Литейная конструкционная сталь применение

Обновлено: 05.05.2024

Литейная сталь — специальный сплав для производства отливок. Маркируется такая сталь буквой «Л», которая ставиться на конце обозначения марки стали, например 10Л, 15Л, 20Л, 25Л, 30Л, 35Л и др. Отличительной особенностью литейной стали является хорошая жидкотекучесть и заполняемость литейной формы, склонность к образованию усадочных дефектов (усадка, пористость, раковины), образование внутренних и наружных трещин, ликвация металла. Меры по борьбе с данными недостатками предусматривают добавление в сталь специальных примесей, благодаря чему получают специальные стали, отличающие высокими физическими и механическими свойствами, к которым относят:

  • критические температуры (ликвидуса, перитектических превращений, солидуса и эвтектики, фазовых превращений при охлаждении);
  • плотность и удельный объем сплавов в жидком состоянии;
  • коэффициент объемного и линейного расширения (сжатия) в области жидкого и твердого состояний;
  • вязкость (динамическая и кинематическая) в жидком состоянии;
  • поверхностное и межфазное натяжение (в жидком и жидко-твердом состоянии на поверхности раздела с маточным раствором, металлическими и неметаллическими стенками формы, неметаллическими и газовыми включениями);
  • скрытая теплота кристаллизации, а также фазовых превращений в твердом состоянии;
  • теплоемкость в жидком состоянии и при затвердевании;
  • коэффициент теплопроводности (для сплавов в жидком состоянии в условиях покоя и различной степени развития конвективых потоков, а также при затвердевании и охлаждении).

Классифицируются литейные стали по способу выплавки, назначению, химическому составу:

  • стали обыкновенные (стали обычного качества, нелегированные, углеродистые, общего назначения);
  • стали ответственного назначения (повышенного качества);
  • стали особо ответственного назначения (особого качества, легированные стали).

Стали ответственного и особо ответственного назначения отличаются более высокой стоимостью из-за наличия особых свойств.

литейное производство

Литейные свойства.

Высокая температура заливки стали приводит к интенсивному теплообмену между металлом и формой, снижается температура перегрева, увеличивается перепад между температурой стали и температурой формы. Вследствие чего снижается жидкотекучесть стали. Наибольшей жидкотекучестью обладает серый чугун. Для вычисления жидкотекучести металла используют спираль Кэри. Большая жидкотекучесть определяет длину спирали в 1200 -1500 мм для чугуна, для стали 600 — 800 мм. На изменение жидкотекучести является влияние теплоты кристаллизации. Снижение интенсивности кристаллизации меняет характер затвердевания. Высокий темп – направленный характер обеспечивает условия для лучшей жидкотекучести. В условиях кристаллизации с низким темпом затвердевания имеют разветвлённый характер, который ухудшает жидкотекучесть.

Сфера применения литейных сталей.

Использование стали в жизни человека разнообразно и многогранно, порой мы даже не замечаем, что без металла не обходится большинство конструкций, механизмов, деталей и так далее. Литейные стали используются промышленными предприятиями, работающими в химической и нефтехимической сферах, в судостроении и энергетике, в угледобывающей, целлюлозно-бумажной и многих других отраслях. Для изготовления сварно-литых изделий, подвергающихся сильным ударным нагрузкам.

Литейные стали. Виды, свойства, маркировка литейных сталей

К литейным сталям относят железоуглеродистые сплавы, содержащие до 2,14 % С и другие элементы (Mn, Si, Р, S, Cr, Ni, W, Mo, V и т. д.), попавшие в сталь из шихтовых материалов либо специально введенные в нее в определенных количествах для придания сплаву необходимых эксплуатационных и технологических свойств.

В настоящее время стальные отливки используют во всех отраслях машиностроения; по объему производства они занимают второе место после чугунов. Из сталей отливают обычно детали, к которым предъявляют повышенные требования по прочности, пластичности, надежности и долговечности в процессе эксплуатации. Литейные стали классифицируют в основном по способу выплавки, химическому составу, структуре, назначению.

Литейные стали по химическому составу подразделяют на:

Углеродистые стали по химическому составу подразделяют на:

  • низкоуглеродистые (0,09…0,2 % С);
  • среднеуглеродистые (0,2…0,45 % С);
  • высокоуглеродистые (0,5…1,0 % С).

Легированные литейные стали подразделяют на:

  • низколегированные (сумма легирующих элементов до 2,5 %);
  • среднелегированные (сумма легирующих элементов 2,5…10 %);
  • высоколегированные (сумма легирующих элементов более 10 %).

Стальные отливки (ГОСТ 977-88) изготовляют всеми способами литья из конструкционных нелегированных (15Л; 20Л; 25Л; 30Л; 35Л; 40Л; 45Л; 50Л), конструкционных легированных (20ГСЛ; 30ГСЛ; 35ГЛ; 40ХЛ; 20ФЛ; 30ХГСФЛ; 30ХНМЛ; 32Х06Л и других) и легированных со специальными свойствами (20X1ЗЛ – коррозионностойкие; 40Х9С2Л – жаростойкие; Р6М4Ф2Л – быстрорежущие; 110Г13Л – износостойкие и других) сталей.

Отливки по качественным показателям делят на три группы:

  1. – обычного назначения и качества;
  2. – ответственного назначения и повышенного качества;
  3. – особо ответственного назначения и повышенного качества.

Маркировка сталей буквенно-цифровая:

  • буква «Л» означает, что сталь литейная;
  • первые цифры указывают среднюю и максимальную (при отсутствии нижнего предела) массовую долю углерода в сотых долях процента;
  • буквы за цифрами означают:
    • А – азот;
    • Б – ниобий;
    • В – вольфрам;
    • Г – марганец;
    • Д – медь;
    • М – молибден;
    • Н – никель;
    • Р – бор;
    • С – кремний;
    • Т – титан;
    • Ф – ванадий;
    • X – хром;
    • Ю – алюминий;
    • Л – литейная.

    Цифры, стоящие после букв, указывают примерную массовую долю легирующего элемента в процентах.

    Таблица 1. Классификация литейных сталей

    1. Литейные углеродистые стали

    Для получения отливок используются углеродистые стали, содержащие 0,12–0,60 % С. Они маркируются числом, обозначающим среднее содержание углерода (в сотых долях процента) и буквой «Л» (табл. 2). Литейные стали отличаются от деформируемых большим допуском на содержание примесей, а также несколько пониженной пластичностью.

    Таблица 2. Механические свойства конструкционной нелегированной стали

    В зависимости от назначения и предъявляемых требований все отливки из углеродистых и легированных сталей подразделяют на три группы:

    1. – отливки общего назначения, контролируемые по внешнему виду, размерам и химическому составу;
    2. – отливки ответственного назначения, контролируемые, кроме того, по прочности (σв или σт) и относительному удлинению;
    3. – отливки особо ответственного назначения, контролируемые дополнительно к указанным характеристикам по ударной вязкости.

    В числе контролируемых параметров могут включаться также микроструктура, пористость, герметичность и другие специальные характеристики.

    Химический состав сталей полностью не приводится, так как существенно изменяется только содержание углерода, которое определяет марку стали и ее основные свойства.

    Марганец (0,3–0,9 %) раскисляет сталь и нейтрализует вредные примеси серы, а также несколько повышает прочность стали. С железом сера образует сульфид FeS и легкоплавкую эвтектику Fe-FeS по границам зерен, в результате чего возникает красноломкость и склонность к образованию горячих трещин. При введении марганца в соотношении % Мn >1,71 % S образуются более тугоплавкие сульфиды MnS, располагающиеся в виде неметаллических включений внутри зерна; в результате красноломкость исчезает.

    Кремний (0,2–0,5 %) вводится в сталь как раскислитель и дегазатор. Даже в небольших количествах он заметно упрочняет феррит и снижает пластичность стали.

    Требования по содержанию марганца и кремния в литейных углеродистых сталях рассматриваются как факультативные: отклонения от них не являются признаком брака.

    Сера и фосфор в сталях, за редким исключением, являются вредными примесями. Их содержание ограничивается в пределах 0,45– 0,06 % S и 0,04–0,08 % Р, в зависимости от группы и габаритных размеров отливок; с увеличением размеров требования ужесточаются. Как уже упоминалось, сера вызывает красноломкость стали, а фосфор – снижение пластичности при комнатной температуре.

    Механические свойства сталей определяются содержанием углерода; по мере его увеличения от 0,15 до 0,55 % σв возрастает от 400 до 600 МПа, а δ снижается с 24 до 10 %, уменьшается также ударная вязкость с 0,49 до 0,24 МДж/м 2 . Это изменение свойств объясняется возрастанием доли перлита в микроструктуре стали.

    Область применения литейных нелегированных сталей:

    1. 15Л; 20Л; 25Л – копровые бабы, блоки, ролики, корпусы, поводки, захваты, арматура, фасонные отливки, шкивы, траверсы, поршни, буксы, крышки цилиндров, корпусы подшипников.
    2. 35Л; 40Л; 45Л – рычаги, балансиры, корпусы редукторов, муфты, шкивы, кронштейны, станины, балки, опорные кольца, бандажи, маховики, зубчатые колеса, тяги, валики.
    3. 50Л; 55Л – шестерни, бегунки, колеса, зубчатые колеса подъемно-транспортных машин.

    Особенности литейных свойств углеродистых сталей.

    Литейные свойства углеродистых сталей значительно хуже литейных свойств чугуна и других сплавов. Низкая жидкотекучесть сталей объясняется, главным образом, самой высокой (кроме титановых сплавов) температурой ликвидуса и соответственно низкой температурой заливки. Суммарная объемная усадка затвердевания и усадка в жидком состоянии составляет 6,0 %. Поэтому стальные отливки, как и отливки всех других сплавов, кроме чугуна, необходимо получать с прибылями.

    Для стальных отливок характерно развитие пористости, в них чаще, чем в отливках из других сплавов, образуются горячие трещины, даже в случаях литья в песчано-глинистые формы. В то же время холодные трещины в стальных отливках возникают реже, чем в чугунных отливках. К насыщению газами и неметаллическим включениям стали более склонны, но и требования для них выше, чем для чугунов. К ликвации, особенно по сере и фосфору, склонны стальные отливки с толщиной стенки более 80 мм. Как правило, ликвации подвергнуты слитки, имеющие существенно большую толщину.

    К изменению механических свойств, в зависимости от толщины стенок, литейные углеродистые стали менее чувствительны, чем другие сплавы, особенно, учитывая обязательную их термическую обработку.

    2. Легированные литейные стали

    Легирование литейных углеродистых сталей проводится с целью повышения механических свойств и приобретения ими специальных служебных свойств.

    К легированным сталям относят низко- и среднелегированные стали с содержанием легирующих компонентов, соответственно, до 2,5 и от 2,5 до 10 %. Химический состав легированных сталей в соответствии с ГОСТ 977-88 приведен в табл. 3, а их механические свойства после термической обработки (закалки (нормализации) и отпуска) – в табл. 4.

    Чаще других применяют стали, легированные кремнием, марганцем, хромом и никелем, медью и др. Известно много композиций марганцевой стали, различающихся содержанием углерода и марганца. Обычно их содержание колеблется в пределах, соответственно, 0,17…0,4 % С и 1,0…2,0 % Mn. Марганцевые стали отличаются более высокой прочностью и особенно большей прокаливаемостью, чем углеродистые. Марганцевые стали широко используются при изготовлении отливок для железнодорожного транспорта, экскаваторов и других машин.

    Таблица 3. Средний химический состав легированных сталей, мас. %

    Содержание S и Р не более 0,03…0,05 % каждого.

    Таблица 4. Механические свойства легированных сталей

    У хромовых сталей (40ХЛ и др.) также повышенные, по сравнению с углеродистой сталью, механические свойства и прокаливаемость. Для улучшения их структуры и свойств используют небольшие добавки молибдена, устраняющие склонность к отпускной хрупкости. Хромовые стали применяют для получения отливок, работающих в условиях абразивного износа.

    Большая прокаливаемость достигается при легировании стали одновременно марганцем, хромом и кремнием (30ХГСЛ, хромансил). Одновременное легирование хромом и никелем проявляется в измельчении зерна, в значительном увеличении прокаливаемости, что позволяет изготовлять из этих сталей крупногабаритные отливки (30ХНМЛ и др.). Стали, легированные медью, подвержены дисперсионному твердению, которое обеспечивает однородные свойства в тонких и толстых сечениях отливок. Некоторые марки легированных сталей модифицируют бором, кальцием, церием и другими РЗМ. В результате улучшаются механические и литейные свойства стали.

    Как правило, добавки вводятся в малых количествах. Так, например, достаточно иметь 0,001…0,002 % В в стали, чтобы получить резкое увеличение прокаливаемости и пластичности. В одних случаях действие добавок связывается с модифицированием, в других – с микролегированием. Графитизированная сталь, также относящаяся к легированным, содержит 0,9…1,5 % С, 1,0…1,4 % Si, 0,5 % Mn.

    В литом состоянии ее структура представлена перлитом и цементитом, т. е. весь углерод находится в связанном состоянии. При термической обработке (отжиг с нагревом до 900 °С и последующее медленное охлаждение в интервале температур 800…700 °С) происходит распад структурно свободного цементита с выделением графита. Окончательная структура стали – перлит + графит. Такая графитизированная сталь обладает повышенными антифрикционными свойствами и используется для втулок, вкладышей, работающих в условиях абразивного износа.

    Высоколегированные стали. В соответствии с ГОСТ 2176-77, высоколегированные стали, содержащие более 10 % легирующих элементов, подразделяются по структуре на шесть классов: мартенситный; мартенсито-ферритный; ферритный; аустенито-мартенситный; аустенито-ферритный; аустенитный. Смена классов происходит по мере увеличения легированности. На практике чаще пользуются названиями сталей по основным служебным свойствам: коррозионностойкая, кислотостойкая, жаростойкая, жаропрочная, износостойкая.

    Большой класс высоколегированных сталей составляют так называемые коррозионностойкие (нержавеющие) стали, обладающие хорошей стойкостью против коррозионного воздействия агрессивных сред. Прежде всего к ним относятся высоколегированные хромовые стали ферритного класса (12Х18ТЛ, 15Х20ТЛ), обладающие хорошей пластичностью. Добавка титана связывает углерод и повышает стойкость против межкристаллитной коррозии.

    Для получения высокой твердости и износостойкости хромовых сталей (Х28Л, Х34Л) содержание углерода увеличивают до 0,5…2,0 % и получают феррито-карбидную структуру. Хромовые коррозионностойкие стали мартенситного и феррито-мартенситного классов характеризуются сравнительно широким диапазоном содержания углерода и возможным наличием никеля, меди, ниобия и других элементов.

    К сталям этого класса можно отнести стали марок 10Х14НДЛ и 09ХН4БЛ (Б – ниобий). Наивысшей коррозионной стойкостью рассматриваемые стали обладают в том случае, когда карбиды в свободном состоянии отсутствуют и полностью переведены в твердый раствор. Хромовые стали отличаются пониженной, по сравнению с углеродистой сталью, теплопроводностью, повышенной окисляемостью, склонностью к пленообразованию, образованию пригара при заливке в формы на основе кварцевого песка, к образованию усадочных раковин, горячих и холодных трещин.

    В качестве кислотoстойких сталей применяют высоколегированные стали аустенитного, аустенито-ферритного и феррито-аустенитного классов. Основными легирующими элементами для них являются хром и никель. При этом никель необходим для получения однофазной аустенитной структуры.

    Кислотостойкая хромоникелевая сталь, содержащая 18 % Cr и 8 % Ni, широко используется для отливок деталей насосов, фиттингов и т. п. Чаще других стали этого типа легируют титаном и молибденом (12Х18Н9ТЛ, 12Х18Н12МЗТЛ).

    Хромоникелевые стали так же, как и хромовые, обладают пониженными литейными свойствами. Сложнолегированные хромоникелевые стали характеризуются высокой жаропрочностью и жаростойкостью. Жаропрочными называют стали, способные сопротивляться нагрузкам и разрушению при температурах выше 550 °С. Стали, обладающие высокой стойкостью против коррозии и образования окалины при температурах до 1200 °С, называют жаростойкими.

    Основным фактором, предопределяющим жаропрочность сталей, является легированный аустенит. Практическое применение для изготовления отливок из жаропрочных сталей получили аустенитные стали типа 12Х18Н9ТЛ (для жаропрочных отливок энергетического, химического и нефтяного машиностроения) и 12Х20Н12ТЛ (для турбинных лопаток, работающих при температурах до 600 °С). В стали 15Х18Н22В6М2Л высокая жаропрочность обеспечивается за счет введения добавок вольфрама и молибдена.

    Высокомарганцевая износостойкая сталь 110Г13Л (так называемая «сталь Гадфильда») относится к аустенитному классу. Особенностью отливок из этой стали является способность упрочняться условиях ударной нагрузки и принимать наклеп, повышающий поверхностную твердость от НВ 170…200 до НВ 600…800 и износостойкость в условиях абразивного изнашивания. При отсутствии наклепа ее износостойкость находится на уровне углеродистой стали. В литом состоянии структура стали – аустенит и карбиды, располагающиеся по границам зерен. Данная сталь используется после закалки в воде с температурой 1100 °С, когда отливки приобретают однородную аустенитную структуру.

    Температура заливки стали 110Г13Л ниже, чем у других сталей, и колеблется в пределах 1330…1370 °С. Сталь 110Г13Л характеризуется повышенной склонностью к усадочным дефектам, образованию горячих трещин, пригару при литье в формы на основе кварца. Особо следует отметить, что сталь 110Г13Л очень плохо обрабатывается режущим инструментом.

    Классификация литейных сталей

    Сталь — сплав железа с углеродом, содержащий не более 2,14% С. Для производства стальных отливок используют конструкционные нелегированные и легированные стали, а также высоколегированные стали со специальными свойствами.

    Стандарты

    Технические характеристики литейных сталей, предназначенных для производства стальных отливок регламентируются ГОСТ 977-88 «Отливки стальные. Общие технические условия».

    Маркировка

    Маркировка литейных сталей для производства отливок базируется на их химическом составе и производится системой букв и цифр. Первые цифры указывают среднюю или максимальную (при отсутствии нижнего предела) массовую долю углерода в сотых долях процента, последующие буквы и цифры указывают, соответственно, сокращенное наименование легирующего элемента и его массовую долю в процентах. Принятые обозначения легирующих элементов: А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, М — молибден, Н -никель, Р — бор, С — кремний, Т — титан, Ф — ванадий, Х — хром, Ю — алюминий, Л — литейная. Индексы «К» и «КТ» являются условными обозначениями категории прочности, следующее за ними число означает значение требуемого предела текучести. Индекс «К» присваивается материалу в отожженном, нормализованном или отпущенном состоянии; индекс «КТ» — после закалки и отпуска. Примеры условного обозначения сталей для отливок: 25Л К20 ГОСТ 977-88, 23ХГС2МФЛ КТ 110 ГОСТ 977-88.

    Классификация литейных сталей

    Для изготовления стальных отливок ГОСТ 977-88 предусматривает три основные группы сталей: конструкционные нелегированные литейные стали, конструкционные легированные литейные стали, легированные со специальными свойствами литейные стали.

    1. Конструкционные нелегированные стали

    15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л;

    2. Конструкционные легированные стали

    20ГЛ, 35ГЛ, 20ГСЛ, 30ГСЛ, 20Г1ФЛ, 20ФЛ, 30ХГСФЛ, 45ФЛ, 32Х06Л, 40ХЛ, 20ХМЛ, 20ХМФЛ, 20ГНМФЛ, 35ХМЛ, 30ХНМЛ, 35ХГСЛ, 35НГМЛ, 20ДХЛ, 08ГДНФЛ, 13ХНДФТЛ, 12ДН2ФЛ, 12ДХН1МФЛ, 23ХГС2МФЛ, 12Х7Г3СЛ, 25Х2ГНМФЛ, 27Х5ГСМЛ, 30Х3С3ГМЛ, 03Н12Х5М3ТЛ, 03Н12Х5М3ТЮЛ;

    2.а. Конструкционные легированные стали, применяемые в договорно-правовых отношениях между странами — членами СЭВ

    15ГЛ, 30ГЛ, 45ГЛ, 70ГЛ, 55СЛ, 40Г1, 5ФЛ, 15ФЛ, 30ХЛ, 25ХГЛ, 35ХГЛ, 50ХГЛ, 60ХГЛ, 70Х2ГЛ, 35ХГФЛ, 40ХФЛ, 30ХМЛ, 40ХМЛ, 40ХНЛ, 40ХН2Л, 30ХГ1, 5МФРЛ, 75ХНМФЛ, 40ГТЛ, 20ГНМЮЛ;

    3. Легированные стали со специальными свойствами

    Согласно ГОСТ 977-88 легированные литейные стали со специальными свойствами по структуре подразделяются на шесть классов: мартенситный, мартенситно-ферритный, ферритный, аустенитно-мартенситный, аустенитно-ферритный, аустенитный. Дополнительно к этому стали со специальными свойствами классифицируются по их рабочим свойствам и назначению: износостойкие, коррозионно-стойкие, жаропрочные, жаростойкие, быстрорежущие.

    а) мартенситного класса
    коррозионно-стойкие: 20Х13Л, 08Х14НДЛ, 09Х16Н4БЛ, 09Х17Н3СЛ, 10Х12НДЛ;
    жаростойкие: 20Х5МЛ, 20Х8ВЛ, 40Х9С2Л;
    жаропрочная: 20Х12ВНМФЛ;
    быстрорежущие: 85Х4М5Ф2В6Л (Р6М5Л), 90Х4М4Ф2В6Л (Р6М4Ф2Л);

    б) мартенситно-ферритного класса
    коррозионностойкая: 15Х13Л;

    в) ферритного класса
    коррозионностойкая: 15Х25ТЛ;

    г) аустенитно-мартенситного класса
    коррозионностойкие: 08Х15Н4ДМЛ, 08Х14Н7МЛ, 14Х18Н4Г4Л ;

    д) аустенитно-ферритного класса
    коррозионностойкие: 12Х25Н5ТМФЛ, 16Х18Н12С4ТЮЛ, 10Х18Н3Г3Д2Л;
    жаростойкие: 35Х23Н7СЛ, 40Х24Н12СЛ, 20Х20Н14С2Л;

    е) аустенитного класса
    коррозионностойкие: 10Х18Н9Л, 12Х18Н9ТЛ, 10Х18Н11БЛ, 07Х17Н16ТЛ, 12Х18Н12М3ТЛ;
    жаростойкие: 55Х18Г14С2ТЛ, 15Х23Н18Л, 20Х25Н19С2Л, 18Х25Н19СЛ, 45Х17Г13Н3ЮЛ;
    жаропрочные: 35Х18Н24С2Л, 31Х19Н9МВБТЛ, 12Х18Н12БЛ, 08Х17Н34В5Т3Ю2РЛ, 15Х18Н22В6М2РЛ, 20Х21Н46В8РЛ;
    износостойкие: 110Г13Л, 110Г13Х2БРЛ, 110Г13ФТЛ, 130Г14ХМФАЛ, 120Г10ФЛ;

    3.а. Легированные со специальными свойствами, применяемые в договорно-правовых отношениях между странами — членами СЭВ:

    а) мартенситно-ферритного класса
    коррозионностойкие: 15Х14НЛ, 08Х12Н4ГСМЛ;

    б) аустенитно-ферритного класса
    коррозионностойкие: 12Х21Н5Г2СЛ, 12Х21Н5Г2СТЛ, 12Х21Н5Г2СМ2Л, 12Х19Н7Г2САЛ, 12Х21Н5Г2САЛ, 07Х18Н10Г2С2М2Л, 15Х18Н10Г2С2М2Л, 15Х18Н10Г2С2М2ТЛ.

    Выплавка стали

    Технические характеристики литейных сталей, предназначенных для производства стальных отливок, в Украине регламентируются ГОСТ 977-88 «Отливки стальные. Общие технические условия».

    Конструкционные нелегированные литейные стали

    Конструкционные нелегированные литейные стали для производства литых заготовок обеспечивают высокую конструкционную прочность деталей, что достигается оптимальным соотношением основных элементов, формирующими сплав (C, Si, Mn) и термической обработкой отливок.

    ГОСТ 977-88 разделяет отливки из конструкционных нелегированных литейных сталей на три группы (см. табл. 1), в зависимости от назначения и требований предъявляемых к деталям.

    Таблица 1: Группы отливок из конструкционных нелегированных литейных сталей по ГОСТ 977-88

    %d0%b4%d0%bb

    1. При необходимости введения дополнительных показателей, не предусмотренных табл. 1 для данной группы отливок, их наличие и соответствующие нормы должны быть указаны в КД и (или) НТД. По требованию потребителя в число дополнительных контролируемых показателей могут быть включены: твердость, излом металла, механические свойства для отливок со стенкой толщиной свыше 100 мм, механические свойства при пониженных и повышенных температурах, герметичность, микроструктура, плотность, коррозионная стойкость, жаростойкость, стойкость против межкристаллитной коррозии и другие.
      Для отливок 3-й группы, предназначенных для изделий, подлежащих приемке представителем заказчика, работающих при пониженных температурах и подвергающихся динамическим нагрузкам, при наличии указания в КД и (или) НТД ударная вязкость стали определяется при температуре минус 50 °С. Нормы ударной вязкости при этом указывают в КД и (или) НТД на конкретную продукцию.
    2. Возможность установления в качестве нормируемого показателя относительного сужения вместо относительного удлинения указывается в КД и (или) НТД.
    3. Возможность увеличения норм прочности при соответствующем снижении норм пластичности и вязкости указывают в КД и (или) НТД.
    4. Нормы, возможность снижения уровня механических свойств на образцах, вырезанных из отливок, указывают в КД.
    5. Для отливок 2-й и 3-й группы, предназначенных для изделий, подлежащих приемке представителем заказчика, заменять контролируемый показатель «Предел текучести» показателем «Временное сопротивление» допускается только по требованию представителя заказчика.
    6. Группа отливок, марка стали, дополнительные контролируемые показатели и требования указывают в КД и (или) НТД. При поточно-массовом производстве разделение отливок по группам не производят, перечень контролируемых показателей указывают на чертеже отливки.

    Химический состав

    Химический состав конструкционных нелегированных литейных сталей является важнейшим показателем качества, определяющим марку стали, должен соответствовать требованиям ГОСТ 977-88, приведенным в табл. 2.

    Таблица 2: Химический состав литейных конструкционных нелегированных сталей по ГОСТ 977-88

    %d0%b2

    Сера и фосфор являются вредными примесями, сера вызывает — «красноломкость» стали, фосфор снижает пластичность стали при комнатной температуре. В зависимости от группы стали (см. табл. 1) и состава футеровки плавильной печи, ГОСТ 977-88 ограничивает их содержание (см. табл. 3).

    Таблица 3: Максимально допустимое содержание S и P в нелегрованных конструкционных литейных сталях по ГОСТ 977-88

    %d1%84

    ГОСТ 977-88 регламентирует допустимые отклонения содержания легирующих элементов от нормы химического состава, которые приведены в табл. 4.

    Таблица 4: Допустимые отклонения легирующих элементов от норм химического состава конструкционных сталей по ГОСТ 977-88

    %d0%b9

    Влияние основных элементов:

    1. Кремний — незначительно влияет на микроструктуру и механические свойства нелегированной конструкционной стали, но как раскислитель он способствует улучшению литейных свойств.
    2. Марганец — является раскислителем и десульфуратором стали, способствует повышению механических свойств и снижает «красноломкость». Сера, присутствующая в стали, образует с железом сульфид FeS и легкоплавкую эвтектику Fe-FeS, располагающуюся по границам зерен, что приводит к красноломкости и образованию горячих трещин. При вводе марганца в количестве %Mn >1,71 %S образуются тугоплавкие сульфиды MnS, располагающиеся в виде неметаллических включений внутри зерна, в результате чего красноломкость исчезает.
    3. Содержание углерода в нелегированных конструкционных сталях определяет ее механические свойства: по мере повышения содержания углерода, возрастает прочность стали (предел прочности при растяжении и предел текучести), одновременно снижаются ее пластические свойства (относительное удлинение и ударную вязкость). Углерод в наибольшей степени влияет на формирование микроструктуры. С повышением содержания углерода увеличивается интервал кристаллизации стали, что влечет за собой повышение жидкотекучести, увеличению склонности к образованию усадочных раковин и ликвации.

    Термическая обработка

    Отливки из конструкционной нелегированной стали подвергаются термической обработке. Рекомендуемые режимы термической обработки приведены в табл. 5. ГОСТ 977-88 допускает по согласованию изготовителя с потребителем не производить термическую обработку отливок 1-й группы из конструкционных нелегированных сталей при обеспечении механических и специальных свойств стали технологией выплавки и формообразования. Число допустимых полных термических обработок отливок не должно быть более трех.

    Таблица 5: Рекомендуемые режимы термической обработки отливок из конструкционной нелегированной стали по ГОСТ 977-88

    %d1%86

    Механические свойства материала отливок

    Механические свойства конструкционной нелегированной стали для производства отливок со стенкой толщиной до 100 мм при комнатной температуре после окончательной термической обработки должны соответствовать нормам ГОСТ 977-88, приведенным в табл. 6.

    Таблица 6: Механические свойства материала отливок из литейной нелегированной конструкционной стали по ГОСТ 977-88

    Читайте также: