Коэффициент линейного расширения сталь 20х13

Обновлено: 02.05.2024

НТД C S P Mn Cr W V Ti Si Ni Mo Cu
ТУ 14-1-1404-75 0,16-0,25 ≤0,025 ≤0,030 ≤0,50 12,00-14,00 ≤0,20 ≤0,20 ≤0,20 ≤0,60 ≤0,60 ≤0,30 ≤0,30
ТУ 14-1-2186-77 0,16-0,24 ≤0,025 ≤0,030 ≤0,60 12,00-14,00 ≤0,20 ≤0,20 ≤0,20 ≤0,60 ≤0,50 ≤0,30 ≤0,30
ГОСТ 5632-72 0,16-0,25 ≤0,025 ≤0,030 ≤0,80 12,00-14,00 ≤0,20 ≤0,20 ≤0,20 ≤0,80 ≤0,60 ≤0,30 ≤0,30

По ТУ 14-1-1404-75 химический состав приведен для марки 20Х13-Ш.
По ТУ 14-1-2186-77 для стали, выплавленной электрошлаковым переплавом содержание S ≤ 0,015 %.

Сталь 20Х13 коррозионостойкая, жаропрочная, мартенситная

Цифра 20 указывает среднее содержание углерода в сотых долях процента, т.е. для стали 20Х13 это значение равно 0,20%.

Буква «Х» указывает на содержание в стали хрома. Цифра 13 после буквы «Х» указывает примерное количество хрома в стали в процентах, округленное до
целого числа, т.е. содержание хрома около 13%.

Вид поставки

Характеристики и назначение

Сталь 20Х13 относится к коррозионностойким, жаропрочным сталям мартенситного класса (основная структура мартенсит).
Сталь 20Х13 применяется для изготовления деталей с повышенной пластичностью, подвергающиеся ударным нагрузкам и работающие при температуре до 450—500 °С, а также изделия, подвергающиеся действию слабоагрессивных сред при комнатной температуре.

Свариваемость

Сталь 20Х13 ограниченно свариваемая. Способы сварки РДС, АрДС и КТС. Подогрев и последующая термообработка применяются в зависимости от метода сварки, вида и назначения конструкции.

Максимально допустимые температура применения стали 20Х13 в средах, содержащих аммиак

Максимально допустимые температура применения стали 20Х13 в водородосодержащих средах

Марка стали Температура, °С, при парциальном давлении водорода,
PH2, МПа (кгс/см 2 )
1,5(15) 2,5(25) 5(50) 10(100) 20(200) 30(300) 40(400)
20Х13 510 510 510 510 510 510 510
  • Параметры применения сталей, указанные в таблице, относятся также к сварным соединениям.
  • Парциальное давление водорода рассчитывается по формуле:
    PH2 = (C*Pp)/100,
    где C — процентное содержание в системе;
    PH2 — парциальное давление водорода;
    Pp — рабочее давление в системе.

Стойкость стали 20Х13 против щелевой эрозии

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Стойкие 2 0,75-1,5

Применение стали 20Х13 для изготовления основных деталей арматуры атомных станций

Марка стали Вид полуфабриката
или изделия
Максимально
допустимая
температура
применения, °С
20Х13
ГОСТ 5632, ГОСТ 24030
Листы, трубы, поковки, сортовой
прокат. Крепеж
600

Химический состав, % (ГОСТ 5632-2014)

С Si Mn Cr Ni Ti S Р
не более не более
0,16-0,25 0,8 0,8 12,0-14,0 0,025 0,030

Химический состав, % (ГОСТ 5632-81)

С Si Mn Cr S Р Ti Cu Ni
не более не более
0,16-0,25 0,8 0,8 12,0-14,0 0,025 0,030 0,2 0,30 0,6

Физические свойства

Модуль нормальной упругости Е, ГПа

Марка стали При температуре испытаний, °С
20 100 200 300 400 500 600 700 800 900
20X13 218 214 208 200 189 181 169

Модуль упругости при сдвиге на кручение G, ГПа

Марка стали При температуре испытаний, °С
20 100 200 300 400 500 600 700 800 900
20X13 86 84 80 78 73 69 63

Плотность ρ кг/см 3 при температуре испытаний, °С

Сталь 20 100 200 300 400 500 600 700 800 900
20X13 7670 7660 7630 7600 7570 7540 7510 7480 7450

Коэффициент теплопроводности λ Вт/(м*К) при температуре испытаний, °С

Сталь 20 100 200 300 400 500 600 700 800 900
20X13 26 26 26 26 27 26 26 27 28

Удельное электросопротивление ρ нОм*м

Марка стали При температуре испытаний, °С
20 100 200 300 400 500 600 700 800 900
20X13 588 653 730 800 884 952 1022 1102

Коэффициент линейного расширения α*10 6 , К -1 , при температуре испытаний, °С

Сталь 20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
20X13 10,2 11,2 11,5 11,9 12,2 12,8 12,8 13,0

Удельная теплоемкость c, Дж/(кг*К), при температуре испытаний, °С

Сталь 20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
20X13 112 117 123 127 132 137 147 155 159

Температура критических точек, °С

Механические свойства

ГОСТ Состояние поставки Сечени σ0,2, МПа σв, МПа δ5, % ψ% KCU, Дж/см 2
не менее
ГОСТ 5949-75 Пруток. Закалка с
1000-1050 °С на воздухе
или в масле;
отпуск при 600-700 °С,
охл. на воздухе
или в масле
60 635 830 10 50 59
Пруток. Закалка с
1000-1050 °С на воздухе
или в масле;
отпуск при 660-770 °С,
охл. на воздухе, в
масле или в воде
60 440 650 16 55 78
ГОСТ 18907-73 Пруток шлифованный,
обработанный на
заданную прочность
1-30 510-780 14
ГОСТ 7350-77 Лист горячекатаный
или холоднокатаный.
Закалка с 1000-1050
°С на воздухе; отпуск
при 680-780 °С, охл.
на воздухе или с печью
(образцы поперечные)
Св. 4 372 509 20
ГОСТ 25054-81 Поковка. Закалка с
1000-1050 °С на воздухе
или в масле
1000 441 588 14 40 39
ГОСТ 4986-79 Лента холоднокатаная. До 0,2 500 8
Отжиг или отпуск при
740- 800 °С
0,2-2,0 500 16
ГОСТ 18143-72 Проволока термообработанная 1,0-6,0 490-780 14

Механические свойства заготовок сечением 14 мм в зависимости от температуры отпуска

tотп.°С σ0,2, МПа σв, МПа δ5, % ψ% KCU, Дж/см 2 Твердость HRCэ
200 1300 1600 13 50 81 46
300 1270 1460 14 57 98 42
450 1330 1510 15 57 71 45
500 1300 1510 19 54 75 46
600 920 1020 14 60 71 29
700 650 78 18 64 102 20
700 650 78 18 64 102 20

ПРИМЕЧАНИЕ. Закалка с 1050 °С на воздухе.

Механические свойства при повышенных температурах

tисп.°С σ0,2, МПа σв, МПа δ5, % ψ% KCU, Дж/см 2
Нормализация при 1000-1020 °С; отпуск при 730-750 °С. При 20 °СНВ 187-217
20 510 710 21 66 64-171
300 390 540 18 66 196
400 390 520 17 59 196
450 370 480 18 57 235
500 350 430 33 75 245
550 275 340 37 83 216
Образец диаметром 6 мм и длиной 30 мм, прокатанный.
Скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с
800 59 70 51 98
850 43
900 66
1000 39 61 59
1150 21 31 84 100

Механические свойства прутков при отрицательных температурах

tисп.°С σ0,2, МПа σв, МПа δ5, % ψ% KCU, Дж/см 2
Сечение 25 мм. Нормализация при 1000 “С, охл. на воздухе;
отпуск при 680-750 °С
+20 540 700 21 62 76
-20 560 730 22 59 54
-40 580 770 23 57 49
-60 570 810 24 57 41
Сечение 14 мм. Закалка с 1050 °С на воздухе; отпуск при 600 °С
+20 71
-20 81
-60 64

Механические свойства при испытании на длительную прочность

tисп.°С Предел
ползучести, МПа
Скорость
ползучести, %/ч
tисп.°С Предел длительной
прочности, МПа
τ, ч
450 125 1/100000 450 289 10000
470 75 1/100000 470 191 10000
500 47 1/100000 500 255 100000
550 29 1/100000 550 157 100000

ПРИМЕЧАНИЕ. Предел выносливости σ-1 = 367 МПа при n = 10 7 (образцы гладкие).

Сталь 20Х — конструкционная легированная

Cортовой прокат, в том числе фасонный: ГОСТ 4543—71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 10702-78, ГОСТ 2879-88.

Калиброванный пруток ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 7417-75, ГОСТ 1051-73.

Шлифованный пруток и серебрянка ГОСТ 14955-77.

Лист толстый ГОСТ 1577—93, ГОСТ 19903—74.

Полоса ГОСТ 82—70, ГОСТ 103—76.

Поковки и кованые заготовки ГОСТ 1133-71, ГОСТ 8479-70.

Трубы ГОСТ 8731-87, ГОСТ 8732-78, ГОСТ 8733-74, ГОСТ 8734-75, ГОСТ 13663-86.

Назначение

Втулки, шестерни, обоймы, гильзы, диски, плунжеры, рычаги и другие цементуемые детали, к которым предъявляются требования высокой поверхностной твердости при невысокой прочности сердцевины, детали, работающие в условиях износа при трении.

Расшифровка стали 20Х

Цифра 20 обозначает, что содержание углерода в стали составляет 0,2%.

Буква Х означает, что в стали содержится хром в количестве до 1,5%.

Применение стали 20Х корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

Марка стали НД на поставку Температура рабочей среды (стенки), °С Дополнительные указания по применению
20X
ГОСТ 4543
Поковки ГОСТ
8479.

Сортовой прокат
ГОСТ 4543.

Листы ГОСТ 1577,
категории 2, 3.

Применение стали 20Х для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур (ГОСТ 33260-2015)

Марка стали Закалка + отпуск при
температуре, °С
Примерный уровень
прочности, Н/мм 2
(кгс/мм 2 )
Температура
применения не ниже, °С
Использование в
толщине не более, мм
20Х 200 900 (90) -60 15
  1. При термической обработке на прочность ниже указанной в графе 3 или при использовании в деталях с толщиной стенки менее 10 мм температура эксплуатации может быть понижена.
  2. Максимальная толщина, указанная в графе 5, обусловлена необходимостью получения сквозной прокаливаемости и однородности свойств по сечению.

Химический состав, % (ГОСТ 4543-71)

С Si Mn Cr Ni Cu S P
не более
0,17-0,23 0,17-0,37 0,5-0,8 0,7-1,0 0,30 0,30 0,035 0,035

Химический состав, % (ГОСТ 4543-2016)

Марка стали Массовая доля элементов, %
С Si Mn Cr Ni Mo Al Ti V B
20Х 0,17-0,23 0,17-0,37 0,5-0,8 0,7-1,0

ПРИМЕЧАНИЕ: знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если не указано иное.

Твердость (ГОСТ 4543-2016)

  1. Твердость по Бринеллю металлопродукции в отожженном (ОТ) или высокоотпущенной (ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим высоким отпуском (Н+ВО), диаметром или толщиной свыше 5 мм должна соответствовать нормам, указанным в таблице
    Марка сталиТвердость HB, не более
    20Х179

Механические свойства проката (ГОСТ 4543-2016)

Марка стали Режим термической обработки Механические свойства, не менее Размер сечения
заготовок для
термической обработки
(диаметр круга или
сторона квадрата), мм
Закалка Отпуск Предел текучести σт, Н/мм 2 Временное сопротивление σв, Н/мм 2 Относительное Ударная вязкость КС U, Дж/см2
Температура, °С Среда охлажде-
ния
Темпера-
тура, °С
Среда
охлаждения
удлинение δ5,% сужение Ψ, %
1-й
закалки
или нор-
мализации
2-й за-
калки
20Х 880 770—
820
Вода или масло 180 Воздух или масло 635 780 11 40 59 15

Механические свойства проката

ГОСТ Состояние поставки, режим термообработки Сечение, мм σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость, не более
не более
ГОСТ 4543-71 Пруток. Закалка с 880 °С в воде или масле, закалка с 770-820 °С в воде или масле; отпуск при 180 °С, охл. в воде или в масле 15 640 780 11 40 59
ГОСТ 10702-78 Сталь нагартованная -калиброванная и калиброванная со специальной отделкой без термообработки 590 5 45 HB 207
Пруток. Цементация при 920-950 °С, охл. на воздухе; закалка с 800 °С в масле; отпуск при 190 °С, охл. на воздухе 60 390 640 13 40 49 HB 250; HRC5 55-63

Механические свойства поковок (ГОСТ 8479-70)

Термообработка Сечение, мм КП σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость HB, не более
не менее
Нормализация До 100 195 195 390 26 55 59 111-156
100-300 23 50 54
300-500 20 45 49
До 100 215 215 430 24 53 54 123-167
100-300 20 48 49
До 100 245 245 470 22 48 49 143-179
Закалка+отпуск 100-300 19 42 39 143-179
До 100 275 275 530 20 40 44 156-197
100-300 275 275 530 17 38 34 156-197
100-300 315 315 570 14 35 34 167-207
100-300 345 345 590 17 40 54 174-217

Механические свойства в зависимости от температуры отпуска

tотп. °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2
200 650 880 18 58 118
300 690 880 16 65 147
400 690 850 18 70 176
500 670 780 20 71 196
600 610 730 20 70 225

Примечание: Пруток диаметром 25 мм; закалка с 900 °С, в масле.

Механические свойств при повышенных температурах

tисп. °С σ0,2, МПа σв, МПа δ5, % Ψ, %
700 120 150 48 89
800 63 93 56 74
900 51 84 64 88
1000 33 51 78 97
1100 21 33 98 100
1200 14 25

ПРИМЕЧАНИЕ: Образец диаметром 6 мм, длиной 30 мм, кованый и нормализованный; скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с.

Предел выносливости при n = 10 7

Термообработка σ-1, МПа
Нормализация, σ0,2 = 295-395 МПа, σв = 450-590 МПа, HB 143-179 235
Закалка + высокий отпуск, σ0,2 = 490 МПа, σв = 690 МПа, HB 217-235 295
Цементация + закалка + низкий отпуск, σ0,2 = 790 МПа, σв = 930 МПа, HRCэ 57-63 412

Ударная вязкость KCU

Состояние поставки KCU, Дж/см 2 , при температуре, °С
+20 -20 -40 -60
Пруток диаметром 115 мм; закалка + отпуск 280-286 280-289 277-287 261-274

Технологические свойства

Температура ковки, °С: начала 1260, конца 750. Заготовки сечением до 200 мм охлаждаются на воздухе, сечением 201-700 мм подвергаются низкотемпературному отжигу.

Обрабатываемость резанием — Kv тв.спл = 1,3 и Kv б.ст = 1,7 в горячекатаном состоянии при НВ 131 σв = 460 МПа.

Склонность к отпускной хрупкости — не склонна.

Сталь 20Х сваривается без ограничений(кроме химико-термических обработанных деталей). Способы сварки: РДС, КТС без ограничений.

Сталь марки 20Х13Л

Расшифровка названия стали 20Х13Л: наличие буквы Л в конце говорит о том, что это марка литейной стали, цифра 20 в начале - что в стали присутствует 0,20% углерода, а также хром в количестве 13%.

Особенности стали марки 20Х13Л: из стальных отливок в ряде случаев изготовляют сложные ответственные детали точных машин и приборов. При этом литая деталь может быть определяющим элементом конструкции и должна отличаться высокой размерной стабильностью в условиях длительной эксплуатации.

Литой металл отличается повышенной макро- и микронеоднородностью строения, связанной с условиями плавки и процессами кристаллизации в форме. Влияние неоднородностей строения литой стали на изменение механических свойств при кратковременном нагружении (σв, σ0,2, δ, ψ) исследовано достаточно подробно.

Весьма эффективным является высокотемпературный нагрев (значительно выше Ас3) для улучшения структуры и свойств стали 20Х13Л, широко применяемой при изготовлении точных литых деталей машин и приборов. Эта сталь после литья отличается значительной структурной неоднородностью и крупнозернистостью. Литая крупнозернистая структура стали 20Х13Л характеризуется большой устойчивостью. В. И. Оболенским показано, что рекристаллизация аустенита стали 20Х13Л, обеспечивающая разрушение исходной крупнозернистой литой структуры, проходит только после нагрева до 1100-1150° С (примерно на 250-300° выше Ас3 и на 50-100° выше, чем для деформируемой стали аналогичного состава). Такая высокая температура рекристаллизации аустенита обусловлена большой химической и структурной неоднородностью стали 20Х13Л, микроликвацией хрома (в отдельных местах содержание хрома достигает 16,3% при среднем его содержании в стали 14%), неравномерным выделением карбидной фазы при охлаждении отливок и др. При этом важное значение имеет как скорость нагрева стали до 1100-1150° С, так и скорость охлаждения после литья и отжига. Низкие скорости нагрева и охлаждения не обеспечивают получения оптимальных структуры и свойств стали. Повышение скорости нагрева от 20 до 150-200°/мин оказывает благоприятное влияние на полноту прохождения процесса рекристаллизации аустенита и создание мелкозернистой структуры. Медленная скорость охлаждения отливок после литья и отжига усиливает химическую и структурную неоднородность литой стали. Процессы рекристаллизации аустенита при высокотемпературном нагреве стали 20Х13Л связаны главным образом с ростом части субзерен, постепенным увеличением угла разориентировки с образованием большеугловых границ новых рекристаллизованных зерен.

Ударная вязкость стали 20Х13Л после различных вариантов отжига, закалки и отпуска в интервале обратимой хрупкости (В. И. Оболенский)
Режим отжига и закалки Охлаждение при запуске Ударная вязкость (кгс/мм 2 ) после трехчасового отпуска при t в °C
570 520 470 400
Отжиг при 1100—1150° C 3 ч, закалка в масле с 1030—1050° C В масле 3.7 3.3 3.4 3.7
Отжиг при 1100—1150° C 3 ч, закалка в масле с 1030—1050° C В масле 3.7 3.3 3.4 3.7
Отжиг при 960—980° C 3 ч, закалка в масле с 1030—1050° C » » 1.3 1.3 1.4 1.5
Отжиг при 1100—1150° C 3 ч, закалка в масле с 1030—1050° C С печью 1.0 0.9 2.2 2.7
Отжиг при 960—980° C 3 ч, закалка в масле с 1030—1050° C » » 0.4 0.3 0.8 0.9

Для получения оптимального сочетания сопротивления микропластическим деформациям и механических свойств отливки из стали 20Х13Л после высокотемпературного отжига целесообразно подвергать термическому улучшению - закалке с 1050° С и высокому отпуску на требуемую твердость.

Влияние температуры предварительного отжига на структуру стали после закалки - после предварительного отжига при 950- 980° С и после закалки сталь сохранила исходное крупнозернистое строение. Предварительный отжиг при 1100-1150° С обеспечивает после закалки более однородное строение мартенсита и полное устранение границ исходных крупных зерен. Применение предварительного высокотемпературного отжига при 1100-1150° С стали 20Х13Л вместо обычно принятого в практике отжига при 960- 980° С позволяет повысить в 1,5-4 раза релаксационную стойкость и в 1,5 раза пластичность стали и значительно уменьшить склонность стали 20Х13Л к отпускной хрупкости после закалки и отпуска в интервале обратимой отпускной хрупкости 400-570° С.

Установленные оптимальные режимы термообработки литых сталей, обеспечивающие значительное улучшение их структуры и свойств, открывают новые возможности более широкого использования стальных отливок в ответственных конструкциях точного машиностроения и приборостроения.

Сталь марки 20Х13


Предел выносливости σ-1 = 367 МПа при n = 10 7 (образцы гладкие).

Сталь марки 20Х13 и другие стали мартенситного класса: жаропрочные хромистые стали мартенситного класса применяют в различных энергетических установках, они работают при температуре до 600° С. Из них изготовляют роторы, диски и лопатки турбин, в последнее время их используют для кольцевых деталей больших толщин. Существует большое количество марок сталей данного класса. Общим для всех является пониженное содержание хрома, наличие молибдена, ванадия и вольфрама. Они эффективно упрочняются обычными методами термообработки, которая основана на у - a-превращении и предусматривает получение в структуре мартенсита с последующим улучшением в зависимости от требований технических условий.

Сочетание высокой прочности и пластичности с повышенной стойкостью против коррозии обеспечивается путем дополнительного легирования сталей элементами, которые, практически не снижая стойкости против коррозии, усиливают восприимчивость последних к закалке в результате увеличения количества у-фазы при нагреве. Из таких элементов наиболее эффективен никель.

Легирование сталей рассматриваемого класса одновременно вольфрамом и молибденом обеспечивает более высокую жаропрочность, чем легирование каждым в отдельности. В целях экономии дефицитных элементов (никеля и др.) ведутся работы по замене аустенитных сталей хромистыми мартенситными. Химический состав некоторых сталей рассматриваемого класса и их сварных соединений приведен в табл. 9.32.

Состав, % ( в основном металле Fe- основа)

Электрошлаковую сварку сталей мартенситного класса выполняют с применением электродов большого сечения, если швы имеют малую протяженность (при изготовлении фланцев, колец, бандажей и др.). Однако здесь встречаются технологические трудности, обусловленные физико-химическими свойствами металла. Стали на железной основе обладают высокой магнитной восприимчивостью и при внесении их в магнитное поле намагничиваются. Поскольку при использовании электродов большого сечения сварочный ток достигает большого значения (3000-6000 А), вокруг электрода возникает сильное магнитное поле. Электрод закреплен вверху и в процессе сварки под действием магнитного поля получает колебательные движения. Он может периодически касаться свариваемых кромок и «прилипать» к ним, в результате чего стабильность процесса сварки нарушается. Во избежание этого питание сварочным током при электрошлаковой сварке электродами большого сечения следует осуществлять в соответствии со схемой.

Точка мартенситного превращения в указанных сталях лежит в интервале температур 250-350° С. Следовательно, при сварке металла большого сечения скорость охлаждения околошовной зоны достаточна для образования закалочной структуры, что может привести к образованию холодной трещины, быстро распространяющейся в околошовной зоне и в шве . Эти трещины обычно носят интеркристаллитный характер.

Чтобы избежать образования холодных трещин при сварке, необходимо обеспечить медленное охлаждение свариваемого стыка и снизить скорость мартенситного превращения в процессе охлаждения. Применение электродов большого сечения позволяет обеспечить такие условия. Сварку следует выполнять в закрытом приспособлении, наполненном теплоизолятором. В большинстве случаев хорошие результаты обеспечиваются при использовании обычного кварцевого песка, нагретого до температуры 500° С.

В табл. 9.33 приведены механические свойства сварных соединений, выполненных электрошлаковой сваркой пластинчатым электродом после термообработки, типичной для основного металла.

Макроструктура шва имеет резко выраженное столбчатое строение при преимущественном росте дендритов снизу вверх. После термообработки макроструктура шва заметно измельчается, но дендритная направленность полностью не устраняется.

Читайте также: