Можно ли цементировать сталь 45

Обновлено: 28.04.2024

Цементация и нитроцементация – наиболее распространенные методы химико-термической обработки (ХТО) стали. В результате такой обработки происходит поверхностное упрочнение деталей машин и механизмов: возрастают износостойкость, прочность, усталостная прочность, а в ряде случаев сопротивление коррозии и окалиностойкость.

Цементации и нитроцементации подвергают низкоуглеродистые стали с содержанием углерода 0,08…0,25 %, что обеспечивает получение вязкой сердцевины. Для некоторых высоконагруженных деталей содержание углерода в стали может быть повышено до 0,35 %. С повышением содержания углерода в стали уменьшается глубина цементованного слоя, увеличивается прочность и понижается вязкость сердцевины.

Требования, предъявляемые к цементуемым сталям:

- возможность получения требуемого уровня свойств;

- хорошая обрабатываемость резанием;

Цементацию проводят при температурах выше точки А3 в аустенитной области. Температурный интервал цементации составляет 920…980 0 С. Имеется положительный опыт применения для некоторых легированных сталей высокотемпературной цементации при 980…1050 0 С. При этом значительно ускоряется процесс цементации вследствие увеличения коэффициента диффузии углерода, однако одновременно растет зерно аустенита и увеличивается коробление деталей. Поэтому для высокотемпературной цементации необходимо применять стали с наследственно мелким зерном или легировать сталь элементами, замедляющими рост аустенитного зерна при нагреве (Ti, V).

Термическая обработка изделий после цементации заключается в закалке и низкотемпературном отпуске, причем закалка может осуществляться непосредственно от температуры цементации (одинарная термическая обработка) или после охлаждения от температуры цементации (в этом случае часто применяют охлаждение на воздухе – нормализацию) и повторного нагрева до температуры несколько ниже точки А1 с последующей закалкой и отпуском (двойная термическая обработка). Закалку от температуры цементации часто применяют после подстуживания до 840…860 0 С с целью уменьшения коробления изделий.

Легирующие элементы влияют на скорость процесса цементации, глубину цементованного слоя и концентрацию углерода в поверхностной зоне. Некарбидообразующие элементы, такие как Ni, Si, Co ускоряют диффузию углерода в аустените при 950 0 С. В то же время, эти элементы снижают растворимость углерода в аустените и тем самым уменьшают максимальное содержание углерода в поверхностном слое. Наиболее сильно ускоряет диффузию углерода в аустените и понижает содержание углерода в цементованном слое кремний. Однако при более высоких температурах (1000, 1100 0 С) Si уменьшает коэффициент диффузии углерода в аустените.

Как правило, карбидообразующие элементы понижают коэффициент диффузии углерода в аустените. Например, в стали с 1,2% Si и 1% легирующего элемента при температурах, соответствующих интервалу цементации, наблюдается замедление диффузии углерода при легировании в такой последовательности: Mn, Mo, V, W, Cr. Карбидообразующие элементы повышают максимальную концентрацию углерода в поверхностном слое по сравнению с углеродистой нелегированной сталью, что связано с интенсивным карбидообразованием в поверхностном слое. С повышением температуры содержание углерода в цементованном слое легированных сталей уменьшается.

В легированных сталях после цементации (нитроцементации) и закалки кроме мартенсита и карбидов (карбонитридов) присутствует также остаточный аустенит, количество которого может быть значительным. В небольшом количестве остаточный аустенит в цементованном слое может быть даже полезным, так как при этом повышается пластичность и особенно ударная вязкость, но при большом его содержании существенно снижается твердость стали, поэтому для высоколегированных цементуемых сталей в целях уменьшения количества остаточного аустенита проводят обработку холодом после закалки.

Добавки молибдена до 0,3…0,5% в хромоникелевые и хромомарганцевые стали увеличивают прокаливаемость цементованного слоя (стали 25ХГМ, 20ХНМ, 20ХНМ). Бор увеличивает прокаливаемость сердцевины.

Широко применяется легирование цементуемых сталей элементами, задерживающими рост зерна аустенита при нагреве (V или Ti). Особенно благоприятно легирование цементуемых сталей Ni, который повышает вязкость цементованного слоя и сердцевины и понижает порог хладноломкости. Однако вследствие дефицитности Ni наблюдается тенденция к замене высоконикелевых сталей малоникелевыми (например, стали 18Х2Н4ВА и 20Х2Н4А).

Оптимальное содержание углерода при цементации в поверхностном слое составляет 0,8…0,9%. Увеличение содержания углерода до более высоких значений способствует выделению карбидов по границам зерен, что может приводить к образованию трещин в цементованном слое и снижению механических свойств.

Новые направления в создании цементуемых сталей и их обработке

1) Учитывая дефицитность никеля, разрабатываются безникелевые цементуемые стали типа 15ХГ2МФ. Частично никель заменяют на марганец: 20ХГНМФ.

2) Учитывая, что ванадий и титан являются дорогими элементами, их заменяют комбинацией азота и алюминия, например: 25ХГНМАЮ.

3) Создание низкоуглеродистых сталей, содержащих 4…16% Mn (ЦНИМС) и проведение цементации. Примером таких сталей являются: 08Г4АТФ, 08Г7АФ, 08Г10Х2АФ, 08Г(4-16)ТЮ. Задача сводится к получению аустенитной структуры, армированной карбидами. Метастабильный аустенит в процессе деформации превращается в мартенсит деформации, повышая абразивную износостойкость сталей.

4) Новым направлением в технологии является вакуумная цементация, которая позволяет существенно сократить расход газа – карбюризатора, ионная цементация в тлеющем разряде (ускоренный процесс), цементация в кипящем слое, с нагревом ТВЧ и с использованием источников концентрированной энергии: лазерные лучи, плазменная струя. Это обеспечивает высокую твердость поверхности и получение необходимого количества метастабильного аустенита в структуре, а также чередование в заданной последовательности твердых и мягких составляющих, что существенно повышает износостойкость и другие служебные свойства сталей.

5) Создание дисперсионно-твердеющих сталей, которые могут работать не только при низких, но и повышенных температурах.

6) В принципе, цементировать можно любые стали.

Вопросы для самоконтроля

1. Какие требования предъявляются к сталям для цементации и нитроцементации?

2. Каковы принципы легирования, роль легирующих элементов и области применения рассматриваемых сталей?

3. Какое влияние оказывают легирующие элементы на скорость процесса цементации, глубину цементованного слоя и концентрацию углерода в поверхностной зоне?

4. Какова термическая обработка сталей после цементации и нитроцементации.?

5. Каковы современные направления в создании рассматриваемых сталей?

УЛУЧШАЕМЫЕ СТАЛИ

Улучшаемыми сталями называют стали, используемые после закалки и высокого отпуска. Такие стали содержат 0,25—0,5%С и их подвергают закалке от 820—880°С (в за­висимости от состава) в масло (крупные детали охлаждают в воде) и высокому отпуску при 500—650°С. После такой обработки струк­тура стали представляет собой сорбит отпуска. Улучшаемые стали должны иметь высокий предел текучести, малую чувствительность к концентраторам напряже­ний, а в изделиях, работающих при многократно прилагаемых на­грузках — высокий предел выносливости и достаточный запас вяз­кости: s0,2= 900 МПа, sВ=1100 МПа, d=10%, y=60%, KCU=0,8 МДж/м 2 . Кроме того, улучшаемые стали должны обладать хорошей прокаливаемостью, технологичностью, экономичностью и малой чувствительностью к отпускной хруп­кости.

В качестве улучшаемых легированных сталей применяются: марганцовистые, хромистые, хромомарганцевые, хромокремнемарганцевые, хромоникелевые, хромоникельмолибденовые, хромоникельмолибденованадиевые стали.

Свойства улучшаемой стали зависят от прокаливаемости, т.е. от стру­ктуры по сечению изделия после закалки. При полной (сквозной) прокаливаемости структура по всему се­чению - мартенсит. При неполной (несквозной) прокаливаемости наряду с мартенситом образуются немартенситные продукты распа­да аустенита (верхний и нижний бейнит, феррито-перлитная смесь).

Наиболее высокие механические свойства (практически по всем показателям) достигаются после высокого отпуска исходной струк­туры мартенсита. Если сталь имеет другие структуры, то некоторые свойства могут ухудшаться. Особенно сильно это может сказывать­ся на параметрах, характеризующих сопротивление стали хрупкому разрушению (например, температуре перехода из вязкого в хрупкое состояние) и вязкому разрушению (работе развития трещины).

В зависимости от требований по прокаливаемости и необходимого уровня механических свойств в машиностроении используют боль­шое количество различно легированных сталей. Марки легирован­ных конструкционных сталей определяются ГОСТ 4543-71, ряд сталей изготовляется также по техническим условиям. Основными легирующими элементами в улучшаемых сталях являются хром, марганец, никель, молибден, бор, ванадий и др.

Широко распространены следующие улучшаемые машиностроительные стали: 40ХФА, 30Г2, 40ХГТР, 38ХС, 30ХГСА, 30ХМА, 40ХН, 40ХН2МА, 35ХГФ и др.

Легированным конструкционным сталям свойственна повышенная анизотропия свойств, т.е. различие свойств в зависимости от на­правления деформации при ковке или прокатке. Уменьшение анизо­тропии свойств достигается металлургическими способами (умень­шением в стали сульфидов и других неметаллических включений, изменением условий горячей пластической деформации и др.). Эти стали чувствительны к флокенам, наиболее чувствительны к образо­ванию флокенов доэвтектоидные легированные перлитные и перлитно-мартенситные стали.

Хромистые стали: 30Х, 35Х, 40Х, 45Х, 50Х, 35Х2АФ, 40Х2АФЕ яв­ляются наименее легированными и обеспечивают прокаливаемость в несколько больших сечениях (до 20. 25 мм в масле), чем соответствующие углеродистые ста­ли. Хром не оказывает сильного влияния на разупрочнение при отпуске, однако он увеличивает склонность стали к отпускной хрупкости. Поэтому изделия из этих ста­лей после высокого отпуска следует охлаждать в масле или воде, недопустимо ох­лаждение после отпуска с печью. Легирование хромом не увеличивает склонности к росту зерна аустенита. Однако с целью получения мелкозернистой структуры в них вводят ванадий (40ХФ), который, находясь в карбидах, препятствует росту зерна, а при отпуске задерживает разупрочнение. Поэтому для получения одинаковой, проч­ности сталь 40ХФ при улучшении необходимо отпустить на 30. 50°С выше, чем сталь 40Х. Это имеет большое значение для более полного снятия остаточных на­пряжений в изделиях и повышения их предела усталости.

Марганцовистые стали (30Г2, 35Г2, 40Г2, 45Г2, 50Г2) имеют несколько большую прокаливаемость, чем хромистые. Однако марганец усиливает склонность зерна к росту, поэтому эти стали чувст­вительны к перегреву и могут иметь пониженную ударную вязкость, особен­но при отрицательных температурах. Эти стали можно применять при обра­ботке ТВЧ и для изделий, несущих не­большие ударные нагрузки.

Хромомарганцевые стали (25ХГТ, 30ХГТ, 40ХГТ, 35ХГФ и др.) обладают повышенной устойчивостью переохлажденного аустенита и соответственно прокаливаемостью (до 40 мм). С целью получения мелкозернистой структуры в ряд сталей вводят небольшие добавки титана (0.03. 0.09 %). Легирование ванадием (сталь 35ХГФ) также позволяет получить мелкозернистую структуру и по­высить температуру отпуска на заданную твердость. Сталь 35ХГФ обеспечивает замену хромоникелевой стали 40ХН и применяется, как и другие стали этой груп­пы, для машиностроительных деталей ответственного назначения (валы, шатуны, шестеренки и т.д.).

Хромокремнистые и хромокремнемарганцовистые стали (33ХС, 38ХС, 25ХГСА, 30ХГСА, 35ХГСА и др.) обладают высокой прочностью и умеренной вязкостью. Широкое распространение (особенно в авиастроении) получили стали типа 30ХГСА (хромансиль), обладающие хорошей свариваемостью. Хромансили приме­няют после закалки и низкого отпуска или после улучшения (отпуск 520. 540°С).

Хромомолибденовые стали (30ХМ, 35ХМ, 38ХМ, 30ХЗМФ, 40ХМФА), обладая хорошей прокаливаемостью, имеют высокий комплекс механических свойств и мало склонны к отпускной хрупкости благодаря молибдену. Особенно­стью хромомолибденовых сталей является способность сохранять высокие механи­ческие свойства при повышенных температурах. Сталь 30Х3МФ имеет прокаливае­мость и свойства, подобные таковым хромоникелевой стали 30ХН2МА. Благодаря ванадию сталь 30Х3МФ является мелкозернистой.

Хромоникелевые и хромоникельмолибденовые (вольфрамовые) стали (20ХН3А, 20Х2НЧА, 40ХН, 30ХН3А и др., 20ХН2М, 30ХН2М, 38Х2Н2МА, 40ХН2МА, 38ХН3МА, 18Х2Н4МА и др.) являются наиболее качественными, их применяют для изготовления самых ответственных крупных изделий (сечением порядка 100. 1000 мм). Уникальные свойства хромоникелевых и хромоникельмолибденовых сталей достигаются вследствие их чрезвычайно высокой прокаливаемости и наибольшей вязкости.

Стали с 3. 4 % Ni имеют наибольший температурный запас вязкости. К ним относятся стали 20ХН3А, 30ХН3А, 18Х2Н4МА, 38ХН3МА. Однако хромоникелевые стали имеют существенный недостаток: они сильно склонны к обратимой отпускной хрупкости. Молибден и вольфрам значительно ослабляют склонность к развитию отпускной хрупкости, поэтому хромоникельмо­либденовые (вольфрамовые) стали практически лишены этого недостатка. Молиб­ден и вольфрам взаимозаменяемы в таких сталях, последние могут изготовляться с полной или частичной заменой молибдена на вольфрам из расчета: одна часть мо­либдена заменяется тремя частями вольфрама. Так, хромоникельвольфрамовые стали должны содержать: 38ХН3ВА 0,5. 0,8 %W; 12X2H4BA 0,8. 1,2 %W. Стали с молибденом и вольфрамом равноценны по свойствам, в том числе и по склонности к отпускной хрупкости.

Хромоникельмолибденовые (вольфрамовые) стали иногда содержат ванадий (38ХН3МФА, 45ХН2МФА, 30Х2НМФА), что обеспечивает их мелкозернистость и повышает устойчивость против отпуска.

Хромоникельмолибденовые (вольфрамовые) стали являются наилучшими из всех известных конструкционных машиностроительных сталей. В последнее время разработаны конструкционные высокопрочные низкоуглеродистые стали мартенситного класса, имеющие хорошее сочетание характеристик прочности, пластично­сти и ударной вязкости. К таким сталям относится сталь 15Х3Г3МФ, имеющая после закалки (920°С, масло) и отпуска (200°С) такие свойства: σВ = 1300. 1400 МПа, σ0,2 = 980. 1070 МПа, ψ = 57. 60 %, δ =12. 14%, КСU = =0,87. 1,1 МДж/м 2 .

Цементация стали

Цементация металла – это вид термической обработки металлов с использованием дополнительного химического воздействия. Атомарный углерод внедряется в поверхностный слой, тем самым его насыщая. Насыщение стали углеродом, приводит к упрочнению обогащенного слоя.

Цементация стали

Процесс цементации

Целью цементация стали является повышение эксплуатационных характеристик детали. Они должны быть твердыми, износостойкими снаружи, но внутренняя структура должна оставаться достаточно вязкой.

Для достижения данных требований требуется высокая температура, среда, выделяющая свободный углерод. Процесс цементации применим к сталям с содержанием углерода не больше двух десятых долей процента.

Для науглероживания слоя наружной поверхности, детали нагревают с использованием печи до температуры в диапазоне 850С — 950С. При такой температуре происходит активизация выделения углерода, который начинает внедряться в межкристаллическое пространство решетки стали.

Цементация деталей достаточно продолжительный процесс. Скорость внедрения углерода составляет 0,1 мм в час. Не трудно подсчитать, что требуемый для длительной эксплуатации 1 мм можно получить за 10 часов.

Влияние на глубину слоя продолжительности цементации

Влияние на глубину слоя продолжительности цементации

На графике наглядно показано на сколько зависит продолжительность по времени от глубины наугрероживаемого слоя и температуры нагрева.

Технологически цементация сталей производится в различных средах, которые принято называть карбюризаторами. Среди них выделяют:

  • твердую среду;
  • жидкую среду;
  • газовую среду.

Поверхностный слой, получаемый цементацией

Поверхностный слой, получаемый цементацией

Стали под цементацию обычно берутся легированные или же с низким содержанием углерода: 12ХН3А,15, 18Х2Н4ВА, 20, 20Х и подобные им.

Способы цементации

Цементация получила широкое распространение при обработке зубчатых колес и других деталей, работающих при ударных нагрузках. Высокая твердость рабочих поверхностей обеспечивает продолжительный срок работы, а достаточно вязкая середина позволяет компенсировать ударные нагрузки.

Разработаны множество способов науглероживания. Чаще всего используются следующие:

  • в твердой среде;
  • в жидкости;
  • в газе;
  • в вакууме.

Как происходит процесс цементации с использованием твердой среды

В качестве твердого карбюризатора берется смесь древесного угля (береза, дуб) и соли угольной кислоты с кальцием и другими щелочными металлами. Количество древесного угля может достигать 90%. Для приготовления смеси компоненты дробятся для улучшения выхода углерода. Размер частиц не должен превышать 10 мм. Так же не должно быть микроскопических частив в виде пыли и крошек, поэтому смесь просеивается.

Цементация стали в твердой среде

Цементация стали в твердой среде

Для получения готовой смеси пользуются двумя способами. Первый – соль с углем в сухом состоянии тщательно перемешивается. Второй способ – из соли получают раствор. Для этого ее разводят в воде, а после чего этим раствором обильно смачивают древесный уголь. Перед помещением в печь уголь сушат. Его влажность не должна превышать 7%. Получение карбюризатора последним способом более качественно.

Смесь насыпается в ящики. После чего в них помещают детали. Для исключения оттока газа, получаемого во время нагрева, ящики подвергаются герметизации. Плотно закрывающую крышку дополнительно замазывают шамотной глиной.

Ящики подбираются в зависимости от формы детали, их количества и объема засыпанной смеси. Обычно они бывают прямоугольными и круглыми. Материалом для изготовления ящиков может служить сталь как жаростойкая, так и низкоуглеродистая.

Технологический процесс цементации стали можно представить в следующем порядке:

  • Детали, предназначенные под цементацию, закладываются в металлические ящики, при этом равномерно пересыпаются угольным составом.
  • Ящики герметизируются и подаются в заранее нагретую печь.
  • Первоначально производится прогрев до температурных показаний порядка 700С — 800С.
  • Контроль прогреваемости производится визуально. Ящики и подовая плита имеют равномерный цвет без затемненных пятен.
  • Далее температуры в печи увеличивают до требующихся 850С 950С. В данном диапазоне происходит диффузия внедрения атомов углерода.
  • Длительность выдерживания деталей в печи напрямую зависит от требуемой толщины слоя.

Как происходит процесс цементации в газовой среде

Цементация стали в среде газов производится при массовом выпуске деталей. Глубина цементации не превышает 2-х мм. Используемые газы – естественные или искусственные газы, содержащие углерод. Обычно используется газ, получающийся при распаде нефтепродуктов.

Цементация стали в газовой среде

Цементация стали в газовой среде

Его получают в большинстве случаев нагреванием керосина. Больше половины газа подвергают модификации, его крекируют.

Активный углерод при данном способе обработки получается при распаде, и формула имеет следующий вид:

2СО=СО2+С

СН4=2Н2+С

Если пиролизный газ использовался без модифицированного, то в результате обогащенный слой металла будет недостаточным. К тому же пиролизный газ создает обильную сажу.

Печи для данного способа цементации должны быть герметичными. Обычно пользуются стационарными печами, но как вариант методическими.

Цементацию стали и технологический процесс можно представить в следующем порядке:

Подвергаемые цементации изделия помещаются в печь. Температура поднимается порядка 910С — 950С. Производится подача газа в печь. Выдержка в газовой среде определенное время.

Длительность термического воздействия составляет 15 часов при температуре в 920С с получаемым слоем 1,2 мм. Для ускорения производственного процесса температуру поднимают. Уже при 1000С получить такой же науглероженный слой возможно за 8 часов.

В последнее время широкое применение нашел способ проведения процесса в эндотермической среде. Во время активного науглероживания в газовой среде поддерживается значительный потенциал углерода за счет введения природного газа (пропана, бутана или метана). На этот период концентрация газ из нефтепродуктов устанавливается на уровне 1%.

Процесс проведения цементации в жидкой среде

Жидкая среда – это расплавленные соли. В качестве солей используются карбонаты металлов, правда, металлы должны быть щелочными с низкой температурой плавления. Температура проведения цементации при данном методе составляет 850С. Процесс происходит во время погружения деталей в ванну с расплавом и выдерживании их там.

Цементация стали в жидкой среде

Цементация стали в жидкой среде

Цементация в жидкой среде отличается не большим насыщенным слоем, который не превышает 0,5 мм. Соответственно времени занимает до 3 часов. Среди достоинств следует отметить: обработанные детали имеют незначительную деформацию, а также возможна закалка без промежуточного этапа.

Как происходит процесс цементации в вакууме

Недостаточное давление, создаваемое в печи, значительно сокращает время проведения обработки. Цементацию стали и технологический процесс можно представить в следующем порядке:

  • При данном методе детали помещаются в холодную печь.
  • После герметизации камеры нагрева в ней создается вакуум.
  • Затем производят нагрев до требуемой температуры.
  • Производится выдержка, которая занимает до часа по времени. За это время выравнивается температура и с поверхности нагретых деталей осыпаются загрязнения, мешающие науглероживанию.
  • Затем подается в камеру углеводородный газ под давлением. За счет чего происходит активная фаза обогащения поверхностного слоя.
  • На следующем этапе происходит диффузионное внедрение углерода. На этом этапе в камере опять создают вакуумическое давление.
  • За короткий промежуток времени не получается требуемого науглероженного слоя, поэтому процесс повторяют до тех пор, пока не получится требуемая глубина. Обычно результат получается за три стадии.
  • Охлаждение до температуры окружающей среды происходит в печи под действием инертных газов под разным давлением.

Печь для вакуумной цементации

Печь для вакуумной цементации

Процесс полностью компьютеризирован. За подачей газа, температурой, давлением следит программа, отвечающая за весь технологический процесс. Среди достоинств следует отметить:

  • регулирование количества углерода;
  • отсутствие кислорода предотвращает образование окислов;
  • газ проникает даже в отверстия минимального диаметра;
  • чередование процессов происходит при равных условиях;
  • полная автоматизация; сокращенные сроки.

Процесс проведения цементации пастами

При производстве разовых работ рациональнее пользоваться пастами для проведения цементации. В составе пасты находятся: сажа с пылью древесного угля. Толщина слоя наносимой пасты должна быть восьмикратно увеличена для получения требуемого насыщенного слоя.

После нанесения состав просушивается. Для процесса цементации используются индукционные высокочастотные печи. Температура проведения процесса достигает 1050С.

Как происходит процесс цементации в электролитическом растворе

Процесс во многом схож с гальваническим покрытием. В нагретый раствор электролита помещается заготовка. Подведенный ток вызывает получение активного углерода и способствует его проникновению в поверхность стальной заготовки.

Таким способом подвергают обработке детали, имеющие небольшой размер. Параметры для прохождения цементации: напряжение тока – 150-300В, температура 450-1050С.

Свойства металла после обработки

Структура стали после цементации

Структура стали после цементации

Для исправления крупного зерна металла детали после цементации подвергаются повторному нагреву и закалке с последующим отпуском или нормализацией.

Закалка производится при температуре, не превышающей 900С. В металле происходит измельчение зерна за счет получения перлита и феррита.

Вместо закалки для легированных сталей производят нормализацию. После сквозного прогрева в середине детали образуется мартенсит. Нагрев детали зависит от марки стали, из которой она была изготовлена.

Режимы термической обработки стали после цементации

Режимы термической обработки стали после цементации

В качестве заключительной фазы проводят низкотемпературный отпуск, который позволяет устранить поверхностные напряжения и деформации, вызванные высокотемпературной обработкой.

Недостатки цементации

Как было выше сказано основным недостатком после цементации остается изменение структуры металла. В связи с этим требуется дополнительная обработка, что увеличивает время и так длительного процесса цементации.

Для проведения работ требуется обученный и высококвалифицированный персонал. Среди недостатков следует выделить необходимость подготовки карбюризатора.

В заключение стоит отметить, что цементация позволяет использовать, стали с низким содержанием углерода для изготовления ответственных деталей с длительным сроком эксплуатации, что значительно снижает конечную стоимость.

Для защиты поверхностей, не предназначенных под цементацию, пользуются пастами, намеднением или закладывают увеличенные допуски под обработку.

Цементация стали в домашних условиях

Определенное воздействие на сталь позволяет изменить ее основные эксплуатационные свойства. Чаще всего проводится химико-термическое воздействие, которое называют цементацией стали. Она предусматривает как нагрев детали для перестроения его атомной решетки, так и внесение требуемых химических элементов. Цементация стали в домашних условиях графитом или другой средой еще несколько лет назад практически не проводилась, но сегодня это возможно. Рассмотрим особенности данного процесса подробнее.

Цементация стали в домашних условиях

Цементация стали в домашних условиях

Общие сведения о процессе цементации стали

Для того чтобы проводить подобную обработку металла в домашних условиях следует рассмотреть особенности термического воздействия на сталь подробнее.

Среди особенностей цементации выделим следующие моменты:

  1. Цементирование предусматривает нагрев изделий в жидкой, твердой или газовой среде, за счет чего изменяют эксплуатационные свойства поверхностного слоя.
  2. За счет проведения данной процедуры концентрация углерода повышается, что обеспечивает увеличение прочности и износостойкости стали.
  3. Специалисты рекомендуют цементировать низкоуглеродистые стали, которые имеют показатель концентрации углерода примерно 0,2%. Примером можно назвать лезвие ножа, которое изготавливают из стали невысокой стоимости.
  4. Нагрев детали может проводится до самых различных температур. Цементация металла в домашних условиях проходить при температуре около 500 градусов Цельсия, в цехах, оборудованных специальным оборудованием, этот показатель может достигать значения 1200 градусов Цельсия и выше. Отметим, что температура нагрева выбирается в соответствии с показателем концентрации углерода и других примесей.
  5. Рассматриваемый термический процесс изменяется не только химический состав стали, но и его атомную решетку и фазовый состав. По сути, поверхность получает те же характеристики, что и при закалке, но есть возможность их контролировать в узком диапазоне и избежать появления различных дефектов.
  6. Углерод проникает в структуру стали очень медленно. Поэтому, к примеру, цементация ножа в домашних условиях проходить со скоростью 0,1 миллиметра за 60 минут. Для того чтобы лезвие ножа выдерживало механическое воздействие придется провести упрочнение слоя толщиной около 0,8 миллиметра. Этот момент определяет, что термообработка ножа или цементация вала в домашних условиях займет не менее 8 часов, на протяжении которых нужно выдерживать требуемую температуру.

Цементация стали

Цементация нержавеющей или другой стали более сложный процесс, в сравнении с закалкой, но позволяет достигнуть более высоких эксплуатационных качеств.

Классификация среды, в которой проходит цементация стали

Науглероживание ножа или другого изделия может проходить в следующих средах:

  1. Твердой.
  2. Газовой.
  3. В виде пасты.
  4. Растворе электролита.
  5. Кипящем слое.

Цементация металла в домашних условиях графитом проводится чаще всего. Наибольшее распространение получила твердая среда по причине того, что не нужно обеспечивать высокую герметичность печи.

Газ применяется преимущественно в промышленном производстве, так как позволяет достигнуть требуемых результатов за минимальный период.

Процесс цементации стали своими руками

При наладке процесса химико-термической обработки в домашних условиях выбирают метод цементации в твердой среде. Это связано с существенным упрощение задачи по оборудованию помещения. Как правило, твердый карбюризатор делается при использовании смеси бария или кальция с древесным углем, а также углекислого натрия. Соль измельчается до состояния порошка, после чего пропускается через сито.

Цементация стали в твердом карбюризаторе

Цементация стали в твердом карбюризаторе

Рекомендации по созданию твердой смеси следующие:

  1. Первый метод заключается в использовании соли и угля, которые тщательно перемешиваются. Если использовать не однородную смесь, то есть вероятность образования пятен с низкой концентрацией углерода.
  2. Второй метод предусматривает применение древесного угля, которые поливается сверху солью, растворенной в воде. После этого уголь сушится до получения смеси с показателем влажности около 7%.

Для ножа и других изделий больше всего подходит второй метод получения карбюризатора, так как он позволяет получить равномерную смесь. Цементация стали в домашних условиях графитом также предусматривает создание смеси при применении нескольких технологий.

Цементация проводится в специальных ящиках, которые наполнены подготовленным карбюризаторов. Конструкция должна быть герметичной, для чего проводится заделывание щелей глиной. Достигать высокой герметичности рекомендуется по причине того, что при нагревании карбюризатора выделяются газы, которые не должны попасть в окружающую среду. Сам ящик следует изготавливать из жаропрочной стали, которая выдержит воздействие высокой температуры.

Процесс по проведению цементации стали в ящике в домашних условиях имеет следующие особенности:

  1. Деталь укладывается в ящик со смесью. Толщина слоя твердого карбюризатора выбирается в зависимости от размеров заготовки.
  2. Устанавливается печь.
  3. Начальный прогрев печи проводится до температуры 700 градусов Цельсия. Данный нагрев называют сквозным. Однородность цвета стали, из которого изготавливается ящик, говорит о возможности перехода к следующему этапу.
  4. Следующий шаг заключается в нагреве среды до требуемой температуры. Важно обеспечить равномерный нагрев поверхности деталей сложной формы, так как могут возникнуть существенные проблемы при неравномерном перестроении атомной структуры.

Цементация стали в ящике в домашних условиях

Цементация стали в ящике в домашних условиях

Сегодня есть возможность провести подобную процедуру и в домашних условиях, но возникают трудности с достижением требуемой температуры.

Отсутствие необходимого оборудования приводит к существенному снижению качества получаемых изделий, а также увеличения времени выдержки.

Применение газа

В массовом производстве используется газовая среда. Проводить насыщение поверхности углеродом можно только при использовании герметичной печи. Наиболее распространенным составом газовой среды можно назвать вещества, получаемые при разложении нефтепродуктов.

Газовая цементация стали

Газовая цементация стали

Процедура имеет следующие особенности:

  1. Следует использовать конвейерные печи непрерывного действия с повышенной изоляция рабочей среды. Они очень редко устанавливаются в домашних условиях по причине высокой стоимости.
  2. В печь помещают заготовки, после чего проводится нагрев среды до требуемой температуры.
  3. После нагрева печи до требуемой температуры подается газ.

Преимуществ у подобной технологии довольно много:

  1. Нет необходимости в длительной подготовке газовой среды.
  2. Процесс предусматривает малую выдержку, что снижает затраты на поддержание температуры.
  3. Оборудование компактное, не занимает много места.

Однако есть существенный недостаток, который заключается в отсутствии возможности установки оборудования и налаживания процесса в домашних условиях. Рентабельность цементации в домашних условиях при установке подобного оборудования обеспечивается только при существенном увеличении обрабатываемых партий.

Закалка и отпуск стали 45

Обработка стали, осуществляемая в процессе термообработки, является одной из важнейших операций в металлургической отрасли и машиностроении. При соблюдении технологии PC 45 изделие приобретает достаточную прочность, значительно расширяя область использования изготовляемых изделий. При необходимости можно осуществлять закалку изделия из стали, в домашних условиях строго соблюдая технологию. При закалке лезвия ножа в домашних условиях вполне допустимо добиться повышения прочностных характеристик изделия в 3-4 раза.

Закалка стали 45

Структурные изменения металла

При нагревании конструкционной специальной стали 45 до аустенитного уровня, происходит изменение состояния структурной решетки железа с переходом из объемно-центрированной в гранецентрированную структуру. Осуществляется перемещение углерода входящего в перлит и представляющего собой мельчайшие кристаллы Fe3C (цементита) в гранецентрированную измененную решетку железа.

Структура стали 45 после отжига и закалки

Структура стали 45 после отжига и закалки

В ходе охлаждения происходит быстрое снижение температуры обрабатываемой стали, но из-за замедления скорости перемещения атомов углерода они остаются внедренными в новую решетку железа, образуя твердую пересыщенную структуру, имеющую внутреннее напряжение. Решетка преобразуется в тетрагональную с ориентацией в одном направлении.

Происходит образование игольчатых мелких структур имеющих название мартенсит. Данный вид кристаллов придает металлу высокую прочность, твердость и улучшенные характеристики. Происходит образование одновременно двух видов кристаллов аустенита и мартенсита, которые воздействуют друг, на друга создавая внутреннее избыточное напряжение. При активном влиянии на металл внешних сил происходит взаимная компенсация двух видов кристаллов, придавая структуре прочность.

Термическая обработка металла

Для изменения характеристик стали производится термическая обработка с соблюдением необходимых режимов воздействия.

Процесс термической обработки состоит из процессов:

  • отжига;
  • нормализации;
  • старения;
  • закалки и отпуска.

Режимы термообработки стали 45

Режимы термообработки стали 45

Закалка и отпуск стали во многом зависят от ряда факторов:

  • температурного режима;
  • скорости повышения температуры;
  • временного промежутка воздействия на металл высоких температур;
  • процесса охлаждения (скорости изменения температуры охлаждения среды или жидкости).

Закалка стали

Процесс закалки стали заключается в проведении термообработки заготовок с нагреванием до температуры выше критической с дальнейшим ускорением охлаждения. Данное состояние способствует повышению прочности и твердости (HRC) стали с одновременным снижением пластичности и улучшением потребительских характеристик.

Режим воздействия температуры охлаждения металла зависит от количества содержания углерода и легирующих присадок в стали.

После проведения закалки стали заготовки покрываются налетом окалины и частично теряют содержащийся углерод, поэтому технология обязательно должна соблюдаться согласно установленному регламенту.

Охлаждение металла должно проходить быстро, для предотвращения преобразования аустенита в сорбит или троостит. Охлаждение должно производиться точно по графику быстрое остывание заготовок, приводит к образованию мелких трещин. В процессе охлаждения от 200 °C до 300 °C происходит искусственное замедление при постепенном остывании изделий для этого, могут использоваться охлаждающие жидкости.

Закалка стали с помощью ТВЧ

При проведении поверхностной закалки с помощью ТВЧ процесс нагрева изделий осуществляется до более высокой температуры.

Это вызвано двумя факторами:

  1. Нагрев осуществляется за короткое время с ускоренным изменением и переходом перлита в аустенит.
  2. Реакция перехода должна осуществляться в сжатые сроки за небольшой промежуток времени при высокой температуре.

Закалка ТВЧ (токами высокой частоты)

Закалка ТВЧ (токами высокой частоты)

Процессы, протекающие при обычной закалке в печи с использованием ТВЧ, имеют различные характеристики и ведут к изменению твердости (HRC) заготовок:

  1. При нагреве в печи скорость составляет, 2-3 °С/сек до 840 – 860 °С.
  2. С использованием ТВЧ – 250 °С/сек до температуры 880 – 920 °С или в режиме при 500 °С/сек – до 980 – и 1020 °С.

Нагрев деталей при использовании ТВЧ осуществляется до более высокой температуры, но перегрева заготовки не происходит. В процессе обработки с применением ТВЧ время операции нагрева значительно сокращается, что способствует сохранению размера и структуры зерна. В ходе выполнения операции закалки ТВЧ твердость металла ( HRC) возрастает на 2-3 един. по Роквеллу.

Процесс нагрева

Заготовки из стали нагреваются в печах. При нагреве инструмента используется предварительный подогрев отдельных частей с использованием

  • печей с температурой рабочей среды от 400 °С до 500 °С;
  • в специальных соляных ваннах с погружением на 2-4 сек. 2-3 раза.

Обязательно должно соблюдаться условие равномерного прогрева всего изделия. Строго выдерживаться условие одновременного помещения деталей в печь с соблюдением времени нагрева деталей.

Применение защитных мер

В процессе термической обработки происходит постепенное выгорание углерода и образование налета окалины. Для предотвращения ухудшения качества металла и его защиты используются защитные газы, которые закачиваются в ходе процесса закаливания. В печь имеющую герметичную камеру, где происходит термообработка с помощью специального генератора, закачивается газ аммиак или метан.

При отсутствии герметичных печей операции обработки производятся в специальной герметичной таре, куда предварительно засыпается чугунная стружка для предотвращения выгорания углерода.

При обработке заготовок в соляных ваннах металл защищен от окисления, а для создания необходимых условий для сохранения уровня углерода содержание ванной 2-х кратно в течение суток раскисляется борной кислотой, кровяной солью или бурой. При температуре обработки в диапазоне температур 760-1000 °С в качестве раскислителя может использоваться древесный уголь.

Использование специальных охлаждающих жидкостей

В ходе проведения технологического процесса для охлаждения деталей в основном используется вода. Качество охлаждающей жидкости можно изменить, добавив соду или специальные соли, что может повлиять на процесс охлаждения заготовки.

Для сохранения процесса закалки категорически запрещается использовать содержащуюся в нем воду для посторонних операций. Вода должна быть чистой и иметь температуру от 20 до 30 °С. Запрещено использовать для закалки стали проточную воду.

Состав смесей солей и щелочей, применяемых в качестве закалочных сред

Состав смесей солей и щелочей, применяемых в качестве закалочных сред

Данный способ закалки применяется только для цементированных изделий или имеющих простую форму.

Изделия, имеющие сложную форму, изготовленные из конструкционной специальной стали охлаждаются в 5% растворе каустической соды при температуре 50-60 °С. Операция закалки, проводится в помещении, оснащенном вытяжной вентиляцией. Для закалки заготовок выполненных из высоколегированной стали применяют минеральные масла, причем скорость охлаждения в масленой ванне не зависит от температуры масла. Недопустимо смешивание масла и воды, что может привести к появлению трещин на металле.

При закалке в масляной ванне необходимо выполнять ряд правил:

  1. Остерегаться воспламенения масла.
  2. При охлаждении металла в масле происходит выделение вредоносных газов (обязательно наличие вытяжной вентиляции).
  3. Происходит образование налета на металле.
  4. Масло теряет свои свойства при интенсивном использовании для охлаждения металла.

При проведении процесса закалки стали 45 необходимо соблюдать технологический процесс с соблюдением всех операций.

Отпуск стали 45

Технологический процесс отпуска стали проводится в зависимости от необходимой температуры:

  • в печах с принудительной циркуляцией воздуха;
  • в специальных ваннах с селитровым раствором;
  • в ваннах с маслом;
  • в ваннах заполненных расплавленной щелочью.

Температура для проведения процесса отпуска зависит от марки стали, а сам процесс изменяет структуру и способствует снижению напряжения металла, а твердость снижается на малую величину. После проведения всех операций заготовка подвергается техническому контролю и отправляется заказчику.

При закалке и отпуске металла в домашних условиях необходимо строго соблюдать технологию и технику безопасности проведения работ.

Читайте также: