Эвтектоидная заэвтектоидная эвтектоидная сталь

Обновлено: 16.05.2024

. Содержание углерода 6,67% соответствует 100%-ной доле химического соединения Fe3C, называемого цементитом. Таким образом, диаграмма железо- углерод представляет часть диаграммы между чистым компонентом А (Fe) и соединением В (Fe3C)

. Сплошные линии соответствуют метастабильной системе Fe- Fe3C, пунктирные линии изображают стабильную систему Fe - C.

В области до 4,3% С различия граничных фазовых линий между метастабильной и стабильной системами незначительны. Однако при длительном температурном воздействии и при более высоком содержании углерода цементит имеет склонность к распаду на железо и графит. Графит и цементит могут, как часто наблюдается у чугуна, появляться рядом друг с другом.

Диаграмма Fe-Fe3C является характерным примером сложной системы, содержащей три превращения:

1. Перетектическое превращение с перитектической точкой при 0,16%С и 1493 о С (точка J), в результате чего из расплава и первично выделенного -твердого раствора (ОЦК) образуется ---твердый раствор (ГЦК) по реакции:.

2. Эвтектическая реакция между расплавом, g-твердым раствором и Fe3C при 4,3% С и 1147 о С по реакции (точка С).. Эвтектическая горизонталь простирается от 2,14 до 6,67% С, соответственно от 31 до 100% Fe3C. Это означает, что при содержании С2,14%).

3. Эвтектоидное превращение - твердого раствора (аустенит) в при 0,8%С и 723 о С по реакции (точка S).


Диаграмма состояния железо-углерод

При содержании С>2,14% наряду с первично выделенным - твердым раствором остаточный расплав превращается в эвтектику , которая при 4,3%С образуется как чистая эвтектика и называется также ледебуритом.

На диаграмме Fe- Fe3C левее точки Е’находятся стали, правее - чугуны. Как видно из диаграммы, стали не испытывают эвтектического превращения. При температурах ниже 723 о С все стали (в отожженном состоянии) состоят из двух фаз - ферритаи цементита.Феррит-это твердый раствор углерода в a-Feс ОЦК решеткой. Максимальная растворимость углерода в a-Fe составляет около 0,025% (точка Р) Цементит - это карбид железа Fe3C, содержащий 6,7%С.

Микроструктура сталей

По микроструктуре в отожженном состоянии различают:

а) техническое железо, не испытывающее эвтектоидное превращение (до 0,025%С);

б) доэвтектоидные стали (от 0,025 до 0,8%С);

в) эвтектоидные стали (0,8 %С);

г) заэвтектоидные стали (от 0,8 до 2,14%С).

В отожженном техническом железе микроструктура состоит либо только из равноосных зерен феррита (до 0,006%С), либо из равноосных зерен феррита с пограничными выделениями третичного цементита. Третичный цементит образуется по границам зерен феррита вследствие уменьшения растворимости углерода в феррите при понижении температуры, и образует разорванную сетку, т.к. количество его невелико.

В отожженных доэвтектоидных сталях две структурные составляющие: избыточный феррит, образующийся в результате полиморфного превращения g ® a, и эвтектоид - перлит, который возникает при эвтектоидном превращении: g08®a0.025+Fe3C. Избыточный феррит при большом его количестве выделяется в виде равноосных зерен (рисунок 22), при малом количестве - в виде сетки по границам зерен аустенита (рисунок 23).

Перлит имеет характерное пластинчатое строение и состоит из отдельных зерен - колоний (рисунок 24). Количественное соотношение феррита и цементита в перлите не зависит от состава стали.

В отожженных заэвтектоидных сталях структурные составляющие - перлит и цементит вторичный. Последний выделяется из аустенита перед эвтектоидной реакцией из-за уменьшения растворимости углерода при понижении температуры. Вторичный цементит выделяется по границам зерен аустенита, образуя сетку (рисунок 25), заполненную колониями перлита, которые образуются из аустенита при эвтектоидном превращении.

Таким образом, по микроструктуре можно качественно отличить стали с разным содержанием углерода. В таблице 1 приведены данные о фазовых и структурных составляющих сталей.

Таблица 1 - Фазовое состояние и микроструктура отожженных углеродистых сталей

Техническое название сплава % С (по массе) Фазы при 20 о С Структурные составляющие при 20 о С
Техническое железо 0 - 0,006 0,006-0,025 a , Fe3C Феррит (Ф) Ф+ЦIII
Доэвтектоидная сталь 0,025 - 0,8 a , Fe3C Перлит+ФИЗБ
Эвтектоидная сталь 0,8 a , Fe3C Перлит
Заэвтектоидная сталь 0,8 - 2,14 a , Fe3C Перлит + ЦII

Фазы углеродистой стали сильно отличаются механическими свойствами: феррит мягок и пластичен, цементит тверд и хрупок. Ясно, что механические свойства стали зависят от свойств фаз, однако существенное влияние оказывает и микроструктура. Свойства отдельных фаз и перлита можно сравнить в таблице 2. Эвтектоидные и заэвтектоидные стали со структурой перлита или перлита с вторичным цементитом обладают повышенной твердостью. Если же сталь подвергнуть специальному отжигу (сфероидизирующий отжиг), выделения вторичного цементита и цементит эвтектоида принимают глобулярную форму (см. рисунок 26), а твердость снижается.


Рисунок 21 - Схема микроструктуры технического железа: феррит и третичный цементит по границам зерен

Рисунок 22 - Схема микроструктуры доэвтектоидной стали: зерна избыточного феррита и перлит

Рисунок 23 - Схема микроструктуры перлита

Рисунок 24 - Схема микроструктуры доэвтектоидной стали: сетка избыточного феррита и перлит

Рисунок 25 - Схема микроструктуры заэвтектоидной стали: сетка вторичного цементита и перлит

Рисунок 26 - Схема микроструктуры заэвтектоидной стали: феррит и зернистый цементит

Таблица 2 - Механические свойства структурных составляющих в углеродистых сталях

Структура (фаза) Механические свойства
Твердость НВ, МПа s В, МПа d ,%
Феррит Цементит Перлит Феррит и зернистый цементит (0,8%С) 800 - 900 7500 - 8200 1900 - 2300 1600 - 1900 190 - 250 830 - 900 650 - 700 40-50

Строение зоны термического влияния (ЗТВ).

Рассмотрим схему зоны термического влияния в сварных соединениях в соответствии с диаграммой состояния и максимальной температурой нагрева, достигаемой в отдельных точках. Протяженность отдельных участков возрастает с уменьшением градиента распределения максимальных температур нагрева.

Рис.

Участок 1 – металл шва

Участки 2, 3, 4, прилежащие к линии сплавления, образуются в сварных соединениях сталей, претерпевающих перитектическую реакцию, что характерно для низкоуглеродистых сталей с содержанием углерода до 0,5%. Для данных участков характерно образование высокотемпературной химической неоднородности, следствием которой может служить снижение технологических и служебных свойств сварных соединений. Одним из существенных факторов, способствующим высокотемпературной химической неоднородностит, является процесс превращении α→ δ при нагреве до 1400оС.

Участок 5. характеризуется крупнозернистой структурой в результате перегрева аустенитных зерен. В низкоуглеродистых и низколегированных сталях при замедленной последующем охлаждении образуется перлитно-ферритная структура пластинчатого типа.

Участок 6. участок нормализации с температурой нагрева в интервале Т рекрист – Ас3 . Для этого участка характерна относительно мелкозернистая структура аустенита с повышенной неоднородностью по содержанию углерода и легирующих элементов.

Участок 7. Участок неполной рекристаллизации с максимальной температурой нагрева в интервале Ас3-Ас1, структура стали – аустенитно-ферритная с наличием карбидов. Аустенит характеризуется наибольшей неоднородностью по углероду и элементам замещения. При умеренных скоростях охлаждения из межкритического интервала температур более углеродистая част аустенита превращается по мартенситному механизму, а менее углеродистая – по диффузионному.

Участок 8 – участок отпуска, в котором металл нагревается до температуры Ас1 600оС. Здесь наиболее активно происходят процессы разделения феррита и цементита, коагуляции карбидов.

Следует отметить, что во всех участках ЗТВ процессы структурно-фазовых превращений, и, следовательно, формирования механических свойств сварного соединения в значительной степени зависят от параметров термических циклов сварки и термообработки, химического состава и исходного структурного состояния сталей.

Фазовые превращения в стали при нагреве и охлаждении.

Нагрев стали сопровождается образованием аустенита, а основное превращение – это превращение перлита в аустенит, так как в структуре всех сталей в исходном состоянии присутствует перлит. Превращение идет по реакции Ф+Ц → А.

В доэвтектоидных сталях после исчезновения перлита при нагреве от температуры Ас3 до Ас1 избыточный феррит превращается в аустенит. В заэвтектоидных сталях в этом интервале температур избыточный цементит растворяется в аустените. Выше температур Ас3 идут только процессы гомогенизации и роста зерна аустенита. Рост зерна – самопроизвольно протекающий процесс, так как при этом уменьшается суммарная поверхность зерен (уменьшается поверхностная энергия). От размера зерна аустенита зависят механические свойства стали, особенно понижается ударная вязкость и пластичность.

При охлаждении аустенит не сохраняется, а претерпевает превращения. При этом в зависимости от скорости охлаждения могут протекать два превращения: аустенита в феррито-карбидную смесь (ФКС) или аустенита в мартенсит. Чем больше скорость охлаждения, тем дисперснее структура ФКС. Если при охлаждении подавляется диффузионная подвижность атомов, то происходит мартенситное превращение. Такое влияние скорости охлаждении связано с тем, что с увеличением скорости охлаждения аустенит может переохлаждаться до более низких температур. Чем больше скорость переохлаждения, тем больше степень переохлаждения, меньше диффузионная подвижность атомов железа и углерода и ниже действительная температура превращения аустенита. Таким образом, важнейшим фактором, влияющим на механизм и кинетику превращения аустенита при непрерывном охлаждении, а также на строение и свойства получающихся продуктов превращения, является степень переохлаждения аустенита.

Аналогичная зависимость характерна при изотермическом охлаждении. Каждой действительной температуре изотермической выдержки соответствует определенное время начала и конца превращения. Диаграммы изотермического превращения аустенита для всех сталей приведены в справочниках и с их помощью можно прогнозировать структуру и твердость после конкретного режима охлаждения.

Изотермическая диаграмма распада переохлажденного аустенита эвтектоидной стали (показать структуры и скорости охлаждения).

ФКС в зависимости от температуры нагрева и времени изотермической выдержки имеет следующую структуру:

Перлит (межпластинчатое расстояние 0,5-0,7 мкм);

Сорбит (межпластинчатое расстояние 0,3-0,4 мкм);

Тростит (межпластинчатое расстояние 0,1-0,2 мкм).

Мартенсит имеет пластинчатую или реечную форму. Промежуточным продуктом может быть бейнит – смесь феррита и дисперсных карбидов, которые можно различить только в электронном микроскопе.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.



© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

Стали доэвтектоидные, эвтектоидные и заэвтектоидные,

Структура сталей формируется в результате перекристаллизации аустенита. Микроструктуры сталей представлены на рис. 3.1.

Рис. 3.1. Микроструктуры сталей: а – доэвтектоидная сталь ; б – эвтектоидная сталь (пластинчатый перлит); в – эвтектоидная сталь (зернистый перлит); г – заэвтектоидная сталь .

По содержанию углерода и по структуре стали подразделяются на:

- эвтектоидные (С=0,8%), структура перлит (П), перлит может быть пластинчатый или зернистый (рис. 9.3 б и 9.3 в);

По микроструктуре сплавов можно приблизительно определить количество углерода в составе сплава, учитывая следующее: количество углерода в перлите составляет 0,8 %, в цементите – 6,67 %. Ввиду малой растворимости углерода в феррите, принимается, что в нем углерода нет.

Контрольные вопросы

1. Назовите классификацию сталей по содержанию углерода и по структуре.

2. Какова микроструктура доэвтектоидных сплавов?

3. Какова микроструктура заэвтектоидных сплавов?

4. Что можно определить по микроструктуре сплавов?

Чугуны. Влияние основных примесей на структуру

И свойства чугунов

Чугун отличается от стали: по составу – более высокое содержание углерода и примесей; по технологическим свойствам – более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.

Углерод и кремний способствуют графитизации, марганец затрудняет графитизацию и способствует отбеливанию чугуна.

Сера способствует отбеливанию чугуна и ухудшает литейные свойства, ее содержание ограничено – 0,08…0,12 %.

Фосфор на процесс графитизации не влияет, но улучшает жидкотекучесть, Фосфор является в чугунах полезной примесью, его содержание – 0,3…0,8 %.

Положительные стороны наличия графита:

· графит улучшает обрабатываемость резанием, так как образуется ломкая стружка;

· чугун имеет лучшие антифрикционные свойства, по сравнению со сталью, так как наличие графита обеспечивает дополнительную смазку поверхностей трения;

· из-за микропустот, заполненных графитом, чугун хорошо гасит вибрации и имеет повышенную циклическую вязкость;

· детали из чугуна не чувствительны к внешним концентраторам напряжений (выточки, отверстия, переходы в сечениях);

· чугун значительно дешевле стали;

· производство изделий из чугуна литьем дешевле изготовления изделий из стальных заготовок обработкой резанием, а также литьем и обработкой давлением с последующей механической обработкой.

1. Чем чугун отличается от стали по составу?

2. Чем чугун отличается от стали по технологическим свойствам?

3. Как наличие углерода и кремния влияет на свойства чугуна?

4. Как наличие сера влияет на свойства чугуна?

5. Как наличие фосфора влияет на свойства чугуна?

6. Назовите положительные стороны наличия графита.

3.4. Виды чугунов. Бе­лый и серый чугуны. Применение белых и серых чугунов

В зависимости от состояния углерода в чугуне различают:

· белый чугун – углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск;

· серый чугун – весь углерод или большая часть находится в свободном состоянии в виде графита, а в связанном состоянии находится не более 0,8 % углерода. Из-за большого количества графита его излом имеет серый цвет;

· половинчатый – часть углерода находится в свободном состоянии в форме графита, но не менее 2 % углерода находится в форме цементита. Мало используется в технике.


Наиболее широкое распространение получили чугуны с содержанием углерода 2,4…3,8%. Чем выше содержание углерода, тем больше образуется графита и тем ниже его механические свойства, следовательно, количество углерода не должно превышать 3,8 %. В то же время для обеспечения высоких литейных свойств (хорошей жидкотекучести) углерода должно быть не менее 2,4 %.

Влияние формы графита на механические свойства чугунов.

Графитовые включения можно рассматривать как соответствующей формы пустоты в структуре чугуна. Около таких дефектов при нагружении концентрируются напряжения, значение которых тем больше, чем острее дефект. Отсюда следует, что графитовые включения пластинчатой формы в максимальной мере разупрочняют металл. Более благоприятна хлопьевидная форма, а оптимальной является шаровидная форма графита. Пластичность зависит от формы таким же образом. Относительное удлинение ( ) дпя серых чугунов составляет 0,5 %, для ковких – до 10 %, для высокопрочных – до 15%.

Наличие графита наиболее резко снижает сопротивление при жестких способах нагружения: удар; разрыв. Сопротивление сжатию снижается мало.

Белый чугун - вид чугуна, в котором углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск. В структуре такого чугуна отсутствуют видимые включения графита и лишь незначительная его часть (0,03-0,30%) обнаруживается тонкими методами химического анализа или визуально при больших увеличениях. Основная металлическая масса белого чугуна состоит из цементитной эвтектики, вторичного и эвтектоидного цементита, а легированного белого чугуна - из сложных карбидов и легированного феррита. Классифицируется:

- передельный чугун - П1, П2;

- передельный чугун для отливок - ПЛ1, ПЛ2,

- передельный фосфористый чугун - ПФ1, ПФ2, ПФ3,

- передельный высококачественный чугун - ПВК1, ПВК2, ПВК3;

Серый чугун. Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.

Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами.

В зависимости от прочности серый чугун подразделяют на 10 марок.

Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.

Серые чугуны содержат углерода – 3,2…3,5 %; кремния – 1,9…2,5 %; марганца – 0,5…0,8 %; фосфора – 0,1…0,3 %; серы – < 0,12 %.

Структура металлической основы зависит от количества углерода и кремния. С увеличением содержания углерода и кремния увеличивается степень графитизации и склонность к образованию ферритовой структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны.

Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. Это базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие, блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугунатакже используются в электромашиностроении, для изготовления товаров народного потребления.

Обозначаются индексом СЧ (серый чугун) и числом, которое показывает значение предела прочности, умноженное на СЧ 15.

1. Как классифицируются чугуны в зависимости от состава углерода в чугуне.

2. Какое максимальное количество углерода должно быть в составе чугуна?

3. Какое минимальное количество углерода должно быть в составе чугуна для обеспечения высоких литейных свойств (хорошей жидкотекучести)?

4. Какое влияние оказывает форма графита на механические свойства чугунов?

5. Дайте определение белых чугунов.

6. Назовите классификацию белых чугунов.

7. Как маркируются белые чугуны?

8. Назовите область применения белых чугунов.

9. Дайте определение серых чугунов.

10. Назовите область применения серых чугунов.

11. Назовите факторы, влияющие на структуру металлической основы.

12. Как маркируются серые чугуны?

Ковкий чугун

Ковкий чугун получают отжигом белого доэвтектоидного чугуна.

Хорошие свойства у отливок обеспечиваются, если в процессе кристаллизации и охлаждения отливок в форме не происходит процесс графитизации. Чтобы предотвратить графитизацию, чугуны должны иметь пониженное содержание углерода и кремния.

Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.

Различают 7 марок ковкого чугуна: три с ферритной (КЧ 30 – 6) и четыре с перлитной (КЧ 65 – 3) основой.

По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным является ограничение толщины стенок для отливки и необходимость отжига.

Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках.

Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.

Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.

Обозначаются индексом КЧ (высокопрочный чугун) и двумя числами, первое из которых показывает значение предела прочности, умноженное на 10 -1 , а второе – относительное удлинение - КЧ 30 - 6.

1. Дайте определение ковкого чугуна.

2. Назовите область применения ковких чугунов.

3. Как маркируются ковкие чугуны?

Высокопрочный чугун

Высокопрочный чугун с шаровидным графитом.

Высокопрочные чугуны могут иметь ферритную (ВЧ 35), феррито-перлитную (ВЧ45) и перлитную (ВЧ 80) металлическую основу. Получают эти чугуны из серых, в результате модифицирования магнием или церием (добавляется 0,03…0,07% от массы отливки). По сравнению с серыми чугунами, механические свойства повышаются, это вызвано отсутствием неравномерности в распределении напряжений из-за шаровидной формы графита.

Чугуны с перлитной металлической основой имеют высокие показатели прочности при меньшем значении пластичности. Соотношение пластичности и прочности ферритных чугунов - обратное.

Высокопрочные чугуны обладают высоким пределом текучести, достаточно высокой ударной вязкостью и усталостной прочностью. Из-за высокого модуля упругости достаточно высокая обрабатываемость резанием. Обладают удовлетворительной свариваемостью. Литейные напряжения в отливках несколько выше, чем для серого чугуна.

Высокопрочные чугуны содержат: углерода – 3,2…3,8 %, кремния – 1,9…2,6 %, марганца – 0,6…0,8 %, фосфора – до 0,12 %, серы – до 0,3 %.

Из высокопрочного чугуна изготовляют тонкостенные отливки (поршневые кольца), шаботы ковочных молотов, станины и рамы прессов и прокатных станов, изложницы, резцедержатели.

Отливки коленчатых валов массой до 2..3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.

Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности, умноженное на ВЧ 100.

1. Назовите классификацию высокопрочных чугунов.

2. Назовите область применения высокопрочных чугунов.

3. Как маркируются высокопрочные чугуны?

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Теоретическая часть. 1.1 Микроструктура технического железа

Микроструктура технического железа и углеродистых сталей характеризуется нижней левой частью диаграммы состояния Fe-Fe3C (рисунок 1).

Сплавы с содержанием углерода до 0,02 % называются техническим железом (рисунок 2) растворимость углерода в a-железе переменная (см. линию РQ). С понижением температуры растворимость углерода в a-железе понижается. При температуре 727 °С в a-железе растворяется 0,02 % углерода, а при комнатной температуре 0,006 %. В связи с этим сплавы железа с содержанием углерода до 0,006 % имеют структуру только феррита, т.е. твердого раствора углерода в a-железе.

В сплавах с содержанием углерода от 0,006 до 0,02 % в связи с понижением растворимости углерода в a-железе при понижении температуры из феррита выделяется цементит, называемый третичным. При комнатной температуре структура таких сплавов состоит из феррита и цементита третичного, который располагается по границам зерен феррита (рисунок 2).

Максимальное количество цементита третичного в сплаве приблизительно равно 0,3 %. Однако даже столь малое количество цементита третичного сообщает малоуглеродистой стали низкие пластические свойства, т.е. приводит ее к охрупчиванию (из-за расположения вокруг зерен феррита хрупких оболочек). Для устранения этого явления проводится специальная термическая обработка, в результате которой цементит третичный выделяется в виде дисперсных частиц, равномерно распределенных по всему зерну.

1.2 Микроструктура стали

Железоуглеродистые сплавы с содержанием углерода от 0,02 до 2,14 % называются сталями. Сплавы с содержанием углерода от 0,02 до 0,8 % называются доэвтектоидными сталями; от 0,8 до 2,14 % - заэвтектоидными.


Рисунок 1 – Диаграмма состояния Fe-Fe3C

а - феррит; б - феррит + цементит третичный

Рисунок 2 – Микроструктура технического железа и ее схематическое изображение

Сплав с содержанием углерода 0,8 % называют эвтектоидной сталью. Микроструктура эвтектоидной стали представляет собой механическую смесь феррита (FeaС) и цементита (Fe3С), которая получается в результате распада твердого раствора углерода в g - железе - аустенита (FegС) с содержанием углерода 0,8 % при Т = 727 °С (см. точку “S” на диаграмме Fe- Fe3С). Такая механическая смесь называется перлитом, т.к. при травлении шлифа эвтектоидной стали, поверхность имеет перламутровый отлив.

Перлитная структура имеет пластинчатый характер, при достаточном увеличении в микроскопе видна смесь равномерно распределенных, параллельно расположенных двух фаз: узких полосок цементита и широких феррита. На микроструктуре перлита общий светлый фон представляет собой феррит; темные участки - цементит. В зависимости от скорости охлаждения пластины цементита в перлите могут быть длиннее или короче.

Микроструктура доэвтектоидной стали (с 0,02 до 0,8 %) состоит из феррита и перлита. Феррит - это почти чистое железо, т.к. в феррите растворяется очень малое количество углерода. Перлит - это эвтектоид, механическая смесь феррита и цементита.

В доэвтектоидной стали после травления феррит выделяется в виде светлых полей, а перлит в виде полей полосчатого строения (рисунок 3).

Количество феррита и перлита в доэвтектоидной стали зависит от содержания углерода. С увеличением содержания углерода количество феррита уменьшается, а количество перлита увеличивается.

По микроструктуре доэвтектоидной стали можно приблизительно определить содержание в ней углерода, для чего нужно ориентировочно определить площадь (в процентах), занимаемую ферритом и перлитом. В связи с тем, что в феррите растворено очень незначительное количество углерода, практически можно считать, что в доэвтектоидной стали весь углерод находится в перлите. Тогда содержание углерода в стали, %, можно определить по формуле

где Fп - площадь, занимаемая перлитом, %.

Предположим, например, что половина площади (50 %) занята перлитом, половина ферритом. Содержание углерода в такой стали будет равно

Микроструктура заэвтектоидной стали (С = 0,8 - 2,14 %) имеет структуру, состоящую из перлита и цементита вторичного. Вторичный цементит выделяется из аустенита при охлаждении от температуры Аr3 (линия SЕ) до температуры Аr1 (727 °С) (см. диаграмму Fe-Fe3С) вследствие понижения растворимости углерода в g-железе (Feg). При медленном охлаждении цементит вторичный выделяется в виде сетки по границам зерен аустенита. При достижении температуры Аr1 (727 °С) аустенит превращается в перлит.

В результате медленного охлаждения заэвтектоидная сталь имеет структуру перлита и сетки цементита, белая сетка - вторичный цементит, а внутри сетки зерна пластинчатого строения - перлит (рисунок 3). Чем больше углерода в заэвтектоидной стали, тем более массивной (толстой) получается цементитная сетка.


а – доэвтектоидная сталь, феррит и перлит; б – эвтектоидная сталь, перлит; в – заэвтектоидная сталь, перлит и цементит вторичный

Рисунок 3 – Микроструктура стали и ее схематическое изображение

1.3 Классификация сталей

В углеродистой стали промышленного производства присутствуют различные примеси, которые по условиям появления в стали подразделяются на постоянные (всегда присутствующие в стали) и случайные. Постоянные элементы связаны с существующей технологией производства (марганец и кремний) и невозможностью полного удаления (сера, фосфор, водород, азот, кислород).

Влияние углерода и примесей на свойства стали. Углерод существенно влияет на свойства стали даже при незначительном изменении ею содержания. В стали имеются две фазы — феррит и цементит (частично в виде перлита). Количество цементита возрастает прямо пропорционально содержанию углерода. Как уже говорилось, феррит характеризуется высокой пластичностью и низкой твердостью, а цементит, напротив, очень низкой пластичностью и высокой твердостью. Поэтому с повышением содержания углерода до 1,2 % снижаются пластичность и вязкость стали и повышаются твердость и прочность.

Повышение содержания углерода влияет и на технологические свойства стали. Ковкость, свариваемость и обрабатываемость резанием ухудшаются, но литейные свойства улучшаются.

Кроме железа и углерода в стали всегда присутствуют постоянные примеси. Наличие примесей объясняется технологическими особенностями производства стали (марганец, кремний) и невозможностью полного удаления примесей, попавших в сталь из железной руды (сера, фосфор, кислород, водород, азот). Возможны также случайные примеси (хром, никель, медь и др.).

Марганец и кремнийвводят в любую сталь для раскисления, т.е. для удаления вредных примесей оксида железа FeO. Марганец также устраняет вредные сернистые соединения железа. При этом содержание марганца обычно не превышает 0,8 %, а кремния — 0,4 %. Марганец повышает прочность, а кремний упругость стали.

Фосфор растворяется в феррите, сильно искажает кристаллическую решетку, снижая при этом пластичность и вязкость, но повышая прочность. Вредное влияние фосфора заключается в том, что он сильно повышает температуру перехода стали в хрупкое состояние, т.е. вызывает ее хладноломкость. Вредность фосфора усугубляется тем, что он может распределяться в стали неравномерно. Поэтому содержание фосфора в стали офаничивается величиной 0,045 %.

Сератакже является вредной примесью. Она нерастворима в железе и образует с ним сульфид железа FeS, который образует с железом легкоплавкую эвтектику. Эвтектика располагается по границам зерен и делает сталь хрупкой при высоких температурах. Это явление называется красноломкостью. Количество серы в стали ограничивается 0,05 %.

Водород, азот и кислород содержатся в стали в небольших количествах. Они являются вредными примесями, ухудшающими свойства стали.

Классификация сталей. По химическому составу стали могут быть углеродистыми, содержащими железо, углерод и примеси, и легированными, содержащими дополнительно легирующие элементы, введенные в сталь с целью изменения ее свойств.

По содержанию углеродастали делятся на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,25 — 0,7 % С) и высокоуглеродистые (более 0,7 % С).

По назначениюразличают стали конструкционные, идущие на изготовление деталей машин, конструкций и сооружений, инструментальные, идущие на изготовление различного инструмента, а также стали специального назначения с особыми свойствами: нержавеющие, жаростойкие, жаропрочные, износостойкие, с особыми электрическими и магнитными свойствами и др.

По показателям качествастали классифицируются на обыкновенного качества, качественные, высококачественные и особо высококачественные. Качество стали характеризуется совокупностью свойств, определяемых процессом производства, химическим составом, содержанием газов и вредных примесей (серы и фосфора). В соответствии с ГОСТом стали обыкновенного качества должны содержать не более 0,045 % Р и 0,05 % S, качественные — не более 0,035 % Р и 0,04 % S, высококачественные — не более 0,025 % Р и 0,025 % S и особовысококачественные — не более 0,025 % Р и 0,015 % S. Углеродистые конструкционные стали могут быть только обыкновенного качества и качественными.

Углеродистые стали обыкновенного качества в зависимости от назначения и гарантируемых свойств делятся на три группы: А, Б, В.

Стали группы А имеют гарантируемые механические свойства. Они используются в состоянии поставки без горячей обработки или сварки. Эти стали маркируются буквами Ст и цифрами, обозначающими порядковый номер марки. Выпускается семь марок сталей группы А: Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6. Чем выше номер марки, тем больше содержание углерода и, соответственно, выше прочность и ниже пластичность.

Стали группы Б имеют гарантируемый химический состав. Эти стали подвергаются горячей обработке. При этом их механические свойства не сохраняются, а химический состав важен для определения режима обработки. Маркируются они так же, как стали группы А, но перед буквами Ст ставится буква Б. Чем выше номер марки, тем больше содержание в стали углерода, марганца и кремния.

Стали группы В имеют гарантируемые механические свойства и химический состав. Эти стали используются для сварки, так как для выбора режима сварки надо знать химический состав, а механические свойства частей изделий, не подвергшихся тепловому воздействию, остаются без изменений. В марках сталей этой группы на первое место ставится буква В. При этом механические свойства стали соответствуют свойствам аналогичной марки из группы А, а химический состав — составу аналогичной марки из группы Б.

Качественные конструкционные углеродистые стали маркируются цифрами 08, 10, 15, 20, 25, 85, которые обозначают среднее содержание углерода в сотых долях процента. Эти стали отличаются от сталей обыкновенного качества большей прочностью, пластичностью и ударной вязкостью. Если для сталей обыкновенного качества максимальная прочность составляет 700 МПа, то для качественной она достигает 1100 МПа.

1.4 Микроструктура чугунов

Железоуглеродистые сплавы с содержанием углерода более 2,14 % называются чугунами. Чугун отличается от стали по составу - более высоким содержанием углерода, по технологическим свойствам - лучшими литейными качествами, по малой способности к пластической деформации (в обычных условиях не поддается ковке).

- белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида Fe3C;

- серый чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в форме пластинчатого графита;

- высокопрочный чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в форме шаровидного графита;

- ковкий чугун, в котором весь углерод или значительная его часть находится в свободном состоянии в форме хлопьевидного графита (углерода отжига). Ковкий чугун получается в результате отжига отливок из белого чугуна.

Таким образом, чугун (кроме белого) отличается от стали наличием в структуре графитовых включений, а между собой чугуны различаются формой этих включений.

Углеродистой стали в равновесном состоянии

- установление зависимости между структурой и свойствами стали.

Под равновесным понимается такое состояние, при котором все фазовые превращения в сплаве полностью закончились в соответствии с диаграммой состояния. Это имеет место только при очень малых скоростях охлаждения (нагрева). Равновесное состояние соответст­вует минимальному значению свободной энергии и не подвергается са­мопроизвольному изменению во времени. Поэтому оно называется ста­бильным.

Превращения, протекающие в сталях в равновесном состоянии, описываются диаграммой «железо-цементит», представленной на рисунке 8.1.

Рисунок 8.1 – Диаграмма «железо-цементит»

В железоуглеродистых сплавах могут присутствовать следующие твердые фазы: феррит, аустенит, цементит.

Феррит – твердый раствор внедрения углерода в a-железе, имеющем объемноцентрированную кубическую решетку. На диаграмме «железо-цементит» существуют две области феррита – высокотемпературная область АNН и низкотемпературная область GPQ. Максимальная растворимость в высокотемпературной области составляет 0,10 % – точка Н, в низкотемпературной области 0,02 % – точка Р. Содержание углерода при комнатной температуре – 0,01 %. Феррит мягок и пластичен (sВ = 200 – 300 МПа, d = 20–50 %, 80 – 100 НВ).

Аустенит – твердый раствор внедрения углерода в g-железе, имеющем гранецентрированную кубическую решетку. На диаграмме «железо-цементит» аустенит занимает область NJESG. Максимальная растворимость углерода в аустените 2,14 % – точка Е. По механическим свойствам аустенит близок к ферриту. Горячую обработку давлением проводят в области существования аустенита (однофазный твердый раствор характеризуется высокой пластичностью).

Цементит – химическое соединение железа с углеродом – карбид железа, химическая формула которого Fe3С. Содержание углерода в цементите равна 6,67 %. Цементит обладает высокой твердостью (» 800 HV) и хрупкостью. Он имеет сложную ромбическую решетку. Она состоит из ряда октаэдров, оси которых расположены под некоторыми углами друг к другу.

Кристаллизация сплавов, содержание углерода в которых меньше 0,5 % (точка В), начинается с выделения из жидкого раствора кристаллов феррита. При содержании углерода больше 0,5 % стали кристаллизуются с выделением аустенита.

Сплавы, содержащие углерод от 0,1 % (точка Н) до 0,5 % (точка В), претерпевают при температуре 1499 o C (линия НJB) перитектическое превращение, заключающееся в том, что жидкий раствор, имеющий при этой температуре концентрацию, соответствующую точке В (0,5 % С), взаимодействуя с выделившимися из него кристаллами феррита концентрации точки Н (0,1 % С), образует новую фазу – кристаллы аустенита концентрации точки J (0,16 % С):

При дальнейшем снижении температуры в сплавах с содержанием углерода от 0,1 до 0,16 % феррит, оставшийся после перитектического превращения, перекристаллизовывается в аустенит. В сталях с содержанием углерода больше 0,16 % оставшаяся жидкость затвердевает с образованием аустенита. Ниже линий NJ и JE сплавы имеют однородную аустенитную струк­туру.

Все сплавы с содержанием углерода более 0,02 % (точка Р) при температуре 727 o С (линия PSK) претерпевают эвтектоидное превращение. При эвтектоидном превращении аустенит, имеющий при этой температуре концентрацию углерода, соответствующую точке S (0,8 % С), распадается с образованием эвтектоидной смеси – перлита (феррита состава точки Р (0,02 % С) и цементита):

Эвтектоидная смесь феррита и цементита, образующаяся в ре­зультате эвтектоидного распада аустенита называется перлитом.

В сплавах с содержанием углерода менее 0,8 % (точка S) эвтек­тоидному превращению предшествует выделение из аустенита феррита, которое протекает в интервале температур, ограниченных линиями GS и РS. При этом в оставшемся аустените концентрация углерода изменяется по линии GS. В сплавах с содержанием углерода более 0,8 % (точка S) эвтектоидному превращению предшествует выделение из аустенита цементита. Выделение цементита протекает в интервале температур, ограниченных линиями ES и SK. В этом случае концентрация углерода в оставшемся аустените изменяется по линии ES.

Железоуглеродистые сплавы в зависимости от содержания углерода делятся на три группы: техническое железо, стали, чугуны.

Техническое железо – это сплавы с содержанием углерода менее 0,02 % (точка Р). Как следует из диаграммы «железо-цементит», тех­ническое железо имеет структуру феррита или феррита и цементита третичного, который в виде отдельных мелких включений располагается по границам зерен феррита (рисунок 8.2, а). Третичный цементит выделяется из феррита в результате снижения растворимости углерода при уменьшении температуры от эвтектоидной (727 о С) до комнатной. Предельная растворимость углерода в феррите ограничивается линией GPQ. По свойствам техническое железо подобно ферриту.

Стали – это сплавы с содержанием углерода от 0,02 % (точка Р) до 2,14 % (точка Е). В структуре стали по мере увеличения содержания углерода возрастает доля цементита и соответственно уменьшается доля феррита. Это приводит к повышению твердости и прочности стали и снижению ее пластичности, изменению физических и технологических свойств. В зависимости от содержания углерода стали по своей структуре делятся на доэвтектоидные, эвтектоидные и заэвтектоидные.

Доэвтектоидные стали содержат от 0,02 % углерода (точка Р) до 0,8 % углерода (точка S). Она имеет структуру феррита (светлые зерна) и перлита (темные зерна) (рисунок 8.2, б, в). Количественное соотношение между перлитом и ферритом зависит от содержания углерода. С увеличением содержания углерода прямо пропорционально увеличивается содержание перлита. При концентрации углерода в стали 0,8 % количество перлита равно 100 %. Зная площадь, занимаемую перлитом, с достаточной для практики точностью можно определить содержание углерода в углеродистой стали:

где А – площадь, занимаемая перлитом.

Эвтектоидная сталь содержит 0,8 % углерода (точка S) и состоит из перлита (рисунок 8.2, г).






Рисунок 8.2 – Микроструктура технического железа (а), доэвтектоидных сталей с содержанием углерода 0,20 % (б) и 0,45 % (в), эвтектоидной (г) и заэвтектоидной (д) сталей

Заэвтектоидная сталь содержит от 0,8 % углерода (точка S) до 2,14 % углерода (точка Е). Заэвтектоидная сталь состоит из перлита и цементита (рисунок 8.2, д).

Таким образом, структура, а следовательно, и свойства стали определяются количеством углерода в ней. Доэвтектоидные стали, содержащие до 0,8 % углерода, являются конструкционными, предназначенными для изготовления деталей машин (машиностроительные стали), конструкций и сооружений (строительные стали). В значительной мере свойства углеродистых сталей, а, следовательно, и область их применения зависят от содержания в них вредных примесей серы и фосфора. Чем меньше их в стали, тем выше ее качество.

Стали обыкновенного качества, наиболее дешевые, являются конструкционными сталями общего назначения и содержат до 0,07 % фосфора, 0,06 % серы, 0,06–0,49 % углерода. По гарантируемым свойствам они подразделяются на три группы – А, Б, В. В сталях группы А – гарантируются механические свойства, группы Б – химический состав; в сталях группы В гарантируются механические свойства и химический состав.

Сталь группы А маркируется буквами Ст и номером 0, 1, 2, . 6, например, Ст1. В сталях группы Б перед буквами Ст ставится буква Б, например, БСт2. В сталях группы В перед буквами Ст ставится буква В, например, ВСт3. С увеличением условного номера повышается содержание углерода в стали, что приводит к увеличению прочностных свойств, к снижению пластичности и свариваемости.

Стали группы А применяются для изготовления рядового проката (швеллеров, уголков, листов, прутков, труб и др.) используемого для клепанных и болтовых конструкций, а также для малонагруженных деталей машин (валов, осей, зубчатых колес, болтов и т. д.) не подвергаемых нагреву в процессе обработки. Стали группы Б применяются для изготовления изделий, подвергаемых нагреву (горячей обработке давлением, сварке, термической обработке). Стали группы В применяются для изготовления сварных конструкций, подвергаемых расчетам на прочность.

В конце марки стали ставятся буквы «кп», «пс», «сп». Буквы «кп» показывают, что сталь кипящая, «пс» – полуспокойная, «сп» – спокойная.

Качественная конструкционная сталь по сравнению со сталью об­щего назначения содержит вдвое меньше серы и фосфора и отличается более высокими механическими свойствами. Она маркируется цифрами, например, 08, 10, … 80, показывающими содержание углерода в сотых долях процента.

Низкоуглеродистые стали, содержащие углерода до 0,25 %, обладают невысокой прочностью и высокой пластичностью и применяются для изготовления изделий листовой холодной штамповкой (05 кп…10), а также для деталей, упрочняемых цементацией, и для различных сварных соединений (Сталь 15, Сталь 20). Кроме того, из последних сталей изготавливают болты, шпильки, гайки, валики неответственного назначения и т. п.

Среднеуглеродистые стали марок 30-50 предназначаются для ответственных деталей высокой прочности с вязкой сердцевиной (зубчатые колеса, шатуны, коленчатые валы, распределительные валы, винты, оси, втулки, рычаги и др.). Как правило, детали из этих сталей подвергаются улучшению (вид термической обработки).

Высокоуглеродистые стали 55-85 применяются для пружин, рессор, а также деталей высокой прочности: прокатных валков (сталь 60), крановых колес (сталь 75), дисков муфт сцепления (сталь 85) и др. Детали из этих сталей подвергаются закалке и отпуску (виды термической обработки).

Для изготовления различных инструментов применяется углеродистая инструментальная сталь, содержащая углерода от 0,7 до 1,3 %. Она имеет пониженное содержание вредных примесей: фосфора – до 0,035 % и серы – до 0,03 % (качественная сталь) или фосфора – до 0,03 % и серы – до 0,02 % (высококачественная). Эта сталь производится следующих марок: У7 - У13 (качественная) или У7А - У13А (высококачественная). Здесь «У» означает «углеродистая инструментальная сталь», число после «У» - содержание углерода в десятых доля процента (например, У12 содержит углерода 1,2 %). Буква «А» в конце марки означает – высококачественная сталь.

Стали марок У7 и У8 вязче других, так как не имеют в структуре цементита, и они идут на изготовление ударных инструментов – молотков, зубил, топоров, кернеров, стамесок, долот, штампов и т. д.

Стали У10 и У11 имеют несколько меньшую вязкость и немного большую твердость (т.к. в их структуре содержится небольшой количество цементита) и используются для изготовления резцов, сверл, метчиков, лерок.

Стали У12 и У13 обладают низкой вязкостью и высокой твердостью и используются для изготовления инструмента, не испытывающего ударных нагрузок (напильников, бритв, рашпилей и т. п.).

1. Описать превращения, протекающие в сталях при нагреве или охлаждении, указать их температуры.

2. Дать определение фазам, присутствующим в сталях и указать содержание углерода в них.

3. Дать классификацию углеродистых сталей по качеству, содержанию углерода и назначению.

4. Изучить маркировку сталей и указать области применения перечисленных сталей:

Превращения, происходящие при нагреве и охлаждении сталей и чугунов

Сталь доэвтектоидная с содержанием 0,3 % углерода (рис. 33). При нагреве до Ac1 (727 °С) превращений нет, и сталь имеет структуру перлит + феррит. При Ас1 (727 °С) происходит превра­щение перлита в аустенит и образуется структура аустенит + фер­рит. От Ас1 до Ас3 феррит превращается в аустенит. При Ас3 сталь имеет структуру аустенита. От Ас3 до tc 1 (температуры солидуса) сталь находится в твердом состоянии и имеет структуру аустенита. При температуре солидуса начинается плавление аустенита.

От температуры солидуса tc 1 до температуры ликвидуса tл 1 име­ется аустенит + жидкий сплав. Выше tл 1 сталь находится в жидком состоянии.

Рис. 33. Диаграмма состояния Fe – Fe3C (в упро­щенном виде)

При охлаждении до температуры tл 1 сталь находится в жидком состоянии. При tл 1 начинается кристаллизация аусте­нита. От tл 1 до tс 1 происходит кристаллизация аустенита, и сталь состоит из аустенита и жидкого сплава. От tл 1 до Аr3 сталь имеет структуру аустенита. От Аr3 до Аr1 часть аустенита превращается в феррит, и сталь имеет структуру: аустенит + феррит. При Аr1 (727 °С) происходит превращение аустенита в перлит. Ниже Ar1 сталь до полного охлаждения имеет структуру: перлит + феррит (см. рис. 30, а).

Сталь эвтектоидная с содержанием 0,8 % углерода (рис. 33). При нагреве до Ас1 (727 °С) превращений нет, и сталь имеет перлитную структуру. При Ac1 происходит превращение перлита в аустенит. Выше Ac1 до начала плавления сталь имеет аустенитную структуру. При температуре солидуса (для этой стали tc 2 ) начинается плавление аустенита. От tc 2 до tл 2 (температура ликвидуса) проис­ходит плавление, и сталь состоит из аустенита и жидкого сплава. Выше tл 2 сталь находится полностью в жидком состоянии.

При охлаждении до tл 2 сталь находится в жидком сос­тоянии. При tл 2 начинается кристаллизация аустенита. От tл 2 до tс 2 происходит кристаллизация аустенита и сталь состоит из аустенита и жидкого сплава. От tл 2 до Ar1 (727 °С) сталь состоит из аустенита. При Ar1 происходит превращение аустенита в перлит. Ниже Ar1 сталь имеет структуру перлита (рис. 30, б).

Сталь заэвтектоидная с содержанием 1,2 % углерода (рис. 33). При нагреве до Ас1 (727 °С) превращений нет, и сталь имеет структуру: перлит + цементит вторичный. При Ас1 происходит превращение перлита в аустенит. От Ас1 до Аст (критическая точка, лежащая на линии SE) происходит растворение вторичного цемен­тита в аустените. При Аст сталь имеет аустенитную структуру. От Аст до температуры солидуса tс 3 , лежащей на линии АЕ, сталь находится в аустенитном состоянии. При tс 3 начинается плавление аустенита. В интервале от tс 3 до tл 3 сталь состоит из аустенита и жид­кого сплава. Выше tл 3 сталь полностью находится в жидком состоя­нии.

При охлаждении до tл 3 сталь находится в жидком сос­тоянии. При tл 3 (температура ликвидуса) начинается кристаллиза­ция аустенита. От tл 3 до
tс 3 происходит кристаллизация аустенита и сталь состоит из жидкого сплава и аустенита. При tс 3 (температура солидуса) сталь полностью затвердевает, и структура ее представ­ляет аустенит. От tс 3 до линии SE (температура Аст) структура стали не изменяется. При Аст начинается выделение вторичного цементита.

От Аст до Аr1 (727 °С) происходит выделение вторичного це­ментита, и структура стали состоит из аустенита и вторичного це­ментита. При Аr1 (727 °С) аустенит превращается в перлит. Ниже Аr1 сталь имеет структуру: перлит + цементит вторичный (рис. 30, в).

Доэвтектический чугун с содержанием 3,0 % углерода (рис. 33). При нагреве до Ас1 превращений нет, и чугун имеет структуру: ледебурит + перлит + вторичный цементит. При этом эвтектика состоит из цементита и перлита. При Ac1 происходит превращение перлита в аустенит. Это превращение претерпевает как свободный перлит, так и перлит, входящий в эвтектику. Выше Ас1 чугун состоит из аустенита, вторичного цементита и ледебу­рита. При этом эвтектика состоит из цементита и аустенита.

От Ac1 до tэ, (1147 °С) происходит растворение вторичного це­ментита в аустените и аустенит насыщается углеродом до 2,14 %.

При tэ плавится ледебурит. Выше tэ чугун состоит из аустенита и жидкого сплава. От tэ, до tл 4 плавится аустенит. Выше tл 4 чугун на­ходится полностью в жидком состоянии.

При охлаждении до tл 4 чугун находится в жидком сос­тоянии. При tл 4 начинается кристаллизация аустенита. От tл 4 до tэ (1147° С) происходит кристаллизация аустенита и при tэ чугун состоит из аустенита с содержанием 2,14 % углерода и жидкого сплава эвтектического состава (4,3 % углерода).

При tэ, происходит эвтектическая кристаллизация, и образуется ледебурит, состоящий из цементита и аустенита с содержанием углерода 2,14 %. От tэ (1147 °С) до Аr1 (727 °С) из аустенита как свободного, так и входящего в ледебурит, выделяется вторичный цементит, и содержание углерода понижается до 0,8 %. Следовате­льно, в этом интервале температур чугун состоит из ледебурита, аустенита и вторичного цементита. При Аr1 (727 °С) происходит превращение аустенита в перлит. Ниже Аr1 чугун состоит из ледебурита, перлита и вторичного цементита (см. рис. 31, а).

Эвтектический чугун с содержанием 4,3 % углерода(рис. 33).При нагреве до Ас1 превращений нет, и чугун имеет структуру ледебурит, состоящий из цементита, перлита и вторичного цемен­тита. При Ac1 происходит превращение перлита в аустенит. Выше Ас1 чугун имеет структуру – ледебурит, состоящий из цементита, аустенита и вторичного цементита. От Ас1 до tэ происходит раство­рение вторичного цементита и аустенит насыщается углеродом до 2,14 %. При tэ чугун полностью расплавляется. Выше tэ чугун на­ходится полностью в жидком состоянии.

При охлаждении до tэ (1147 °С) чугун находится в жид­ком состоянии. При tэ (1147 °С) чугун полностью затвердевает, и образуется структура – ледебурит, состоящий из аустенита, содержащего 2,14 % углерода и цементита. От tэ до Аr1 из аустенита выделяется вторичный цементит, и содержание углерода в аустените понижается до 0,8 %. При Аr1 аустенит превращается в перлит. Ниже Аr1 чугун имеет структуру – ледебурит, состоящий из це­ментита, перлита и вторичного цементита (см. рис. 31, б).

Заэвтектический чугун с содержанием 5,0 % углерода (см. рис. 33). При нагреве до Ас1 превращений нет, и чугун имеет структуру – ледебурит + первичный цементит. При Ас1 (727 °С) перлит, находящийся в эвтектике, превращается в аустенит. Выше Ас1 чугун имеет структуру – ледебурит и первичный цемен­тит, но эвтектика состоит из цементита и аустенита. От Аc1 до tэ (1147 °С) происходит насыщение аустенита углеродом вследствие растворения вторичного цементита и при 1147 °С в аустените со­держится 2,14 % углерода.

При tэ плавится эвтектика. Выше tэ чугун состоит из жидкого сплава и первичного цементита.

От tэ до tл 5 происходит плавление первичного цементита. Выше tл 5 чугун полностью находится в жидком состоянии.

При охлаждении до tл 5 чугун находится в жидком сос­тоянии. При tл 5 начинается кристаллизация первичного цементита. От tл 5 до tэ (1147 °С) происходит кристаллизация первичного цемен­Тита, и чугун состоит из жидкого сплава и первичного цементита. При tэ чугун состоит из первичного цементита и жидкого сплава эвтектического состава, т. е. содержащего 4,3 % углерода, который, кристаллизуясь при этой температуре, образует ледебурит, состоящий из цементита и аустенита с содержанием 2,14 % углерода.

Ниже tэ превращение претерпевает только ледебурит, а первич­ный цементит не изменяется. Превращение в ледебурите такое, как описано выше при рассмотрении доэвтектического и эвтекти­ческого чугуна, т. е. от tэ до Аr1 внутри ледебурита выделяется вто­ричный цементит, и чугун состоит из ледебурита и первичного цементита.

При Аr1 внутри эвтектики аустенит превращается в перлит. Ниже Ar1 чугун состоит из ледебурита и первичного цементита (см. рис. 31, в).

1. Какие фазы образуются в метастабильной системе железо–углерод? Дайте их характеристику.

2. Напишите эвтектическую и эвтектоидную реакции системы Fe-Fe3C. Какие структурные составляющие при этом образуются?

3. Что такое эвтектоидная сталь, какова ее структура?

4. Какие стали являются заэвтектоидными, какова структура этой стали?

5. Что такое чугун и как подразделяются чугуны по содержанию углерода?

6. Опишите структуру чугунов: 2,5 %С, 3,8 %С, 4,3 %С, 5 %С?

7. Как меняется структурный и фазовый состав сплавов в зависимости от содержания углерода. Как это влияет на свойства сплава?

Читайте также: