Какие из марок сталей относятся к теплоустойчивым хромомолибденовыми хромомолибденованадиевые сталям

Обновлено: 04.05.2024

12ХМ – это перелитый сплав, принадлежащий к жароустойчивым и низкоколлегированным сталям. Относят его к классу чёрных металлов. Использовать этот вид можно при очень больших температурах. Он очень прочный, поэтому применяется для создания тяжёлых сварных конструкций.

Состав и расшифровка

Расшифровка стали 12ХМ: Ф – содержание ванадия около 1%, Х12 – хрома в ней около 2%, молибдена меньше, чем 1%.

Существует несколько ГОСТов у данных сплавов. Рассмотрим два основных из них.

  • По ГОСТу 5520-79 происходит изготовление скрапп-процессом, а массовая доля меди не должна превышать 0,3%.
  • ГОСТ 19903-74 листы сплава подразумевают металлическую плоскую заготовку. Использование в различных сферах не ограничивается. Встречается этот материал в автомобилестроении, химической промышленности, кораблестроении.

По ТУ 108.1263-84 выплавка происходит в электродуговой или мартеновской печи. Также разрешено применять обработку УВРВ. По дополнительной информации для листов сечением 30–160 миллиметров нагрев происходит до температуры 950 градусов, при отпуске – до 680 градусов.

Есть разные марки листов сплава:

  • низколегированные: 09Г2С, 14ХГС, 17ГС, 16ГС, 10Г2С1, 17Г1С;
  • углеродистые: 15К, 16К, 17К, 18К, 20К, 22К;
  • легированные: 10Х2М, 12ХМ, 12Х1МФ.





Особенности производства

Так как сталь 12ХМ жаропрочная, то она проходит термообработку. Изделия, изготовленные из неё, нуждаются в подогревании. Эти действия помогают предотвратить случаи появления холодных трещин в области, где находятся швы. Конкретные вещества, добавленные в сплав, позволяют получить необходимые свойства.

Только при значении температуры в 900 градусов сплав закаляют на воздухе либо в масле приблизительно 3 часа, затем идёт остывание на открытом пространстве – для арматуры трубопроводов. Срок выдержки напрямую меняется от массы полученного элемента. Данный материал считают хорошим, чтобы производить листы толщиной от 5 до 42 мм. Ещё его используют для поковок на детали. Учитывая это условие, применяется выдержка уже при другой температуре, которая достигает не более 980 градусов, а после происходит охлаждение на воздухе. Этот способ пригоден не только для паровых котлов, но также для бесшовных труб.

Плюсы и минусы

Плюсом этого материала является то, что после долговременного срока эксплуатации характеристики не изменяются. Также из-за содержания хрома он устойчив к коррозии (это высокие температуры). Помимо этого, продукт имеет низкую стоимость из-за того, что компоненты, входящие в него, доступны.

Перейдём к минусам: возникает питтинговая коррозия, если металл часто контактирует с кислотами и солями. Если сплав используется в пилах, фрезах, ножах для обработки древесины, то при применении их не по назначению лезвие может затупиться.

А при неправильном уходе их поверхность может заржаветь.

Характеристики и свойства

Все характеристики соответствуют ГОСТу 5520-79. Основу сплава (не менее 98%) составляет железо. Также там содержатся следующие составляющие:

  • ванадий – является компонентом, создающим плотную, крепкую и ровную структуру;
  • вольфрам – вещество, влияющее на твёрдость и прочность;
  • хром – способствует повышению износостойкости, придаёт твёрдость и понижает пластичность материала;
  • алюминий – повышает стойкость;
  • никель – с его помощью сплав имеет большую коррозийную вязкость.



Также в этом материале есть марганец, молибден, углерод, сера, медь и фосфор.



Электросопротивление колеблется от 230 до 1130 ОМ (в зависимости от того, каким способом совершалась обработка). А плотность сплава составляет около 7700 кг/м3, что является надёжным показателем.

Термообработку и нагрев очень нужно применять до начала сварочного процесса. Различают 2 вида сварки: аргонодуговая (АДС) и ручная дуговая (РДС).

Свариваемость металла считается удовлетворительной, так как он легко поддаётся неразъемному соединению.

В сплаве марки 12ХМ отсутствуют элементы из ванадия. Общепринятая толщина продукции варьируется от 2 до 160 мм.

12ХМ обладает антикоррозионными свойствами, высокой надёжностью и износостойкостью, а также способностью к сопротивлению неблагоприятным средам.

Рассмотрим свойства сплава.

Физико-механические

Эта сталь является теплоустойчивой, хорошо наплавляется и сваривается, что очень удобно. Но при этом необходимы тщательный прогрев и дальнейшая термообработка.

В обработанном состоянии твёрдость металла составляет около 138 НВ. Это условие влияет на возможность осуществления механических действий.

Химические

Прочностные показатели отличные, так как в металле есть маленькая доза углерода. Введённый молибден, который сочетают с никелем и хромом, создаёт эффект мелкого зерна, а также гарантирует свойства жаростойкости, красностойкости. Стоимость сплава довольно высока из-за присутствия в нём ферромолибдена.

Ещё благодаря этому веществу растворимость водорода уменьшается, вследствие чего он равномерно распределяется.

Аналоги

В продаже можно встретить большой выбор похожих на сталь 12ХМ сплавов. Приведем их список:

  • Япония: STPA22, STBA20;
  • Великобритания: 15CrMo4-5, 620-44, 1501-620;
  • КНР: 12CrMoG, 12CrMo;
  • Франция: 15CD4.5, 15CD3.5;
  • Южная Корея: STHA22, SFVAF12;
  • США: A387Cr, A182, K12062, K11562;
  • Евросоюз: 13CrMo4-5.





Применение

Этот материал имеет обширное применение. Элементы, изготовленные из него, предназначены для эксплуатации в условиях значительных нагрузок и экстремально высоких температур. Самыми основными считаются:

  • трубопроводные крепления;
  • паровые котлы;
  • арматура для труб;
  • пароперегревательные трубы;
  • коллекторы ВД;
  • трубы для высокого давления.




Ещё этот сплав стали применяют в изготовлении деталей для атомных станций.

Советы по уходу

Чтобы сплав не изменился, то нужно избегать контактов с кислотами или щёлочью. Если появляется ржавчина, то её убрать поможет баллистол или раствор с азотной кислотой. Ещё можно использовать химическую обработку, которая уберёт следы ржавчины с поверхностного слоя.

Для того чтобы избавиться от краски, используют спирт. Не применяйте хлор и любые вещества, которые его содержат, так как они негативно повлияют на сплав. Сталь советуют держать в сухом помещении.

Жаростойкие и жаропрочные стали и сплавы.

Жаропрочными называют стали и сплавы, сохраняющие при повышенных температурах в течение определенного времени высокую механическую прочность и обладающие при этом достаточной жаростойкостью.

Жаростойкими (окалиностойкими) называют стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 0 С, работающие в ненагруженном или слабонагруженном состоянии.

Жаропрочность характеризуется, в основном, пределами ползучести и длительной прочности. Ориентировочно о жаропрочности судят также по механическим свойствам, определяемым кратковременным испытанием на растяжение при рабочей температуре.

Дополнительные характеристики жаропрочности: длительная пластичность, релаксационная стойкость, предел выносливости, термостойкость и др.

Жаропрочность стали (сплава) определяется химическим составом и структурой; к числу элементов, повышающим жаропрочность, относятся молибден, вольфрам, ванадий, ниобий, титан, кобальт, алюминий и отчасти хром и никель. Последний, наряду с марганцем, имеет значение, главным образом, как аустенитообразующий элемент (поскольку аустенитная структура создает наибольшую жаропрочность стали). На жаропрочные свойства хром влияет меньше, чем многие другие элементы. Однако его присутствие в стали или сплаве наряду с алюминием и кремнием повышает их жаростойкость (окалиностойкость). Поэтому хром - обязательный компонент жаропрочных сталей и сплавов.

Классификация

К жаропрочным сталям относят сплавы на основе железа, если содержание последнего превышает 50 %.

В зависимости от суммарного содержания легирующих элементов жаропрочные стали могут быть низко-, средне- и высоколегированными.

В низколегированной стали суммарное содержание легирующих элементов не превышает 4-5 %. Среднелегированной называется сталь с суммарным содержанием легирующих элементов от 5 до 9 %, причем содержание каждого из них не должно превышать 5 %. Высоколегированной называют сталь, в которой содержание любого легирующего элемента превосходит 5 %, либо суммарное содержание всех легирующих элементов - более 10 %.

По микроструктуре (получаемой после охлаждения на воздухе с высокой температуры) жаропрочные стали подразделяют на семь классов: перлитный, мартенситный, мартенситно-ферритный, ферритный, аустенитно-мартенситный, аустенитно-ферритный, аустенитный.

Низколегированные стали относятся к перлитному классу, среднелегированные - к перлитному, мартенситному или мартенситно-ферритному, высоколегированные - к любому из перечисленных классов, кроме перлитного.

К сплавам на железоникелевой основе относятся сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе. Суммарное содержание железа и никеля не менее 65 %.

К сплавам на никелевой основе относятся сплавы, содержащие не менее 50 % Ni, основная структура которых является твердым раствором хрома и других легирующих элементов в никеле (содержание железа не более 6-8 %).

Стали перлитного класса

Среди низколегированных сталей высокой жаропрочностью отличаются молибденосодержащие стали, например, хромомолибденовые, хромомолибденованадиевые, хромомолибденовольфрамованадиевые, имеющие достаточно высокие сопротивление ползучести и длительную прочность при температурах до 565-580 °С. Такие стали условно называют теплоустойчивыми.

Химический состав теплоустойчивых сталей перлитного класса приведен в ГОСТ 20072-74, ГОСТ 4543-71, ТУ 14-1-1391-75. Они содержат 0,5-3,3 % Cr; 0,25-1,2 % Мо; 0,15-0,8 % V. Некоторые марки содержат 0,3-0,8 % W либо Nb.

Эти стали применяют для изготовления различных деталей в котлостроении, работающих длительное время (10 000-100 000 ч) при температурах 500-580 °С, в частности, для паропроводных и пароперегревательных труб, а также для проката и поковок, используемых в турбинах и паровых котлах высокого давления.

Механические свойства сортового металла из перлитных сталей, предусмотренные ГОСТ или существующими ТУ, а также рекомендуемые режимы термической обработки приведены в табл. 1. Механические свойства при повышенных температурах, определяемые кратковременным испытанием на растяжение, как правило, не регламентируются. Решающее значение имеют нормы длительной прочности и ползучести при рабочих температурах в зависимости от длительности службы за время 10 000-100 000 ч (табл.2). Сведения о примерном назначении сталей перлитного класса и их рабочие температуры приведены в табл. 3.

Стали мартенситного класса

Стали мартенситного класса содержат 4,5-12 % Cr, а также в значительно меньшем количестве Ni, W, Mo, V.

Стали марок 15Х5, 15Х5М, 15Х5ВФ и 15Х8ВФ широко применяют для изготовления элементов аппаратуры нефтеперерабатывающих заводов - деталей насосов, задвижек, крепежных деталей, крекинговых труб, работающих при температурах 550-600 °С. Стали этой же группы с более высоким содержанием Cr (6-10 %) и с повышенным содержанием Si (2-3 %), в основном, применяют для изготовления клапанов двигателей внутреннего сгорания.

Сталь 11Х11Н2ВМФ(ЭИ962) применяют для дисков компрессоров и для других деталей, работающих при температурах до 600 °С с ограниченным сроком службы.

Механические характеристики мартенситных сталей приведены в табл. 1 характеристики жаропрочности - в табл. 12.2.

Стали мартенситно-ферритного класса

Стали мартенситно-ферритного класса содержат в структуре кроме мартенсита 10-25 % феррита. Основная легирующая добавка и в этих сталях - Cr (11-13 %), наряду с которым присутствуют менее значительные присадки Ni, W, Mo, Nb, V (модифицированные хромистые стали). Их термическая обработка заключается либо в закалке с отпуском, либо в нормализации с отпуском. Механические свойства при надлежащей температуре отпуска практически равноценны. Уровень жаропрочных свойств после оптимальной термической обработки для большинства сталей мартенситно-ферритного класса также примерно одинаков. Однако наиболее высокие (при обработке на одинаковую твердость) характеристики жаропрочности при 500-600 °С у стали 18Х12ВМБФР(ЭИ993).

Эти стали изготовляют в виде сортового проката и применяют в турбостроении для лопаток и дисков турбин, а также для крепежных деталей. Ориентировочная рабочая температура для стали 15Х12ВНМФ(ЭИ802) - 550-580 °С и 570-600 °С - для стали 18Х12ВМБФР(ЭИ993).

Стали аустенитного класса

Стали аустенитногокласса - в основном хромоникелевые стали с содержанием Cr и Ni в пределах от 7 до 25 % каждого, наряду с которыми присутствуют W, Mo, Ti, Nb и др.

Это самая многочисленная группа жаропрочных (и жаростойких) сталей (см. ГОСТ 5632-72).

Режимы термообработки и характеристики механических свойств сортового проката из жаропрочных сталей при нормальной температуре

Характеристики механических свойств

Температура закалки или нормализации,°С

Температура отпуска (или отжига), °С

воздух или масло

воздух, масло, вода

* Сталь применяется в отожженном состоянии

Режимы термической обработки, пределы ползучести и длительной прочности легированных сталей перлитного и мартенситного классов, применяемых для длительной службы

Предел длительной прочности , МПа за время, ч

Предел ползучести, МПа, соответствующий 1% деформации за время, ч

Температура отпуска, °С

Мартенситный и мартенситно-ферритный, аустенитно-ферритный

Примерное назначение низколегированных жаропрочных сталей перлитного класса

Рабочая
температура, ˚ С

Температура начала интенсивного окалинообразования, ˚ С

Трубы паронагревателей, паропроводов и коллекторов энергетических установок; арматура паровых котлов и паропроводов

Трубы для гидрогенизационных установок и нефтехимической аппаратуры

Поковки (роторы, диски), болты

Крепежные детали (болты, шпильки), плоские пружины

Режимы термической обработки и характеристики механических свойств сортового проката из жаропрочных аустенитных сталей (при нормальной температуре)

Температура закалки, °С.

Т, °С, длительность отпуска или старения

Временное сопротивление σв, МПа

Предел текучести σ0,2, МПа

Относительное удлинение δ5, %

Относительное сужение ψ, %

Ударная вязкость КСU, Дж/см 2

670 (12-14 ч)
770-800 (10-12 ч)

* Применяются без отпуска. **Без закалки

В марках этих сталей приняты следующие обозначения для легирующих элементов: А - N, Б - Nb, В - W, Г - Mn, К - Co, М - Mo, Н - Ni, P - B, C - Si, T - Ti, Ф - V, X - Cr, Ю - Al. Цифра после буквы указывает на округленное (среднемарочное) содержание этого элемента в процентах (при содержании менее 1 % цифру не пишут). Исключение - углерод, содержание которого первые две цифры марки выражают в десятых процента. Например, марка 45Х14Н14В2М(ЭИ69) следующего состава: 0,45 % С, 14 % Cr, 14 % Ni, 2 % W, и ≤ 1 % Мо. Характеристики механических свойств сортового проката из жаропрочных аустенитных сталей, а также оптимальные режимы термической обработки приведены в табл. 4.

В соответствии с особенностями легированного аустенита характеристики жаропрочных свойств аустенитных сталей более высокие (табл. 5), чем у жаропрочных сталей перлитного или мартенситного классов.

Сталь 08Х18Н10Т(ЭИ914) применяют как жаропрочную и жаростойкую. При температуре до 600 °С у стали стабильные механические свойства, она устойчива против межкристаллитной коррозии и хорошо сваривается. Сталь этой марки изготовляют в виде сортового проката, поковок, листа, труб для энергетического и химического оборудования. Аналогичные свойства у стали 12Х18Н12Т, которую применяют в тех же областях техники.

У хромоникельвольфрамовых аустенитных сталей (45Х14Н14В2М(ЭИ69)) повышенные жаропрочность и сопротивление усталости при высоких температурах. Сталь 45Х14Н14В2М(ЭИ69) находит применение для выпускных клапанов двигателей внутреннего сгорания. Для длительных сроков службы при температурах 600-650 °С рекомендуется сталь того же типа с пониженным содержанием С (до 0,15 %).

Аустенитные стали применяют, как правило, для изготовления деталей, работающих при температурах 650-700 °С весьма длительное время. Механические свойства этих сталей при температуре 20 °С похожи, но пределы длительной прочности и ползучести отличаются весьма существенно (табл. 4, 5). Наиболее жаропрочные из них стали 09Х14Н19В2БР(ЭИ695)

, которые применяют для изготовления пароперегревательных и паропроводных труб установок сверхвысокого давления.

Хромомарганцевые стали марок 30Х13Г18Ф и 37Х12Н8Г8МФБ-Ш (ЭИ-481Ш, 4Х12Н8Г8МФБ) - заменители жаропрочных сталей с более высоким содержанием никеля. Эти стали имееют достаточно высокую длительную прочность при температурах 500-650 °С.

Пределы ползучести и длительной прочности жаропрочных аустенитных сталей, применяемых для длительной службы *

Предел ползучести , МПа, соответствующий 1 % деформации за время, ч

* Режимы термической обработки см. табл. 4.

** Данные из зарубежных источников для сталей близкого химического состава.

Сплавы на железо-никелевой основе

Сплавы на железо-никелевой основе могут быть разделены на две группы: 1) с содержанием 14-16 % Cr и 32-38 % Ni и 2) с содержанием 20-25 % Cr и 25-45 % Ni (либо Ni + Mn). Сплавы первой группы дополнительно легированы вольфрамом и титаном и обладают высокой (приблизительно равной) жаропрочностью (табл. 6). Сплавы второй группы благодаря повышенному содержанию Cr жаростойкие, по жаропрочным свойствам они уступают сплавам первой группы, например, сплав ХН38ВТ(ЭИ703).

Сплавы ХН35ВТ(ЭИ612), ХН35ВМТ, ХН35ВТЮ(ЭИ787) поставляют преимущественно в виде горячекатаных и кованных прутков и полос, а также поковок. Из сплавов ХН35В5Т, ХН38ВТ(ЭИ703) и 12Х25Н16Г7АР(ЭИ835), в основном, изготовляют горячекатаный и холоднокатаный лист и ленту, а из сплава ХН45Ю(ЭП747) - также и трубы. В основном, сплавы на железо-никелевой основе применяют для изготовления деталей паровых и газовых турбин.

Сплавы на никелевой основе

Сплавы на никелевой основе подразделяют на две группы (см. ГОСТ 5632-72): 1) сплавы, применяемые преимущественно как жаропрочные, и 2) жаростойкие сплавы, обладающие необходимым минимумом жаропрочности (табл. 7).

Пределы длительной прочности и ползучести сплавов на железо-никелевой основе *1

Предел длительной прочности, МПа за время ,ч

Предел ползучести *3 , , МПа

210 (1/10 4 );14 (1/10 5 )

170 (1/10 4 );130(1/10 5 )

110 (1/10 4 );80 (1/10 5 )

180 (1/10 4 );130 (1/10 5 )

120 (1/10 4 );90 (1/10 5 )

80 (1/10 4 );60 (1/10 5 )

*1 После оптимальной термической обработки.

*2 Экстраполированные значения.

*3 В скобках в числителе - деформация в %, в знаменателе - время в ч.

*4 Определено на конических образцах.

Пределы длительной прочности и ползучести сплавов на никелевой основе* 1

Предел длительной прочности, , МПа за время, ч

Пределы ползучести *3 , , МПа

270
(не менее 50 ч);
250
(не менее 65 ч)

Наиболее часто применяемые сплавы первой группы относятся к системе Ni-Cr-Ti-Al. Присутствие в этих сплавах Ti и Аl в количествах, превышающих их предельную растворимость в твердом растворе при температурах 650-950 °С, позволяет достигнуть после закалки и отпуска существенного эффекта дисперсионного твердения, благодаря выделению дисперсных частиц интерметаллической фазы типа Ni3(Тi, NiAl). Такая микроструктура делает сплав устойчивым против температурного воздействия при 700-800 °С и выше.

Введение в дисперсионно-твердеющие сплавы этой группы W и Мо (в сумме до  10 %), а также Nb дополнительно упрочняет твердый раствор, замедляет развитие диффузионных процессов и увеличивает количество дисперсной упрочняющей фазы. Количество дисперсной фазы увеличивают также путем увеличения суммарного содержания Ti и Al. Все это приводит к существенному возрастанию жаропрочности сплавов, что делает возможным их применение при температурах до 800-850 °С и высоких напряжениях.

К особенностям состава никелевых жаропрочных сплавов относится присутствие в них небольших добавок поверхностно-активных элементов (В, Се, иногда Ва и Мg), способствующих рафинированию металла и упрочнению границ зерен, а также небольшое содержание в них примесей (S, P, Pb, др.).

Термическая обработка этих сплавов заключается в одинарном или двойном нагреве до высоких температур (1080-1200 °С) с охлаждением чаще всего на воздухе и последующем отпуске при температурах 700-850 °С. Для наибольшей стабилизации исходной структуры применительно к деталям с длительным сроком службы рекомендуется проводить многоступенчатый отпуск при постепенно понижающейся температуре.

Жаропрочные никелевые сплавы изготовляют в виде сортового проката (прутки круглого сечения) и частично в виде поковок различной конфигурации.

Основное назначение этой группы высоколегированных сплавов - изготовление рабочих лопаток и дисков газовых турбин. Диски работают при более высоких напряжениях, чем лопатки (но при несколько пониженной температуре), поэтому материал диска должен иметь высокое сопротивление ползучести (особенно на ободе) и повышенную прочность (в ступичной части).

Прочность сплавов на никелевой основе сохраняется высокой вплоть до температур 800-900 °С. Так, при 800 °С временное сопротивление σв наиболее легированных сплавов составляет 700-800 МПа, 100-часовая длительная прочность - 250-300 МПа. В то же время характеристики пластичности δ и ψ удовлетворительны при всех температурах испытания и несколько снижаются в температурном интервале дисперсионного твердения (700-800 °С). Остаточная деформация этих сплавов при испытаниях на длительную прочность при 700-800 °С порядка 3-10 %.

В табл. 7 приведены характеристики жаропрочности никелевых сплавов.

Для длительных сроков службы наилучшее сочетание длительной прочности и пластичности у сплава ХН65ВМТЮ(ЭИ893), получившего широкое применение как материал для лопаточного аппарата стационарных газовых турбин ГТ-6, ГТН-9, ГТК-10, ГТК-16, ГТТ-12, ГТА-18, ГТУ-25, ГТУ-100. Этот сплав - основной лопаточный материал в стационарном газотурбостроении. Кроме того, благодаря исключительно высокой релаксационной стойкости этот сплав применяют для изготовления крепежных деталей турбин.

Из жаропрочных никелевых сплавов можно получать детали методом отливки (например, точным литьем по выплавляемым моделям).

Ко второй группе относятся сплавы марок ХН67МВТЮ(ЭП202), ХН60Ю(ЭИ559А), ХН70Ю(ЭИ652), ХН78Т(ЭИ435), ХН60ВТ(ЭИ868), ХН75МБТЮ(ЭИ602), применяемые преимущественно как жаростойкие. Эти сплавы, за исключением двух последних, отличаются высоким содержанием Cr (20-30 %) и практически гомогенной структурой твердого раствора после принятых режимов термической обработки (нагрев до 1000-1200 °С с охлаждением в воде или на воздухе). Эти сплавы выпускают в виде холоднокатаного или горячекатаного листа преимущественно для деталей газопроводных систем, работающих при умеренных напряжениях в условиях весьма высоких температур (до 1100-1200 °С). У этих деталей кроме достаточной технологичности (прокатываемость, штампуемость, свариваемость) и высокого сопротивления газовой коррозии (окалиностойкость) должно быть хорошее сопротивление термической усталости (термостойкость). Всем этим требованиям отвечают сплавы на никелевой основе.

У жаростойких листовых никелевых сплавов повышена пластичность в холодном и горячем состоянии, но жаропрочность ниже, чем у сплавов первой группы. Так, длительная прочность за 1000 ч составляет 40-60 МПа при 800 °С и 20-25 МПа при 900 °С (табл. 7).

Какие из марок сталей относятся к теплоустойчивым хромомолибденовыми хромомолибденованадиевые сталям

ТЕХНОЛОГИЯ СВАРКИ ТЕПЛОУСТОЙЧИВЫХ И ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ

СВАРКА ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ

Теплоустойчивыми называют стали, длительно работающие при температуре до 600 °С. К ним относятся перлитные низколегированные хромомолибденовые стали 12МХ, 12ХМ, 15ХМ, 20ХМЛ, работающие при температуре 450. 550 °С и хромомолибденованадиевые стали 12Х1МФ, 15Х1М1Ф, 20МФЛ, работающие при температуре 550. 600 °С в течение 100 000 ч (10 лет). Они дешевы и технологичны, из них делают отливки, прокат, поковки для изготовления сварных конструкций: турбин, паропроводов, котлов и т.п.

Теплоустойчивость сварных соединений оценивают отношением длительной прочности металла соединения и основного металла - коэффициентом теплоустойчивости.

Чтобы работать при высоких температурах, стали должны обладать жаростойкостью, длительной прочностью, стабильностью свойств во времени и сопротивлением ползучести: их пластическая деформация при постоянной нагрузке с течением времени должна возрастать незначительно. Все это достигается введением в состав сталей 0,5. 2,0% хрома, 0,2. 1,0 % молибдена, 0,1 . 0,3 % ванадия и — иногда — небольших добавок редкоземельных элементов. Хорошее сочетание механических свойств изделий из теплоустойчивых сталей достигается термообработкой: нормализацией или закалкой с последующим высокотемпературным отпуском. Это обеспечивает мелкозернистую структуру, состоящую из дисперсной ферритокарбидной смеси. После 100000 ч работы обработанная таким образом сталь 15ХМ имеет прочность 260 МПа (26,5 кгс/мм2) при температуре 450 °С и 62 МПа (6,3 кгс/мм2) при температуре 550 °С, а сталь 12X1МФ - 154 МПа (15,7 кгс/мм2) при температуре 500 °С и 58 МПа (5,9 кгс/мм2) при температуре 580 °С.

Физическая свариваемость теплоустойчивых сталей, определяемая отношением металла к плавлению, металлургической обработке и к последующей кристаллизации шва не вызывает затруднений. Современные сварочные материалы и технология сварки обеспечивают требуемые свойства и стойкость металла шва против горячих трещин. Однако сварные соединения склонны к холодным трещинам и к разупрочнению металла в ЗТВ - зоне термического влияния. Поэтому нужно применять сопутствующий сварке местный или предварительный общий подогрев изделия. Это уменьшает разницу температур в

зоне сварки и на периферийных участках, что снижает напряжения в металле. Уменьшается скорость охлаждения металла после сварки больше аустенита превращается в мартенсит при высокой температуре, когда металл пластичен. Напряжения, возникающие из-за разницы объемов этих фаз, будут меньше, вероятность образования холодных трещин снизится. Применяя подогрев, нужно учитывать, что излишне высокая температура приводит к образованию грубой ферритно-перлитной структуры, не обеспечивающей необходимую длительную прочность и ударную вязкость сварных соединений. Уменьшить опасность возникновения холодных трещин можно, производя отпуск деталей, выдерживая их при температуре 150. 200 °С сразу после сварки в течение нескольких часов. За это время завершится превращение остаточного аустенита в мартенсит и удалится из металла большая часть растворенного в нем водорода.

Разупрочнение теплоустойчивых сталей в ЗТВ зависит также от параметров режима сварки. Повышение погонной энергии сварки увеличивает мягкую разупрочняющую прослойку в ЗТВ, которая может быть причиной разрушения жестких сварных соединений при эксплуатации, особенно при изгибающих нагрузках. Основные способы сварки конструкций из теплоустойчивых сталей - это дуговая и контактная стыковая. Последнюю используют для сварки стыковых соединений труб нагревательных котлов в условиях завода.

Дуговую сварку производят электродами с покрытием, в защитных газах и под флюсом. Подготовку кромок деталей при всех способах дуговой сварки производят механической обработкой. Допускается применение кислородной или плазменной резки с последующим удалением слоя поврежденного металла толщиной не менее 2 мм.

Дуговую сварку производят при температуре окружающего воздуха не ниже 0 °С с предварительным и сопутствующим сварке местным или общим подогревом. Температура подогрева зависит от марки стали и толщины свариваемых кромок. Хромомолибденовые стали при толщине кромок до 10 мм, а хромомолибденованадиевые - до 6 мм можно сваривать без подогрева. Сталь 15ХМ, например, толщиной 10. 30 мм надо подогревать до температуры 150. 200 °С, а больше 30 мм - до температуры 200. 250 °С. До 250. 300 °С подогревают сталь 12Х1МФ толщиной 6. 30 мм, а свыше 30 мм требуется ее подогрев до температуры 300. 350 °С. При многопроходной автоматической сварке под флюсом минимальную температуру подогрева можно снижать на 50 °С. Аргонодуговую сварку корневого шва стыков труб выполняют без подогрева.

После сварки производят местный отпуск сварных соединений или общий отпуск всей сварной конструкции. Хромомолибденовые стали нагревают при отпуске до температуры 670. 700 °С с выдержкой при этой температуре 1 . 3 ч в зависимости от толщины сваренных кромок,

хромомолибденованадиевые - до температуры 740. 760 °С с выдержкой 2. 10 ч. Чем больше в стали хрома, молибдена, ванадия, тем больше должны быть температура и время отпуска. Отпуск стабилизирует структуру и механические свойства соединений, снижает остаточные напряжения, однако он не позволяет полностью выровнять структуру и устранить разупрочненную прослойку в ЗТВ.

Ручную дуговую сварку теплоустойчивых сталей ведут электродами из малоуглеродистой сварочной проволоки с основным (фтористо-кальциевым) покрытием, через которое вводят в шов легирующие элементы. Этот тип покрытия хорошо раскисляет металл шва, обеспечивает малое содержание в нем водорода и неметаллических включений, надежно защищает от азота воздуха. Это позволяет получать высокую прочность и пластичность шва. Однако для электродов с таким покрытием характерна повышенная склонность к образованию пор при удлинении дуги, наличии ржавчины на поверхности свариваемых кромок и при небольшом увлажнении покрытия. Поэтому нужно сваривать предельно короткой дугой, тщательно очищать кромки и сушить электроды перед их применением при температуре 80. 100 °С. Хромомолибденовые стали сваривают электродами типа Э-09Х1М (ГОСТ 9467-75) марки ЦУ-2ХМ диаметром 3 мм и более, а также ЦЛ-38 диаметром 2,5 мм, хромомолибденованадиевые - электродами типа Э-09Х1МФ марок ЦЛ-39 диаметром 2,5 мм, ЦЛ-20, ЦЛ-45 диаметром 3 мм и более. Сварку ведут на постоянном токе обратной полярности узкими валиками без поперечных колебаний электрода с тщательной заваркой кратера перед обрывом дуги. Когда подогрев свариваемых изделий и их термообработка после сварки невозможны или если необходимо сваривать перлитные теплоустойчивые стали с аустенитными, допускается использование электродов на никелевой основе марки ЦТ 36 или проволоки Св 08Н60Г8М7Т при аргонодуговой сварке.

Теплоустойчивые стали сваривают дуговой сваркой плавящимся электродом в углекислом газе и вольфрамовым электродом в аргоне. Сварку в С02 из-за опасности шлаковых включений между слоями используют обычно для однопроходных швов и для заварки дефектов литья. Сварку ведут на постоянном токе обратной полярности с присадочной проволокой (ГОСТ 2246-70) Св 08ХГСМА для хромомолибденовых сталей или Св 08ХГСМФА для хромомолибденованадиевых сталей. Для проволоки диаметром 1,6 мм сила сварочного тока 140. 200 А при напряжении дуги 20. 22 В, а диаметром 2 мм 280. 340 А при 26. 28 В.

Ручная аргонодуговая сварка используется для выполнения корневого шва при многопроходной сварке стыков труб. Автоматической сваркой в аргоне сваривают неповоротные стыки паропроводов в условиях монтажа. При аргонодуговой сварке хромомолибденовых сталей.

Автоматическую дуговую сварку под флюсом используют на поворотных стыках трубопроводов, коллекторов котлов, корпусов аппаратов химической промышленности и других изделиях с толщиной стенки 20 мм и более. Применяют низкоактивные по кремнию и марганцу флюсы ФУ-11, ФУ-16, ФУ-22. Этим достигается стабильность содержания Si и Мп в многослойных швах и низкое содержание в них оксидных включений - продуктов процесса восстановления марганца. Сварку под флюсом ведут со скоростью 40. 50 м/ч на постоянном токе обратной полярности силой 350. 400 А при напряжении дуги 30. 32 В. Высокая скорость сварки уменьшает погонную энергию, что снижает разупрочнение хромомолибденованадиевых сталей в околошовной зоне. Применяют проволоку диаметром 3 мм Св 08МХ и Св 08ХМ для хромомолибденовых сталей и Св 08ХМФА для хромомолибденованадиевых сталей. Можно применять проволоку диаметром 4 и 5 мм, увеличив соответственно силу тока до 520. 600 А и 620. 650 А при напряжении дуги 30. 34 В.

Что такое хромомолибденовая сталь и где ее применяют?

Хромомолибденовая сталь – материал высокой прочности, созданный путем соединения хрома и молибдена. Результатом такого сочетания стало повышение прочностных свойств нового материала и снижение его стоимости, что сделало металл востребованным на рынке. Стоит подробнее рассмотреть его особенности.

Что это такое?

Хромомолибденовая сталь представляет собой прочный и устойчивый к различным воздействиям материал, изготовленный из низколегированного металла. В основном подобный материал используют в промышленности и строительстве, где требуются устойчивые к абразивному износу элементы, способные перенести длительную транспортировку.

Материал демонстрирует отличную устойчивость к ударным нагрузкам, которой удалось добиться благодаря использованию прочных металлов. Из хромомолибденовой стали часто собирают мельничные футеровки, способные выдержать чрезмерную нагрузку и обладающие долгим сроком службы.

Также с помощью подобного металла выполняют зубчатые колеса для установки в различных механизмах для оснащения транспортных средств.

Свойства и характеристики

Хромомолибденовые стали используют в основном для изготовления деталей, работающих в условиях высоких температур. В основе материала лежат хром и молибден, которые придают готовому металлу особые свойства.

Хром:

  • повышает термическую стойкость;
  • улучшает стойкость к водороду;
  • предотвращает развитие коррозии;
  • стабилизирует аустенит;
  • уменьшает электрическую проводимость и тепловое расширение.

Молибден тоже оказывает положительное воздействие:

  • улучшает показатель прокаливаемости стали;
  • повышает коррозионную устойчивость;
  • делает материал менее хрупким.

Структуру хромомолибденовой стали можно отнести к гетерогенной, которая по мере увеличения концентрации карбидообразующих элементов повышается. Также при попытках изменить структуру:

  • меняется микротвердость частиц;
  • образуются карбиды в составе;
  • ухудшаются свойства материала.

По сравнению с хромистой сталью структура хромомолибденовой более однородна, за счёт чего производителям удалось добиться долгого срока службы и устойчивости материала к внешним воздействиям. Основные свойства:

  • невысокая ударная вязкость;
  • устойчивость к абразивному износу;
  • долгий срок службы.

По сравнению с мартенситной сталью хромомолибденовая обладает меньшей твердостью, поэтому практически образует трещин при ударных нагрузках.

Результатом использования хрома и молибдена при изготовлении металла стало получение устойчивого к большинству воздействий материала, который быстро зарекомендовал себя на строительном и промышленном рынках.

Марки и их применение

Хромомолибденовая сталь делится на несколько марок, у каждой есть свои свойства и свое назначение.

  • 30ХМ, 30ХМА, 35ХМ, 34ХМ1А. Отличаются повышенной прочностью и отличным показателем вязкости. В промышленной и строительной сферах используются после прохождения процедур закалки и отпуска. Также часто применяются после нормализации и отпуска. Из сталей данных марок изготавливают детали, способные выдержать высокие нагрузки. Также материал используют для сборки сварных конструкций, способных работать в условиях высоких температур. Отличительное свойство стали – отсутствие склонности к хрупкому разрушению.





  • 30ХМ и 35ХМ стоит вынести отдельной категорией. Стали отлично поддаются механической обработке, обладают неплохой свариваемостью и способны работать при температуре до +500 градусов. Из металла изготавливают различные детали.



  • 38ХМЮА. В промышленности такую сталь подвергают азотированию, за счет чего удается повысить твердость металла и устойчивость к внешним воздействиям. Материал способен выдержать большие нагрузки, обладает долгим сроком службы и не подвергается коррозии благодаря защитной пленке. Единственный недостаток – высокая цена.

Сталь, в составе которой присутствуют хром и молибден, активно используется в промышленности, автомобилестроении и строительстве. Также есть хромомолибденованадиевые марки, которые обладают высокими техническими характеристиками.

Обработка

Изготовление и сварка хромомолибденовых сталей приводят к ухудшению свариваемости материалов. В результате такого подхода становится необходимым проведение ряда технологических приемов, способных улучшить свойства измененного металла. Один из способов – термическая обработка сваренного изделия.

Хромомолибденовая сталь отлично поддается термической обработке. Один из способов подразумевает проведение следующих этапов:

  1. аустенизация;
  2. охлаждение в воде;
  3. отпуск.



Отличие от стандартной обработки заключается в нагреве при проведении процессов аустенизации до температуры Ас3+ (50-80°C). Охлаждение выполняют в воде, понижая температуру не более чем на 100 градусов.

Читайте также: