­ния акриловых пластмасс в стоматологическую практику широко применялся для изготовления капп и других ортопедических и че-люстно-лицевых аппаратов. В настоящее время в зубопротезной технике применяется редко, в основном для изготовления времен­ных аппаратов и некоторого оборудования (кюветы, кюветные рам­ки и др.).

Пайка дюралюминиевых деталей недостаточно прочная и осу­ществляется при помощи олова.

Магналий—сплав алюминия и магния, в составе которого 70 % алюминия и 30 % магния. По свойствам очень близок к дюр­алюминию, но имеет несколько меньшую твердость по сравнению с дюралем и более высокую температуру плавления.

Плотность магналия 2,5 г/см 3 , твердость по Бринеллю 900 кг/см 2 , температура плавления 657 °С. В химическом отношении являет­ся малоустойчивым сплавом. Легко растворяется в соляной кисло­те и щелочах. Устойчив к воздействию серной кислоты.

Хорошая текучесть и малая усадка выгодно отличает магналий от других сплавов в литейном производстве.

Применяется для изготовления металлических капп, наклонных плоскостей при ортодонтическом лечении аномалий зубных рядов. \4 Магний — металл белого цвета с серебристым оттенком. Распро­странен в природе в виде карбонатов магния. Чаще всего в природе встречаются минералы — магнезит (М^СОз) и доломит (М^СОзХ ХСаСОз), а также некоторые другие соединения, в том числе сульфаты и хлориды.

Первоначально магний получали путем электролиза хлористого магния, а несколько позже стали получать путем электролиза кар­наллита. Известный электролитический способ получения магния основан на восстановлении окиси магния (М§0) при температуре около 2000 °С.

Магний—один из самых легких металлов, используемых в про­мышленности. Его плотность 1,74 г/см 3 , твердость по Бринеллю 30 кг/см 2 , температура плавления 650 °С, температура кипения 1126°С .Обладает пластичностью только в нагретом состоянии. В химическом отношении очень неустойчив. Хорошо растворя-

ется в кислотах. При нагревании в присутствии кислорода воздуха легко воспламеняется и горит ярко-белым пламенем, что исполь­зуется в фототехнике. На воздухе мало применяется, так как по­крывается тонким слоем окиси, которая защищает его от дальней­шего окисления.

В чистом виде магний ни в промышленности, ни в зубопротезной технике не применяется, но входит в состав многих сплавов алюми­ния, цинка, меди. Прибавка к магнию небольших количеств других металлов придает ему большую твердость, прочность и сопротивля­емость к коррозийным разрушениям.

Окись магния благодаря высокой температуре плавления (око­ло 3000 °С) применяется для изготовления огнеупорных тиглей, в том числе и тиглей, где расплавляется металл для производства стоматологических отливок (тигли плавильных печей).

Окись магния входит в состав припоя для соединения стальных частей зубных протезов.

Большое применение в технике получили такие природные си­ликаты, как тальк (ЗМ^-48Ю2НгО) и асбест (СаО-ЗМ§0-45Ю2). В зубопротезной технике тальком посыпают гипсовые модели для предупреждения прилипания воска во время проведения модели-ровочных работ. Он входит в состав некоторых термопластических и эвгенолоксицинковых слепочных материалов.

Асбест применяется при пайке мостовидных и других конструк­ций протезов и аппаратов, если пайка осуществляется вне модели. Кроме того, он используется как термоустойчивая прокладка в обогревательных приборах, литейных печах и др.

Свинец — металл голубовато-белого цвета. В природе находит­ся в виде различных соединений, наиболее важным из которых яв­ляется свинцовый блеск (РЬ5).

Чистый свинец тяжелый, но очень мягкий металл. Его плотность 11,34 г/см 3 , температура плавления 327,3 °С, температура кипения 1555 °С. Обладает плохой электропроводностью.

На воздухе быстро покрывается тонким слоем окиси, которая-предохраняет от окисления более глубокие его слои. Хорошо раст­воряется в азотной и уксусной кислоте, а также щелочах, образуя при этом токсичные соединения.

Свинец широко используется в аккумуляторной промышленнос­ти и для изготовления боеприпасов. Он входит также в состав не­которых красителей.

В соединении с другими материалами используется для изготов­ления подшипников и прокладок в некоторых аппаратах, в том чис­ле в паровых стерилизаторах и вулканизаторах.

обивка гильз перед штамповкой коронок. Обивка гильз из золото-платиновых сплавов на свинцовых подкладках нежелательна.

Цинк — металл синевато-белого цвета. Содержание в земной коре составляет до 0,02 %. Добывают цинк из рудных соединений, главным образом, цинковой обманки и гамлея.

• Для обогащения содержания цинка руды вначале подвергают обжигу в многоподовых печах. Из обогащенных руд получают цинк электролитическим или дистилляционным способом.

Плавится цинк при температуре 419 °С, при температуре 913 °С превращается в пар, твердость по Бринеллю 350 кг/см 2 . Легко раз­рывается при растяжении. При обычной температуре хрупок, а при температуре 100 °С хорошо гнется и прокатывается в листы.

На воздухе покрывается тонким слоем окиси, которая предохра­няет его от дальнейшего окисления.

Цинк при взаимодействии с кислотами и щелочами вступает в химическое взаимодействие, вследствие чего образуются соли цин­ка. При взаимодействии с водой на поверхности цинка образуется тонкая пленка гидроокиси цинка, которая предохраняет от даль­нейшего взаимодействия цинка с водой.

Широко используется цинк для изготовления оцинкованной стали, используемой как кровельный материал, в полиграфической промышленности и для изготовления гальванических элементов.

^ Олово — металл серебристо-белого цвета. Редко встречается в природе в самородках, чаще в оловянных рудах—оловянный ка­мень. Содержание его в земной коре невелико, около 0,008 %.

Олово легко выплавляется из руд и потому применяется чело­веком с давних пор в основном в виде сплава с медью — бронзы. В настоящее время чистое олово получают путем электролиза оло­вянных руд.

Плотность чистого олова 7,28 г/см 3 , температура плавления 231,9 °С, температура кипения 2270 °С, твердость по Бринеллю 30— 50 кг/см 2 . Легко прокатывается в тонкие листы — оловянную фоль­гу или станиоль. Хорошо проводит тепло, но обладает малой элек­тропроводностью.

Отрицательным свойством олова является большая его усадка при переходе из расплавленного в твердое состояние.

При температуре ниже 13,2 °С белое олово превращается в се­рое, имеющее другую кристаллическую решетку и другие свойства. Чем ниже температура, тем скорость превращения белого олова

в серое увеличивается. После нагрева олова до температуры выше 161 °С олово приобретает третью модификацию с ромбической ре­шеткой, обладает большой хрупкостью и легко растирается в по­рошок.

При обычных условиях олово не окисляется, а нагретое до тем­пературы плавления переходит в двуокись олова. Хорошо раство­ряется в концентрированной соляной и азотной кислотах, с водой не реагирует.

Олово широко применяется для покрытия медных и металли­ческих деталей — лужения, а также для соединения металлических деталей — паяния.

В зубопротезной технике олово используется для временной, контактной, пайки стальных мостовидных протезов. Оно входит в состав легкоплавких сплавов, применяемых для штамповки коро­нок, металлических базисов протезов и других деталей. \1 Кадмий — металл белого цвета. По свойствам и цвету напоми­нает цинк, содержится вместе с цинком в составе цинковых руд, но в меньших количествах.

Добывают кадмий из отходов цинкового производства.

Плотность 8,65 г/см 3 , температура плавления 321 °С, темпера­тура кипения 778 °С, твердость по Бринеллю 60 кг/см 2 , легко ре­жется ножом, хорошо куется.

Хорошо растворяется в соляной и серной кислотах. Во влаж­ной среде покрывается серой окисной пленкой.

Кадмий широко используется в электротехнике. Добавка его к меди значительно повышает срок службы медных проводов. Введе­ние кадмия в типографские сплавы способствует уменьшению их износа.

В зубопротезной технике применяется в составе легкоплавких сплавов типа мелот-металл, припоев для пайки золотых и стальных частей. В составе припоев он значительно понижает температуру плавления и повышает диффузию его в спаиваемый металл.

Введение кадмия в состав сплава (припоя) представляет неко­торые трудности. Как металл, имеющий низкую температуру ки­пения, он быстро превращается в пар и улетучивается еще до расплава других компонентов сплава. Поэтому в состав сплава кадмий вводят последним, под прикрытием огнеупорного тигля, препятствующего испарению жидкой фракции кадмия.

В состав припоя для золота кадмий вводят следующим образом:

необходимое количество кадмия помещают на развальцованную пластинку припоя. Затем пластинку сворачивают в трубку и плавят в тигле.

^ Висмут—элемент, относящийся к группе металлоидов, но име­ющий резко выраженные свойства металлов. В природе встречается в виде соединений — висмутовая охра, висмутовый блеск, в соста-

ве никелевых и кобальтовых руд, значительно реже находится в

свободном состоянии. Содержание висмута в земной коре весьма невелико (0,00001 %).

Добыча висмута осуществляется путем плавления обогащенных висмутовых руд в специальных печах в присутствии угля и из­вестняка.

В свободном состоянии имеет красновато-белый цвет с блестя­щей поверхностью.

Плотность 9,8 г/м 3 , температура плавления 271,3°С; темпера­тура кипения 1420 °С. Обладает большой твердостью (по Бринеллю 350 кг/см 2 ) и усадкой 3,3 %. Хрупкий, хорошо растворяется в азот­ной и серной кислотах. При обычной температуре на воздухе не окисляется.

Соли висмута широко используются в медицинской практике. В стоматологической технике применяются в составе легкоплавких сплавов, в том числе сплавов типа мелот-металл, применяемых для понижения температуры плавления и повышения твердости сплава.

Вспомогательные металлы и сплавы


Основные и вспомогательные материалы в процессе изготовления протезов и аппаратов и пользования ими подвергаются разнообразным воздействиям, которые могут изменять
структуру и свойства материалов. Специалисты должны чет ко представлять характер этих изменений и, по возможности, регулировать, поправлять их в нужном направлении. Для этого необходимо хорошо знать основные свойства материалов.
Различают физические, механические, технологические, химические и биологические свойства материалов, применяемых в ортопедической стоматологии.
К физическим относят: цвет, плотность, теплопроводность, тепловое расширение, температуру плавления, температуру кипения, усадку и т.д. .
Цвет - это свойство материала отражать свет со своей поверхности. Для готовых протезов это очень важное качество. Чем ближе подходит по цвету материал, из которого сделан зубной протез, к естественным зубам, тем лучше. Фарфоровые, ситалловые. металлокерамические протезы можно идеально подобрать по цвету. Цвет цельнометаллических протезов отрицательно влияет на внешний вид человека.
Плотность - это отношение массы тела к его объему. Плотность измеряют в г/см3. За единицу принята плотность воды. Зная плотность и объем материала можно определить массу. По массе копии (восковой композиции) будущего протеза, оперируя данными плотности воска и взятого в конкретном случае сплава, нетрудно высчитать, например, количество золотого сплава для получения точного литья (протеза в процессе литья сплава).
Теплопроводность - это способность тела или вещества передавать тепло при нагревании с одной поверхности на другую. Наиболее высокой теплопроводностью обладают металлы, особенно серебро, имеющее коэффициент 100. Золото имеет 68,3, железо-14,7. Базисные пластмассы имеют низкую теплопроводность. Съемный пластиночный протез из материала с низкой теплопроводностью долго ощущается в полости рта как инородный предмет. Вкладки из металла, изготовленные на живой зуб, вследствие их высокой теплопроводности, могут причинять боль и даже повреждать пульпу, если специалисты не примут соответствующие профилактические меры.
Все металлы и сплавы (кроме висмута, сурьмы и сурьмянистых сплавов) и подавляющее большинство других материалов при нагревании увеличиваются в объеме и длине. Эти увеличения опрелеляются коэффициентами объемного (КОР) и линейного (КЛР) расширении. Коэффициенты ралличны у разных материалов. Например, КЛР золота равен 0,0000144, платины-0,0000087. Это свойство специалисты обязаны учитывать при изготовлении протезов, оставляя в отдельных случаях температурный (термический) шов или зазор для предупреждения раскалывания протезом естественного зуба.
Температура плавлении - это га тем по рал ура, при которой нагретый материал из твердого состояния переходит в жидкое. Для каждого металла своя, постоянная темпералура плавления. Сплавы металлов, виски и lt;ругие материалы, составленные из нескольких ингредиентов, могут плавиться при различных температурах в зависимости от соотношения в них последних. Зная температуру плавления материала, можно без труда подобрать источник расплавления последнего, а также очередность расплавления веществ при составлении собственной или известной специалистам рецеплуры.
При дальнейшем нагревании расплавленного металла или сплава наступит момент, когда он из жидкого состояния начнет переходить в газообразное. Это температура кипении. Вода кипит при темпералуре 100°С У разных металлов температура кипения различна, но постоянна для каждого из них. Самая низкая температура кипения у кадмия (778°С) При нагревании кадмия или сплава, его содержащего, выше указанной температуры, происходит улетучивание металла с изменением свойств сплава. Пары кадмия ядовиты.
Усаока - это уменьшение линейных размеров и объёма тела при его гатвердевании, охлаждении и хранении. Она зависит от состава, свойств материала, степени нагрева, способа охлаждения (для сплавов), времени и условий хранения (для оттискных материаюв), соотношения компонентов и условий полимеризации (для пластмасс). Усадка измеряелся в процентах по отношению к первоначальной модели или объёму. В зуботехнической практике уса дка считается только отрицательным свойством. Чем она больше, лем заметнее могу i быть нарушения и неточности при изготовлении протезов или аппаратов. Усадка одного и того же материала во многом зависит от специгзиста. При соблюдении технологии она минимальна.
К механическим свойствам относят: твёрдость, вязкость, упругость, пластичность, усталость и др.
Твёрдость - это способность зела сопротивляться вн. зрению в него другого тела, беаее твёрдого. В настоящее время твердость материала чаще определяют по мето зикэм Виккерса или Бринелля, суть которых состоит в том, что в испытуемый материал специальным прессом вдавливают четырёхгранные алмазные пиоамиды или стандартные шарики. По величине отпечгтка на испытуемой поверхности судят о твёрдости материала. Результат называют числом твёрдости и обозначают через НВ или в килогрзмм/силах на один квадратный миллиметр (кгс/мм ). Твёрдость в различных ситуациях может выступать как положительное свойство, позволяющее пользоваться протезом длительное время, но нередко проявляется и с отрицательной стороны. Например, фарфоровые зубы, имея твёрдость в два раза больше твёрдости эмали зуба, вызывают повышенное стирание естественных зубов - антагонистов. Детали протеза, изготовленные из кобальтохромового сплава, содержащего в своём составе много исключительно твёрдого хрома, с трудом поддаются незначительной обработке и механической полировке.
Прочность - это способность материала сопротивляться действию внешней сизы, постепенно возрастающей и стремящейся его разорвать. Прочность определяют делением величины нагрузки на значение площади поперечного сечения испытуемого образца. Прочность обозначают в кило- грамм/силах на один квадратный миллиметр (кгс/мм'). Хорошие прочностные свойства - одно из основных требований к материалу.
Вязкость - это способность материала удлиняться, вытягиваться под действием внешней силы, постепенно возрастающей и стремящейся материал оастянуть. Отношение добавленной в результате растяжения длины к первоначальной длине называется относительным удлинением. Оно выражается в процентах. Железо способно удлиняться на 50%, золото на 45%, а твёрдый хром только на 6%. Вещества, не обладающие вязкостью (висмут, сурьма, чугун, фарфор и др.), относятся к хрупким материалам.
Упругость - это способность материала изменять форму под действием давления, а после прекращения давления возвращаться в исходное, первоначальное состояние. Максима,! ьная наг рузка, при которой материал ещё способен восстановить форму и размеры, называется пределом упругости. Если нагрузка превысит предел упругости, а тело не возвратится в первоначальное положение, говорят об остаточной деформации. Остаточная деформация крайне нежелательна в пружинящих элементах протезов и аппаратов. На упругость материала можно влиять, изменяя её специальными приёмами.
Пластичность - это способность материала изменять свою форму под действием нагрузки и сохранять новую форму после снятия нагрузки. Высокая степень пластичности одно из основных требований к оттискным материалам в момент введения их в полость рта. 1Ьластичными также должны быть материалы, которые подвергают штамповке, вальцеванию, протягиванию. Пластичность можно улучшать термической обработкой в определенном режиме.
Усталость - это такое состояние, когда материал разрушается под действием многократных нагру зок. Обычно усталость проваляется в местах внутренних напряжений. Внешне усталость незаметна. При микроскопическом исследовании уставшего материала заметны трещины, сдвиг кристаллических элементов. Главным способом прелупреждения устало- сти является строгое соблюдение технологического процесса.
К технологическим свойствам относят: текучесть, ликвацию, ковкость, спаиваемость (свариваемость), обрабатываемость и др.
Текучесть - это свойство материала заполнять форму в процессе литья или литьевою прессования. Чем быстрее кристаллизуется вещество при затвердевании, тем оно жидкотекучее. Использование при литье нагретой формы, повышение температуры вещества, находящегося в расплавленном состоянии, применение некоторых добавок могут значительно улучшить жидкотеку честь.
Ликваци» - это неоднородность затвердевающего сплава. Она возникает чаще тогда, когда в состав сплава включены металлы, с значительно отличающейся плотностью. Большое значение имеет скорость ох паждения расплавленного сплава и способность отдельных металлов к кристаллизации. Это отрицательное свойство, ухудшающее вязкость, пластичность, коррозийное сопротивление сплава.
Ковкость - это способность материала приобретать заданную форму с помощью давления или ударной силы. Если материал заставляют приобретать форму штампа, ковку называют штамповкой. Примером ковки в зуботехнической лаборатории следует считать придание металлической гильзе форму будущей коронки на наковальне с помощью молотка. Насаженная же на штамп из легкоплавкого сплава металлическая гильза подвергается штамповке. Вязкие, пластичные материалы (металлы и сплавы) хорошо куются и штампуются.
Спаиваемость (свариваемость) - это способность материала образовывать прочные соединения с помощью специальных сплавов-припоев или соединяться под действием высоких температу р. Учитывая то. что в зуботехнической лаборатории паяние до сих пор применяется часто, хорошая спаиваемость деталей только улучшает качество работы. Свариваемость материалов происходит без использования припоев. Примерами свариваемости являются, точечная электросварка перед паянием, лазерное соединение отдельных деталей в единое целое, плазменная сварка.
Обрабатываемость - это способность материала поддаваться обработке всеми видами инструментов и приспособлений, применяемых в зуботехнической лаборатории, с целью получения гладкой, чистой поверхности зубных протезов. Хорошо обрабатываются пластические массы, золотые сплавы. Трудно подвергаются обработке изделия из фарфора кобальтохромовых сплавов.
К химическим свойствам относят: окисление, восстановление, растворение, полимеризацию, сополимеризацию, сшивку, пластификацию, коррозию и др.
Окисление - это взаимодействие материала, чаще металла или сплава с кислородом. В результате такого взаимодействия получаются оксиды, меняющие цвет изделия, ухудшающие его качество. Окисление усиливается при нагревании металла. Так, подвергшаяся термической обработке (отжигу) при температуре 1050-1100 гр.С блестящая гильза из нержавеющей хромоникелевой стали становится черной в результате образования на ее поверхности окалины-смеси оксидов.
Восстановление - это реакция обратная окислению. Восстановительной реакцией пользуются при отбеливании протезов после термической обработки (отжига или паяния). При восстановлении нередко используют катализаторы - вещества, ускоряющие данную реакцию.
Растворение - это получение однородной смеси растворителя и растворимого вещества. Получая смесь, можно добиться насыщенного, ненасыщенного и пересыщенного раствора. Растворенное вещество выделяют химической реакцией или выпариванием. Смесь нескольких соединений называют компаундами. Смесь нерастворимых друг в друге жидкостей называется эмульсией.
Полимеризация - это процесс получения высокомолекулярного вещества (полимера) из низкомолекулярных веществ (мономеров) Во время полимеризации происходит последовательное присоединение низкомолекулярных веществ к активному центру. На скорость полимеризации влияет наличие активатора, температура при которой идет реакция и другие факторы. В результате полимеризации многих пластических масс порошок и жидкость, смешанные в определенной пропорции, превращаются в твердый, достаточно прочный материал.
Поликонденсация - это реакция синтеза полимеров, при которой происходит химическое взаимодействие мономеров с образованием побочных низкомолекулярных веществ (вода, аммиак, спирты).
Cano шмиртиция - это процесс образования макромолекул из двух и более мономеров. В настоящее время большинство стоматологических пластмасс являются сополимерами. Благодаря применению ряда мономеров, изменяя количественные соотношения между ними, можно целенаправленно получать сополимеры с улучшенными свойствами.
С шпака - это образование поперечных связей между макромолекулами. Ее проводят с целью повышения прочности полимерных материалов. Вещества, с помощью которых происходит сшивка, называются сшивагентами.
Пластификация - это повышение пластичности и эластичности полимерных материалов. Различают внешнюю (наружную), внутреннюю и механическую пластификацию. Внешняя пластификация проводится путем введения в полимер специальных низкомолекулярных веществ (пластификаторов), которые уменьшают силу межмолекулярного взаимодействия, не влияя на жесткость цепи макромолекулы полимера. Внутренняя пластификация достигается за счет реакции полимеризации, при этом уменьшаются силы внутримолекулярного взаимодействия. Механическая пластификация осуществляется путем целенаправленного ориентирования макромолекул полимера, наг ретого выше температуры стеклования и последующего охлаждения в растянутом состоянии. Улучшение одних свойств полимеров за счет пластификации, нередко ухудшает другие. Так. полимеры с наружной пластификацией, в результате выщелачивания, улетучивания пластификаторов быстро стареют. Они становятся менее прочными, более хрупкими.
Корротя - это сложный химический процесс окисления (ржавления) с последующим разру шением металла или сплава, в результате чего изделие может придти в полную негодность. Коррозия бывает местной, равномерной и межкри- сталлитной. Местная коррозия отмечается на отдельных участках металла или сплава в виде пятен различной глубины. Ее возникновение связывают с неоднородностью стру ктуры, наличием включений и внутренних напряжений в сплаве. Равномерная коррозия видна на всей поверхности металла или сплава с одинаковой или различной глубиной поражения. Межкристашитная коррозия внешне незаметна, так как агрессивная среда проникает между зернами металла (кристаллитами). Возникает в результате неправильной термической обработки, охлаждения горячих сплавов и других причин. Увеличению коррозии способствует наличие кислорода, повышенная температура в сочетании с большой влажностью, кислая и щелочная среда. В полости рта, как правило, сталкиваются с электрохимической коррозией. Наличие слюны и металлов вызывает образование электрической системы с появлением постоянных токов. Коррозия металлических протезов нередко связана с нарушением их технологии.
К биологическим свойствам материалов в первую очередь относят возможность их воздействия на ту биологическую среду, в которой они находятся. Большую роль в соответствии материалов предъявляемым к ним биологическим требованиям отводят соблюдению технологических процессов.

Читайте также: