Чем обрабатывать жаропрочную сталь

Обновлено: 28.04.2024

- мартенситные стали, которые имеют в качестве основной структурной составляющей мартенсит. Они содержат от 12 до 17 % Cr (хромистые стали) и имеют достаточно высокое содержание углерода (C), что позволяет подвергать такие сплавы закалке.

- мартенситно-ферритные сплавы имеют структуру, в которой, кроме мартенсита, содержится более 10 % феррита. Они включают от 13 до 18 % Cr (хромистые стали).

- ферритные стали отличаются структурой, основанной на феррите. В их составе есть от 13 до 30 % Cr (хромистые стали). Такие сплавы отличаются магнитными свойствами. Они имеют доступную себестоимость, что обусловлено низким содержанием никеля.

- аустенито-мартенситные стали имеют структуру, состоящую из аустенита и мартенсита в определенных пропорциях. Они включают от 12 до 18 % Cr и от 4 до 9 % Ni (хромоникелевые и хромомарганцевоникелевые стали).

- аустенито-ферритные сплавы имеют структуру, включающую аустенит и минимум 10 % феррита (хромоникелевые и хромомарганцевоникелевые стали).

- аустенитные стали имеют структуру, основанную на аустените (хромоникелевые стали, хромомарганцевоникелевые стали).


В сравнении с обычными сталями, высоколегированные коррозионно-стойкие и жаростойкие стали обладают худшей обрабатываемостью, так как содержат в больших количествах легирующие элементы: хром (15. 18 %), никель (8. 11 %), марганец (1.. .2 %). Иногда в них входят в небольших количествах титан, вольфрам, молибден, ниобий при некотором снижении содержания хрома и никеля.



Снижение обрабатываемости этих сталей связано с изменением их механических и теплофизических свойств. Например, жаростойкие (окалино-стойкие) и жаропрочные стали аустенитного класса отличаются высокой упрочняемостью при резании. Некоторые марки сталей в процессе пластического деформирования склонны к структурным превращениям, заключающимся в переходе аустенита в мартенсит. Эти стали, как правило, имеют низкую теплопроводность, что затрудняет отвод теплоты из зоны резания в стружку и заготовку. При этом повышаются температура резания и интенсивность износа инструментов, возможно образование термических трещин на кромках инструмента (пластин).

Стоит заметить, в определенных случаях предварительная термическая обработка на структуру - способствует улучшению обрабатываемости многих типов нержавеющих сталей.

При обработке нержавеющих сталей затруднен контроль над стружкообразованием, наиболее плохой контроль над стружкодробленим происходит при обработке аустенитных и дуплексных нержавеек, относительно хороший при обработке ферритной и мартенситной нержавеющих сталей. Обработка нержавеющих сталей сопровождается высокими силами резания и высокой температурой в зоне резания, липкие сорта склонны к налипанию на режущую кромку (образование наростов при невысоких скоростях обработки), склонны к упрочнению. Для снижения вероятности образования наростов рекомендуется обработка на скоростях более 100-120 м/мин. При черновой обработке, в случае, когда подача СОЖ строго в зону резания затруднена даже с применением высокого давления СОЖ через инструмент (державку) – рекомендуется работа без применения СОЖ для снижения вероятности возникновения термотрещин. При чистовой обработке применение СОЖ обязательно (при этом стоит заметить, что качество обработанных поверхностей, стойкость инструмента во многом зависит от качества СОЖ и схемы его подачи). Подача СОЖ под высоким давлением четко в зону резания может снизить износ инструмента до 2-5 раз. Нужно упомянуть и положительный опыт при охлаждения зоны резания углекислотой до температуры минус 50-70 градусов по Цельсию.

При работе на универсальных станках в качестве смазки (СОЖ) при обработке нержавеющих сталей часто применяют олеиновую кислоту, сало, иногда специализированные смазки (см .приложение 1 ).

Особенности обработки резанием нержавеющих и жаропрочных сталей и сплавов

Рабочие процессы в современных машинах характеризуются высокими значениями давлений, нагрузок, скоростей и температур. Обычные конструкционные стали в этих условиях недолговечны или вовсе непригодны, поэтому в машиностроении все большее распространение получают стали и сплавы с высокими показателями прочности, жаропрочности, жаростойкости, а также стойкости против коррозии.
Жаропрочные и нержавеющие стали и сплавы относятся к категории труднообрабатываемых материалов. Они значительно хуже поддаются обработке резанием по сравнению с обычными конструкционными сталями.
Низкая обрабатываемость этих материалов определяется их физико-механическими свойствами. В этих условиях весьма важно раскрыть причины, влияющие на их обрабатываемость, и найти способы и средства увеличения производительности их обработки на металлорежущих станках.
Жаропрочным называется материал, способный работать в напряженном состоянии при высоких температурах в течение определенного времени и обладающий при этом достаточной жаростойкостью, т. е. стойкостью против химического разрушения поверхности в газовых средах при высоких температурах. Другим важным свойством жаропрочных сталей и сплавов является их высокая коррозионная стойкость в агрессивных средах.
Нержавеющим называется материал, обладающий высоким сопротивлением коррозии в агрессивных средах, прежде всего в атмосфере воздуха, паров воды и кислот. Обычно к такого рода материалам предъявляют требования обеспечения коррозионной стойкости при рабочей температуре детали. Большинство жаропрочных сплавов, как правило обладает повышенной коррозионной стойкостью при высоких температурах в различных средах. Поэтому, несмотря на то, что понятия жаропрочного и нержавеющего

проката по определению отличаются друг от друга, они обладают целым рядом общих физико-механических свойств, обуславливающих их общие технологические свойства по обрабатываемости резанием.
Основная структура большинства жаропрочки и нержавейки представляет собой обычно твердый раствор аустенитного класса с гранецентрированной кубической решеткой. При этом большая часть деформируемых жаропрочных сплавов принадлежит к типу дисперсионно твердеющих, т. е. в этих сплавах происходит выделение из твердого раствора структурной составляющей – второй фазы, отличной от его основы и рассеянной по всему объему сплава в тонкодисперсной форме.
Высокая дисперсность структуры препятствует возникновению и развитию процессов скольжения, при этом сопротивление ползучести сплава повышается.

Сравнение значений механических характеристик жаропрочных сталей и сплавов и стали 45 показывает, что значения истинного предела прочности при растяжении Sк, предела прочности в и твердости НВ при обычной температуре и отсутствии деформации (упрочнения), примерно равны. Поэтому худшая обрабатываемость жаропрочных и нержавеющих сталей и сплавов определяется другими физико-механическими и химическими свойствами и, прежде всего, структурой, механическими характеристиками, определяющими их свойства не только в исходном, но и в упрочненном состоянии и при нагреве, а также теплофизическими показателями (температура плавления, энергия активации, теплопроводность), определяющими свойства материала при повышенных температурах.
Основные особенности резания жаропрочных и нержавеющих сталей и сплавов, затрудняющие их механическую обработку, следующие.
1. Высокое упрочнение материала в процессе деформации резанием. Повышенная упрочняемость жаропрочного и нержавеющего

проката объясняется специфическими особенностями строения кристаллической решетки этих материалов. Характеристикой, определяющей пластичность или способность материала к упрочнению, является отношение условного предела текучести, соответствующего 0.2-процентной остаточной деформации, к пределу прочности 0.2/в. Чем меньше это отношение, тем более пластичен материал и тем большей работы и сил резания требует он для снятия одного и того же объема металла. Величина этого отношения для жаропрочных сплавов составляет до 0.4…0.45, в то время как для обычных конструкционных сталей эта величина составляет 0.6…0.65 и более.
Вследствие повышенной способности к упрочнению при пластической деформации жаропрочных сплавов значения в могут возрасти в 2 раза (с 60 до 120 кгс/мм), т – в 3…4 раза (с 25-30 до 100 кгс/мм), при этом относительное удлинение уменьшается с 40-65 до 5-10%.
2. Малая теплопроводность обрабатываемого материала, приводящая к повышенной температуре в зоне контакта, а следовательно, к активации явлений адгезии и диффузии, интенсивному схватыванию контактных поверхностей и разрушению режущей части инструмента. Эти явления не позволяют в ряде случаев использовать при обработке жаропрочных материалов недостаточно прочные инструментальные материалы, в первую очередь, твердые сплавы. Вместе с тем при использовании быстрорежущего инструмента по тем же причинам приходится принимать весьма малые скорости резания. Учитывая плохой теплоотвод при обработке жаропрочных и нержавеющих сталей и сплавов, основное значение приобретают охлаждающие свойства СОЖ.
3. Способность сохранять исходную прочность и твердость при повышенных температурах, что приводит к высоким удельным нагрузкам на контактные поверхности инструмента в процессе резания. Усугубляет действие этого фактора низкая теплопроводность этих материалов, благодаря чему высокая температура на контактных поверхностях не позволяет заметно снизить механические свойства по всему сечению срезаемого слоя.
4. Большая истирающая способность жаропрочных и нержавеющих сталей и сплавов, обусловленная наличием в них кроме фазы твердого раствора еще так называемой второй фазы, образующей интерметаллидные или карбидные включения. Эти частицы действуют на рабочие поверхности инструмента подобно абразиву, приводя к увеличенному износу. Большое значение имеют также структурные превращения, происходящие в этих материалах в процессе пластической деформации и сопровождающиеся выпадением карбидов. Все описанные выше твердые включения совместно с высокими температурами на контактных поверхностях приводят к интенсивному абразивному и диффузионному износу режущей части инструмента, к явлениям адгезии (схватывания). Поэтому коэффициенты трения жаропрочных и нержавеющих сталей по твердым сплавам во много раз больше, чем при трении обычной стали 20.
5. Пониженная виброустойчивость движения резания, обусловленная высокой упрочняемостью жаропрочных и нержавеющих материалов при неравномерности протекания процесса их пластического деформирования. Возникновение вибраций приводит к переменным силовым и тепловым нагрузкам на рабочие поверхности инструмента, следовательно, к микро- и макровыкрашиваниям режущих кромок. При наличии вибраций особенно неблагоприятное влияние на износ инструмента оказывают явления схватывания стружки с передней поверхностью инструмента.
Учитывая рассмотренные особенности, процесс резания жаропрочных и нержавеющих сталей и сплавов протекает таким образом: вначале рабочие поверхности инструмента соприкасаются с относительно мягким, неупрочненным металлом и под их воздействием происходит пластическая деформация срезаемого слоя, сопровождаемая значительным поглощением прикладываемой извне (инструментом) энергии. При этом срезаемый слой получает большое упрочнение и приобретает свойства наклепанного металла, т. е. становится хрупким. Запас пластичности при этом в значительной мере исчерпывается и происходит сдвиг – разрушение, образование элемента стружки. Малая теплопроводность этих материалов приводит к резкому снижению отвода тепла в стружку и обрабатываемую заготовку, а следовательно, повышению температуры в зоне контакта режущей части инструмента и заготовки с активизацией процессов адгезии и диффузии. В результате этого значительно увеличиваются износ инструмента и явления налипания (схватывания), вызывающие разрушение режущих кромок. Интенсификации этих процессов способствуют повышенные механические характеристики обрабатываемого материала при высокой температуре, большая истирающая способность материалов, а также переменное воздействие этих факторов, обусловленное вибрациями.
В настоящее время существует много способов облегчения обработки резанием труднообрабатываемых материалов, в том числе жаропрочных и нержавеющих сталей и сплавов. Самыми очевидными из них являются способы, направленные на повышение стойкости применяемых режущих инструментов. Это, прежде всего, правильный выбор марки инструментального материала и геометрии режущей части инструмента, а также обязательное применение охлаждения в зоне резания с использованием различных охлаждающих сред.
При обработке жаропрочных и нержавеющих сталей и сплавов необходимо и целесообразно применение инструментов, изготовленных из инструментальных материалов, обладающих более высокими режущими свойствами: более высокой красностойкостью, хорошей сопротивляемостью абразивному износу и стабильностью режущих свойств. Согласно исследованиям, проведенным в этой области целесообразно предварительную обработку труднообрабатываемых материалов производить твердосплавными резцами, а чистовую – твердосплавными и быстрорежущими. Из быстрорежущих сталей при обработке жаропрочных сплавов наилучшие результаты дают применение кобальтовых и ванадиевых быстрорежущих сталей (Р14Ф4, Р10К5Ф5, Р9Ф5, Р9К9). Их применение приводит к значительному сокращению расхода режущего инструмента, снижению себестоимости выпускаемой продукции и повышению производительности.
Из применяемых твердых сплавов выделяют 3 вида. Первый вид, называемый “износостойким” – Т30К4, Т15К6, ВК3 и др. – сравнительно твердый и обладает высокой сопротивляемостью износу. Второй вид сплавов – Т5К7, Т5К10 и др. – обладает большей вязкостью, но меньшей износостойкостью. Третий вид – ВК6А, ВК8 – имеет наименьшее сопротивление износу, но большую вязкость и нечувствительность к удару. Кроме того при чистовой и отделочной обработке жаропрочных и нержавеющих сталей и сплавов в качестве инструментальных материалов применяют минералокерамику, а также естественные и синтетические сверхтвердые материалы.
Существенное влияние на повышение стойкости инструментов при резании труднообрабатываемых материалов оказывают специальные методы упрочнения их рабочих поверхностей: хромирование, цианирование, электроискровое упрочнение, радиоактивное облучение и др. для быстрорежущих сталей. А на твердосплавные пластины из прочного (вязкого) твердого сплава наносят тонкий слой (~5мкм) другого твердого сплава (TiC), обладающего высокой износоустойчивостью. Для повышения износоустойчивости минералокерамики применяют плакирование – покрытие защитными пленками.
Применение смазывающе-охлаждающих жидкостей при резании металлов увеличивает стойкость режущего инструмента, улучшает качество обработанной поверхности и снижает силу резания. В настоящее время применение технологических сред считают одним из основных способов улучшения процессов резания труднообрабатываемых материалов. Следует отметить, что эффективность применения технологических сред определяется их физико-химическим составом и способом подачи в зону резания.
Эффективными являются такие методы охлаждения режущего инструмента, как высоконапорное охлаждение, подаваемое тонкой струей на заднюю поверхность инструмента, охлаждение распыленной жидкостью и охлаждение углекислотой.
При высоконапорном охлаждении жидкость, вытекая под большим давлением, распыляется и, соприкасаясь с нагретым металлом, быстро испаряется, интенсивно отбирая тепло. Такое охлаждение дает увеличение стойкости инструмента в 3…6 раз по сравнению с сухим резанием. Еще лучших результатов можно достигнуть применением одновременно высоконапорного охлаждения со стороны задней грани резца и подачи жидкости под давлением сверху на стружку. Недостаток высоконапорного охлаждения – разбрызгивание жидкости и образование паров, затрудняющих наблюдение за работой инструмента.
Эти недостатки устраняются при охлаждении зоны резания путем распыления СОЖ сжатым воздухом. При этом уменьшается расход эмульсии. Стойкость инструмента увеличивается в 2…3 раза по сравнению с работой всухую.
Охлаждение углекислотой является наиболее эффективным, однако и более дорогим методом охлаждения. Жидкий углекислый газ, содержащий до 50% твердых частиц углекислоты снегообразной формы, под давлением подается в зону резания. В виде инея эти частицы с температурой -79 °С оседают на поверхность металла и вскипают, поглощая 158 ккал тепла на 1 кг углекислоты.
Методика назначения режимов резания при обработке деталей из жаропрочных и нержавеющих сталей и сплавов в основном такая же, как и при резании обычных конструкционных материалов. Необходимо только учитывать специфические особенности их резания.
При конструировании станков, инструментов и приспособлений для обработки деталей из труднообрабатываемых материалов необходимо обеспечивать:
1) повышенную жесткость механизмов для восприятия больших сил резания с минимальными деформациями;
2) высокую виброустойчивость системы станок-приспособление-инструмент-деталь в условиях резания со значительными ударными нагрузками;
3) незначительные зазоры в механизме подачи станка для равномерного резания упрочняющегося обрабатываемого материала;
4) достаточный запас мощности электродвигателя станка, так как при резании жаропрочных сплавов силы резания больше, чем при обработке обычных конструкционных материалов;
5) приспособления для обработки деталей должны быть прочными и жесткими, в них необходимо предусмотреть каналы для отвода стружки;
6) инструменты должны быть короткими и жесткими.
Кроме всего выше перечисленного добиться улучшения обрабатываемости жаропрочных и нержавеющих сталей и сплавов можно за счет:
1) воздействия на структуру и механические показатели материалов с помощью специальной термической обработки;
2) введения в зону резания ультразвуковых колебаний, облегчающих пластические деформации, снижающих коэффициент трения и повышающих температуру;
3) подогрева обрабатываемого материала в печах или с помощью газовых горелок на станках или путем электроиндуктивного или электроконтактного нагрева;
4) введения в зону резания слабых токов, что позволяет управлять механизмами электродиффузионного и окислительного износа режущего инструмента.

Литература:
1. Обработка резанием жаропрочных, высокопрочных и титановых сплавов. / Под ред. Н. И. Резникова. – М.: Машиностроение, 1972. – 200 с.
2. Подураев В. Н. Резание труднообрабатываемых материалов. – М.: Высшая школа, 1974. – 587 с.
3. Шифрин А. Ш., Резницкий Л. М. Обработка резанием коррозионностойких, жаропрочных и титановых сталей и сплавов. – М.- Л.: Машиностроение, 1964. – 448с.

Доклад Ткач М. А. Всеукраинская научно-техническая студенческая конференция. ДГМА. 19.04.05.

Обработка нержавеющих и жаропрочных сталей

Нержавеющим называют сплав, который способен длительное время противостоять воздействию химически активной среды, это могут быть и неблагоприятные атмосферные условия, и кислотная или щелочная среда в химическом производстве. В последнее время во многих узлах, машинах и механизмах углеродистые марки стали применяются все реже, а и их постепенно вытесняют элементы из специальных сталей. Связано это с тем, что обычная сталь имеет определенный порог — предел, выше которого становится невозможным её использование в условиях возрастающих нагрузок, например, при высоких температурах, давлении или же в присутствии агрессивных сред. В этом случае, их с успехом заменяют жаропрочные и стойкие нержавеющие стали и легированные сплавы с эксклюзивными свойствами, которые будут хорошо работать там, где обычная сталь не справится.

Достоинства нержавеющих сталей

Жаропрочность. Жаропрочным называют материал, который может выдержать воздействие высоких температур, не теряя при этом своей механической прочности. Жаропрочные стали еще относят и у группе дисперсионно твердеющих, с выделением легирующего элемента, отличного от основы стали, в мелкодисперсной форме, и его распределение по всему объему металла. Жаростойкость характеризует материал, который не теряет коррозионной стойкости при нагревании. Сочетанием этих качеств обладают легированные коррозионностойкие стали. Высокая прочность и вязкость данным материалов относит их к классу труднообрабатываемых, что особенно проявляется при резании, снятием стружки. Для этого требуется специальный инструмент, режим резания, подбор СОЖ, и решение др. немаловажных деталей.

При сравнении физико-механических качеств легированной стали и обычной было выяснено, что такие показатели, как предел прочности при растяжении, твердость у них примерно равны. Но у легированных и обычных сталей совпадают только механические показатели, тогда как другие качества могут существенно отличаться, особенно это касается микроструктуры, коррозионной стойкости, а также способности упрочняться при механическом воздействии. Вспомним диаграмму растяжения — сжатия, хорошо известную из курса сопромата. Диаграмма начинается с участка упругой деформации, когда материал, после снятия нагрузки возвращается в исходное состояние, не деформируясь. Увеличение нагрузки приводит в зону, так называемой «текучести» когда материал начинает деформироваться без значительного роста приложенной силы. На графике это практически горизонтальная линия. После чего наступает резкое упрочнение — и для дальнейшей деформации приходится значительно увеличивать силу воздействия. Тот же самый процесс происходит и при обработке металлов резанием, только в поверхностном слое металла — это связано с изменениями к кристаллической решетки под действием механической нагрузки. При обработке обычной стали такое тоже характерно, но упрочнение легированных сталей выражено гораздо сильнее. И не стоит забывать различия в таких качествах, как теплопроводность, температура плавления и др., которые также оказывают значительное влияние на процесс обработки.

Обработка резанием

Итак, при обработке резанием, показатели упрочнения легированной стали достаточно высоки, что требует приложения значительных сил. Кроме того, большинство легированных сталей, особенно это касается жаропрочных, весьма пластичны, что также затрудняет обработку резанием. Показатель пластичности определяется отношением условного предела текучести, к пределу прочности. Чем меньше соотношение, тем материал пластичнее, тем он, более упрочняется при механической нагрузке. А нержавеющие стали относятся к высокопластичным. Кроме того, есть еще одна сторона пластичности, так называемая «вязкость» материала. При обработке легированной стали на токарном станке стружка не ломается, как например, при обработке углеродистых сталей той же твердости, а вьётся длинной лентой. Это причиняет массу неудобств и осложняет ее обработку в автоматическом режиме.

Вторая особенность легированной стали при обработке резанием — малая теплопроводность, что приводит к повышению температур в рабочей зоне, и требует оптимального подбора охлаждающей жидкости, которая кроме эффективного удаления тепла, должна облегчать резку и предотвращать наклеп. Наклеп возникает на рабочей кромке режущей пластины, приводит к изменению геометрии резца, и в конечном итоге — к его досрочному выходу из строя. Как правило, при обработке легированных жаропрочных сталей не рекомендуются высокие скорости обработки — это приводит к удорожанию детали. Решить эту проблему можно, используя специальные режущие пластины, предназначенные исключительно для легированных сталей и специальные СОЖ.

Третья особенность — сохранение прочности и твердости под воздействием высоких температур. Это особенно характерно для жаропрочных марок сталей, что, в сочетании с наклёпом приводит к ускоренному износу режущего инструмента и не позволяет использовать высокие обороты.

Четвертое — наличие в составе стали твердого раствора второй фазы с чрезвычайно твердыми интерметаллическими и карбидными соединениями, которые, несмотря на свои микроскопические размеры, действуют на поверхность режущего инструмента, как абразивный материал. Инструмент стачивается и тупится намного быстрее, что приводит к необходимости его частой переточки и правке геометрии режущих кромок. Как показывает практика, коэффициент трения, при обработке легированных сталей на порядок больше, чем при обработке обычных углеродистых сталей.

Пятое. Низкая виброустойчивость возникает по причине неравномерности процессов упрочнения детали по мере резания — поскольку процесс пластической деформации при обработке протекает по-разному, вначале и в середине обработки. Если обрабатывается небольшая по размерам деталь, то в принципе, этим явлением можно и пренебречь. Когда же речь идет об обработке длинной детали — например — вала, то тут уже могут быть сложности.

Все эти явления требуют особого подхода к обработке легированных сталей резанием, особенно, если обработка идет в полностью автоматическом режиме — например, на автоматах продольного точения и станках с ЧПУ с автоматической подачей прутка. Как можно снизить влияние 'негативных факторов — рассмотрим на примере токарной обработки — как наиболее распространенной. Токарная обработка подразумевает снятие слоя припуска в виде стружки с вращающейся вокруг своей оси детали. Движение резца в данном случае происходит по двум координатам в горизонтальной плоскости. Под воздействием сил резания происходит частичное смещение кристаллической решетки — возникает наклеп — поверхностное упрочнение. При этом значительная часть энергии трения инструмента переходит в тепловую. а как мы помним — материал имеет низкую теплопроводность. Поверхность детали неравномерно нагревается, возникает вибрация, вследствие чего негативное действие перечисленных факторов усугубляется.

Чтобы инструмент не так быстро тупился, можно уменьшить слой снимаемого припуска и подачу инструмента, а также повысить обороты шпинделя. В результате поверхность будет получаться с боле высоким классом шероховатости. Неплохо зарекомендовали себя способы обработки легированных сталей с применением кислоты — это позволяет снизить степень возникновения таких явлений, как ускоренный износ инструмента, и наклеп, однако, это чрезвычайно негативно сказывается на токарном оборудовании и самом токаре. Оптимизация обработки легированных сталей — это прежде всего, оптимальный подбор режущего инструмента, повышенной стойкости, выбор оптимальных режимов резания, и правильный выбор СОЖ и ее оптимальная подача.

Твердый сплав Т30К4, Т15К6, ВК3 обладают высокой твердостью и устойчивостью к износу. Износостойкие напайки Т5К7, Т5К110 — более вязки, но менее износостойкие. И, наконец, ВК6А, ВК8 отличаются пониженной износостойкостью, но повышенной вязкостью — они хорошо зарекомендовали себя при ударных нагрузках.

Твердосплавные пластина с покрытием — TiC

Они отличаются высокой износоустойчивостью. Существенное влияние на режущие свойства твердосплавных пластин оказывают различные способы обработки таких материалов — например, азотирование и цианирование. Покрытие кубическим нитридом бора — достаточно дорогое, но обладающее поистине уникальными свойствами — такое покрытие многократно повышает твердость инструмента, его стойкость и износоустойчивость.

Обработка жаропрочных сталей

Применяются такие марки твердых сплавов как р14Ф4, Р10К5Ф5, Р9Ф5, Р9К9. Буква Р — в обозначении указывает на принадлежность данного твердого сплава к быстрорежущим. В такие сплавы добавляют кобальт и ванадий, что существенно повышает механическую стойкость режущего инструмента. Применение быстрорежущий сплавов позволяет существенно ускорить обработку легированных сталей, сократить расход инструмента. Но у таких сплавов есть и слабое место — они боятся перегрева. Если при обработке стали инструментом с такой режущей пластиной произойдет перебой с подачей СОЖ — то инструмент в подавляющем большинстве случаев приходит в негодность и его приходится либо утилизировать, либо напаивать новую пластину.

Это одно из условий обработки легированных сталей. СОЖ необходимы, прежде всего, для предотвращения преждевременного износа инструмента, улучшения характеристик резания, получения более качественной поверхности обрабатываемой детали и повышение точности обработки. Для каждого типа обрабатываемой стали, вида режущей пластины, подбирается своя охлаждающая жидкость, способ ее подачи в область резания.

Наиболее эффективным считается такой метод, который способствует максимальному отводу тепла из зоны резания. Тут хорошо себя зарекомендовали — высоконапорная подача СОЖ преимущественно на заднюю поверхность рабочей пластины режущего инструмента, распыление СОЖ и — достаточно редко встречающееся, в основном на оборонных предприятиях — охлаждение углекислотой.

Выбор способа охлаждения

Зависит от условий обработки и технологических возможностей оборудования. Наиболее распространено высоконапорное охлаждение — оно может применяться при токарной обработке, фрезерной многоинструментальной, при шлифовании, и др. Такой способ характерен для многих производителей оборудования, как отечественных, так и зарубежных. Жидкость подаётся распылением точно в область резания. При соприкосновении с нагретым металлом она быстро испаряется, забирая тепло и эффективно охлаждая рабочую поверхность. К недостатку описанного метода можно отнести высокие потери СОЖ. Применение данного метода позволяет увеличить период стойкости инструмента почти в 6 раз — естественно это отражается на стоимости детали в конечном итоге.

Более эффективным является одновременная подача СОЖ в область резания и в область образования стружки, однако, технически это не всегда бывает возможно — может потребовать доработок технологического оборудования. Данный способ охлаждения подходит для среднесерийного и мелкосерийного производства.

Самый эффективный, сточки зрения отвода тепла из зоны обработки, является конечно же охлаждение углекислотой, при котором температура в области резания составляет порядка минус 79 °C. Однако данный способ наиболее дорогостоящий, применим только в единичном производстве. Используется, как правило, в оборонной промышленности, при изготовлении небольших партий высокоточных и ответственных деталей, которые изготавливаются из легированных сталей со специальными свойствами.

Основные требования к обработке

Для обработки легированных сталей сам станок и система СПИД (станок — приспособление — инструмент — деталь) должны обладать рядом качеств. Это, прежде всего повышенная жесткость всей системы. Ведь легированные стали при обработке способны вызвать вибрацию, которая передается всей системе. При низкой жесткости системы СПИД это может привести к браку и повышенному износу инструмента. Во-вторых, система должна быть рассчитана на значительные механические нагрузки, возникающие в процессе обработки — а они намного выше, чем при обработке черных металлов. Третье — минимальные люфты в узлах и механизмах металлообрабатывающего оборудования.

Электродвигатель должен иметь значительный запас прочности, поскольку обработка легированных сталей предполагает повышенные нагрузки. По этой же причине необходимо перед началом обработки стали проверить состояние клиноременной передачи, состояния ремней и самих шкивов. Приспособления и инструменты должны быть по возможности максимально жесткими и короткими, чтобы уменьшить влияние сил резания на конечный результат.

Оптимизировать обработку легированных сталей, можно за счет использования ультразвуковых колебаний, слабых токов, предварительного подогрева деталей — но эти способы все слишком дороги, требуют специального дополнительного оборудования и редко применяются. Чаще всего на практике используются специальные кислоты. Иногда опытные токари используют самый обычный лук, а вернее его сок, который, как это ни удивительно, заметно улучшает чистоту поверхности детали, облегчает процесс резания и увеличивает срок службы инструмента.

На складе ООО «" в наличии разнообразный ассортимент нержавеющего проката. Мы ценим время своих клиентов, поэтому всегда готовы помочь с оптимальным выбором. К вашим услугам опытные менеджеры-консультанты. Качество продукции гарантируется строгим соблюдением норм производства. Сроки выполнения заказов минимальные. Оптовые покупатели получают льготные скидки.

Чем обрабатывать жаропрочную сталь

Перлит , в свою очередь, осложняет процесс резания следующими факторами: сильный абразивный износ; повышенные силы резания.

Обрабатываемость резанием сталей с содержанием C < 0,25 % в значительной мере обусловлена вышеназванными свойствами феррита. При низких скоростях резания на режущей кромке образуются наросты. С повышением скорости резания износ инструмента постепенно увеличивается, при этом возрастает и температура резания. Учитывая эти факторы, следует выбирать инструмент по возможности с положительным передним углом. Поверхности низкого качества и с множеством заусенцев образуются прежде всего при низких скоростях резания, обусловленных технологией обработки.

Для углеродистых сталей с содержанием C от 0,25 до 0,4 % свойства перлита влияют на обрабатываемость резанием следующим образом: снижаются склонность к налипанию и образование наростов на режущей кромке; вследствие повышенной нагрузки на зону контакта возрастает температура резания и увеличивается износ инструмента; структура материала положительно влияет на чистоту обработки поверхности, на количество и форму стружки.

При дальнейшем повышении содержания углерода (0,4 % < C < 0,8 %) доля перлита увеличивается, а при 0,8 % C перлит остается единственной структурной составляющей. В целом стали считаются материалом, хорошо поддающимся резанию, только с точки зрения образования стружки и чистоты обработки поверхности. Вследствие повышенной твёрдости и прочности надлежит считаться с интенсивным износом. Для уменьшения износа следует работать с пониженной скоростью или с использованием СОЖ.

В заэвтектических углеродистых сталях (C > 0,8 %) при медленном охлаждении на воздухе также образуются феррит и цементит . В отличие от доэвтектических углеродистых сталей ферритовая решетка не образуется, феррит присутствует только в качестве раствора в перлите. Образование перлита начинается непосредственно от границ зерна аустенита. При содержании углерода значительно выше 0,8 % на границах зерна происходит осаждение цементита, т.е. даже свободный цементит образует оболочку вокруг зерен аустенита или перлита. Подобные стали при обработке резанием вызывают очень сильный износ. Наряду с интенсивным абразивным воздействием твёрдых и хрупких структурных составляющих, возникающие высокие давления и температуры даже при

сравнительно низких скоростях резания вызывают сильный износ по передней и задней поверхностям. В связи с этим надлежит работать с низкими скоростями резания и большими поперечными сечениями стружки, а также с прочными режущими кромками.

В инструментальных, легированных и быстрорежущих сталях увеличение легирующих элементов всегда приводит к ухудшению обрабатываемости (до Коб = 0,6) и росту шероховатости обработанной поверхности вследствие образования твердых карбидов. При этом, как правило, повышаются предел прочности σв при растяжении и твердость сталей, возрастает сопротивление сталей обработке резанием. Наихудшую обрабатываемость имеют структуры: сорбитообразный перлит, сорбит и тростит после закалки и отпуска. Наилучшей по обрабатываемости структурой инструментальных сталей является зернистый перлит с равномерно распределенными мелкими карбидами после тщательной проковки и сфероидизирующего отжига. В целом же в зависимости от химического состава у высоколегированных сталей коэффициент обрабатываемости снижается от Коб = 0,65 (хромистые, коррозионностойкие стали) до Коб = 0,3 (хромоникелевые жаростойкие стали).

Низкоуглеродистая сталь … такая как Ст. 3, Сталь 20… (содержание углерода <0,25%) требует особого внимания из-за сложностей со стружкодроблением и тенденции к налипанию (наростообразование на режущей кромке). Для дробления и отвода стружки необходимо обеспечить как можно большую подачу. Необходимо использовать высокую скорость резания для предотвращения наростообразования на режущей кромке пластины, которое может отрицательно сказываться на качестве обработанной поверхности. Применение пластин с острыми кромками и геометриями для ненагруженного резания уменьшают тенденции к налипанию материалов и предотвращают разрушение кромки.


При чистовой обработке таких сталей рекомендуется применение острых полированных геометрий пластин из кермета, при этом скорость резания должна быть в пределах от 150 до 450 м/мин (в зависимости от условий обработки и производителя пластин значение скорости резания может доходить до 500-700 м/мин). Кермет обеспечивает не только превосходную остроту режущей кромки, но способствует минимальному взаимодействию материала инструмента и обрабатываемого материала, что в свою очередь способствует получению высокого качества обрабатываемых поверхностей. Кермет как правило плохо работает на скоростях ниже 100 м/мин, качество обработки и стойкость пластин заметно снижаются.

Применение высококачественных СОЖ для чистовой обработки так же способствует улучшению обрабатываемости низкоуглеродистых сталей.

При фрезеровании низкоуглеродистых сталей основной проблемой так же является образование наростов и заусенцев. Одним из вариантов решения проблемы является применение скоростной обработки, применение инструментов с острой геометрией, применение качественных СОЖ.

Обрабатываемость низколегированной стали зависит от содержания легирующих элементов и термообработки (твёрдости). Для всех материалов в этой группе наиболее распространёнными механизмами износа являются лункообразование и износ по задней поверхности. Поскольку упрочнённые материалы выделяют в зоне резания больше тепла, распространённым механизмом износа также является пластическая деформация. Для низколегированной стали в неупрочнённом состоянии первым выбором будет серия сплавов и геометрий для стали. Для точения упрочнённых материалов предпочтительно использовать более твёрдые сплавы, пластины с многослойными износостойкими покрытиями (в определенных случаях керамику и CBN).

Высоколегированные стали с общим содержанием легирующих элементов более 5%. В эту группу входят и мягкие, и упрочнённые материалы. Обрабатываемость снижается с ростом содержания легирующих элементов и твёрдости. Что касается низколегированных сталей, то первым выбором будут сплавы и геометрии для стали. Сталь с содержанием легирующих элементов более 5% и твёрдостью более 450 HB предъявляет дополнительные требования в плане стойкости к пластической деформации и прочности кромки. Часто для сталей, в состав легирующих элементов которой входят хром, титан, марганец - рекомендуется применение прочных сплавов пластин с многослойными износостойкими покрытиями подобными для обработки чугунов, поскольку преобладающим становится износ по задней поверхности, выкрашивания.

При фрезеровании сталей высокой твёрдости важное значение приобретает взаимное расположение заготовки и фрезы для предотвращения выкрашивания режущей кромки (во избежание излишнего увеличения толщины стружки на выходе, а также по возможности проводить черновую обработку без применения СОЖ).

Нужно заметить, что в каталогах различных производителей инструмента мартенситные нержавеющие стали (типа 20Х13, 40Х13, 65Х13, 14Х17Н2, 95Х18 и др.) часто вносят в таблицы раздела группы Р. При обработке подобных материалов назначаются инструменты (марки сплавов) соответствующие для обработки сталей из раздела ISO группы Р. Мартенситная структура твердая, и вызывает в основном износ по задней поверхности. Применение твердых сплавов с многослойными износостойкими покрытиями, которые в сочетании обеспечивают и хорошую термостойкость, и высокую износостойкость позволяют вести обработку таких сталей без особых сложностей. Коэффициент обрабатываемости таких сталей в отожженном состоянии, или в закаленном и отпущенном состоянии при твердости 270-340HB для твердого сплава составляет Кʋтв.спл.=0,6-0,8.

Обрабатываемость многих сталей улучшается в результате отжига и отпуска , которые приводят к снижению действительного предела прочности при максимальном выделении из твердого раствора и максимальной коагуляции карбидов. Плохо обрабатываются стали и как с очень низкой твердостью, так и с высокой.

Особенности обработки жаропрочных сталей и титановых сплавов

Вопрос обрабатываемости резанием жаропрочных сталей достаточно успешно разрешен, то жаропрочные сплавы на никелевой основе, сохраняя свои физико-механические свойства при высокой температуре и имея низкую теплопроводность и температуропроводность, не позволяют успешно производить обработку их резанием.

Развивающаяся высокая контактная температура на поверхностях режущего инструмента при большом удельном давлении способствует «слипаемости» (схватыванию) сходящей стружки с передней поверхностью режущего инструмента, что весьма ограничивает применение инструмента, оснащенного твердым сплавом, и совершенно исключает его применение при прерывистом резании.

Обработка титановых сплавов

В этих условиях процесс резания осуществляется только быстрорежущими инструментами из стали Р18 или быстрорежущей стали, легированной кобальтом.

Но так как, быстрорежущая сталь выдерживает температуру только до 600°, то обработку резанием (при прерывистом резании с ударами) ведут с ограниченной скоростью (до 7—10 м/мин). Повысить сколько-нибудь существенно скорость резания (против указанного) на сегодня не представляется возможным, поэтому исследователи этих процессов идут по пути увеличения стойкости, которая может быть осуществлена за счет:

1) геометрических параметров режущего инструмента;

2) применения смазочно-охлаждающих жидкостей;

3) способа их подвода;

4) изыскания метода термической обработки жаропрочных сплавов для получения структуры, наиболее легко поддающейся резанию.

В настоящее время ведутся изыскания новых инструментальных материалов для эффективной обработки жаропрочных сплавов резанием.

Титановые сплавы обладают малой пластичностью, что существенным образом сказывается на их деформации при резании.

Если характеризовать пластическую деформацию срезаемого слоя продольной усадкой стружки, то таковая может быть равна и даже меньше единицы. Это значит, что соприкосновение срезаемого слоя с передней поверхностью инструмента происходит по узкой контактной площадке и, принимая во внимание значительный предел прочности этих сплавов, значительный износ инструмента получается при наличии высокой температуры на контактной площадке.

Вследствие этого становится естественным применение режущего инструмента, оснащенного твердым сплавом. Так как твердые сплавы группы ТК более хрупкие, чем группы ВК, то при обработке титановых сплавов применяют сплавы группы ВК, т.е. так же, как вообще при обработке всех малопластичных материалов. Скорость резания при этом может быть до 100 м/мин и больше.

Существенное влияние на обрабатываемость резанием титановых сплавов оказывают, как упоминалось выше, различные газовые примеси, из которых наиболее активными являются Н2, 02, т.е. с повышением содержания их в титановых сплавах обрабатываемость резанием ухудшается.

Многочисленные исследования над обычными углеродистыми и легированными конструкционными сталями показали, что глубина наклепанного слоя, степень упрочнения, величина и знак (растяжение или сжатие) остаточных напряжений зависят от пластичности обрабатываемого металла, режимов резания, геометрии инструмента, смазочно-охлаждающих жидкостей, степени затупления инструмента и жесткости системы деталь — станок — инструмент.

Исследования показывают, что остаточные напряжения в слое под обработанной поверхностью появляются в результате воздействия тепла, образующегося:

1) от трения задних поверхностей инструмента об обработанную поверхность;

2) пластической деформации этого слоя.

Все эти положения относятся и к жаропрочным сплавам. Исследования, произведенные для установления влияния упрочнения на выносливость деталей, изменение предела усталостной прочности деталей углеродистых и легированных конструкционных сталей, показывают, что во многих случаях упрочнение повышает выносливость деталей, вследствие чего появились и различные упрочняющие методы.

Особенности обработки жаропрочных сталей и титановых сплавов

Сказанное в той или иной степени относится к жаропрочным и титановым сплавам, но также следует, что наличие остаточных растягивающих напряжений отрицательно сказывается на прочностных свойствах жаропрочных и титановых сплавов. Если детали тонкостенные, как, например, лопатки турбин, когда наклепанный после обработки слой материала может быть значительным по отношению ко всей толщине детали, то в этих случаях возможно рекомендовать производить обработку резанием так, чтобы наклеп (упрочнение) был бы минимальным.

При механической обработке сплавов на основе титана (например ВТЗ и ВТ5) выделяется меньшее количество тепла. На этом основании можно было бы ожидать, что среднеинтегральная температура в деформированной зоне указанных сталей и никелевых сплавов должна быть выше, чем у сплавов на основе титана. Однако,результаты температурных исследований при резании титановых сплавов, проведенные в широком диапазоне режимов резания, при сравнении с температурными данными для сталей показывают обратное. Например, температура резания титанового сплава достигает 800° С уже при скорости резания v = 40 м/мин, подаче s = 0,ll мм/об и глубине резания V=1,5 мм; при резании же стали 45 аналогичная температура развивается при значительно более высоком режиме: v = 100 м/мин; s = 0,29 мм/об и t = 2 мм.

В зоне резания возникает сложное деформированное и напряженное состояние при наличии пластических деформаций сжатия, сдвига и растяжения, которые распространяются далеко впереди резца и под обработанную поверхность.

Характер изменения деформаций и напряжений по длине и толщине зоны стружкообразования остается одним и тем же как для жаропрочных и титановых сплавов, так и для углеродистых сталей. Имеет место лишь количественное различие.

Наибольшей величины при резании жаропрочных сплавов и углеродистых сталей достигают деформации сжатия, а при резании титановых сплавов—деформации сдвига.

При высоких температурах, возникающих в процессе резания титановых сплавов, проявляется свойство активности титана к кислороду и азоту воздуха. Это приводит к изменению структуры и физико-механческих свойств поверхностного слоя обработанной детали, что по всей вероятности может быть причиной снижения ее усталостной прочности.

Жаропрочные сплавы склонны к образованию налипов на передней поверхности резца, что вызывает необходимость применения смазывающе-охлаждающих жидкостей, обладающих высокой смазывающей способностью.

При обработке жаропрочных сплавов выделяется большое количество тепла, которое повышает температуру детали и вызыва¬т изменение её размеров и формы. Во избежание этого требуется обильный подвод охлаждающей жидкости.

Большая склонность жаропрочных сплавов к наклепу. Так, на многих производствах, жаропрочный сплав после получения наклепа не поддается обработке резанием; рекомендует перед обработкой резанием этот материал предварительно подвергнуть термической обработке.

Большие силы резания, в 3—4 раза превышающие силы при резании обычных конструкционных сталей, и высокий коэффициент трения требуют применения инструментов с высокой чистотой рабочих поверхностей и острой режущей кромкой.

Большинство жаропрочных сплавов вследствие особенностей кристаллографической структуры их фазовых составляющих являются весьма абразивными, поэтому применяемые для их обработки инструментальные материалы должны сопротивляться этому воздействию либо по своей природе, либо в результате соответствующей специальной обработки и созданных условий работы.

Жаропрочные сплавы сохраняют значительную твердость и прочность при кратковременном повышении температуры при резании. При внезапном повышении температуры и последующей быстровозникающей деформации предел прочности сплава оказывается более высоким, а вязкость более низкой.

Сплавы титана обрабатываются несколько хуже нержавеющих сталей, но лучше жаропрочных сплавов. Сравнительно быстрое изнашивание режущих кромок инструмента при обработке титановых сплавов зависит от высокой химической активности титана, легко вступающего в соединения со всеми соприкасающимися с ним металлами. Эта особенность титана при его низкой теплопроводности и небольшой поверхности контакта между резцом. И стружкой приводит к развитию высокой температуры в зоне резания. Титановые сплавы часто содержат включения в виде окислов нитридов и карбидов, которые обладают высокими абразивными свойствами и способствуют ускоренному износу режущего инструмента. Наклеп не оказывает существенного влияния на износ режущего инструмента.

Обработка титановых сплавов

Для охлаждения применяют сульфурированные или хлориро­ванные масла.

Для нарезания резьбы применяют метчики со спиральными ка­навками; метчики для нарезания резьбы до б мм и шагом менее 1,25 мм делаются двухканавочными; для более крупных резьб трехканавочными. Режущие и калибрующие зубья метчиков реко­мендуется затыловать. Резьбу следует нарезать не полную; умень­шение высоты резьбы с 75 до 65% способствует повышению срока службы метчиков в 2—3 раза.

При нарезании резьбы в технически чистом нелегированном титане применяется скорость резания v = 12 м/мин. При нарезании резьбы в сплавах титана v=7,6 м/мин. Для охлаждения метчиков применяются сульфурированные и хлорированные масла.

При протягивании технически чистого нелегированного титана скорость резания, допускаемая протяжками из быст­рорежущей стали v = 7,6 м/мин.

При протягивании титановых сплавов v = 4,6 м/мин.

Обработка сплавав с твердостью HRC>37 связана со значи­тельными трудностями ввиду быстрого износа протяжек.

При обработке титановых сплавав следует следить за состоя­нием протяжки и не допускать налипания титана на зубья.

Охлаждение: обильной струей сульфурированного или хло­рированного масла. Зубья протяжек выполняются с передним углом 8°; с задними углами 3° — для черновых про­тяжек и 2° — для чистовых.

Разрезка титана

Разрезка пруткового материала диаметром 50-90 мм успешно производится ножевками из быстрорежущей стали. Шаг зубьев полотен зависит от твердости разрезаемого материала. При НВ 275—350 шаг зубьев 4,2—6,2 мм; при НВ 350— 6,2 мм; при НВ >350—8,4 мм.

Натяжение полотен должно быть постоянное и достаточное.

Сплавы титана режутся при 45—70 двойных ходах ножовки в минуту с подачей 0,15—0,23 мм на двойной ход. Для охлаждения применяют сульфурированное или хлорированное масло.

Хорошие результаты при разрезке титана дает дисковая пила со вставными зубьями. Передний угол зубьев пилы —5°. Для удаления стружки, прилипшей к зубьям пилы, применяют стружкоулавливатель.

В настоящее время начинают широко использовать резку тита­на абразивными кругами с применением охлаждающих жидкостей.

Читайте также: