Нержавеющая сталь и кислота

Обновлено: 15.05.2024

Заказав сейчас у нас кислотостойкую сталь, Вы получаете:

Сортамент кислотостойкой стали

Компания МетПромСтар предлагает купить круглые трубы, прутки и листовой прокат из кислотостойкой нержавеющей стали различных марок. Реализуемая продукция соответствует требованиям международных стандартов качества, о чем свидетельствуют сертификаты, выданные производителями. На нашем складе постоянно в наличии большой выбор типоразмеров продукции из кислотостойкой нержавейки 06ХН28МДТ, 10Х17Н13М2Т и AISI 316Ti. По желанию заказчика оказываются квалифицированные услуги по металлообработке, упаковке, хранению и доставке товара как по Москве и области, так и по всей России с помощью ведущих транспортных компаний. Наших покупателей ожидают доступные цены, удобные формы оплаты, комфортный сервис полного цикла, минимальное время отгрузки и гибкая система скидок.

Типоразмеры и стоимость товара постоянно обновляются, поэтому обращайтесь к нашим менеджерам, чтобы быстро и правильно оформить свой заказ.

Разновидности кислотостойкой нержавейки

Промышленное оборудование из кислотостойкой стали

Рассматриваемый вид, в большем количестве, включает стали аустенитного класса. Они бывают:

  • Простые кислотостойкие стали. Часто используются в дымоходах, для отвода продуктов сгорания. Их эксплуатационные характеристики повышаются за счет включения в состав молибдена и никеля. Разрушение кристаллической решетки происходит при повышении температуры до 400°С.
  • Кислото-термостойкие составы. Отличает такую продукцию высокая пластичность, работа при высоких температурах (от 750°С до 850°С), кислотоустойчивость к горячим жидкостям и парам. Повышаются характеристики за счет включения титана
  • Тугоплавкие, кислотостойкие нержавеющие стали с повышенной жаропрочностью. Такие стали имеют отличное сопротивление к химическим и температурным воздействиям за счет высокого содержания никеля и хрома. Температура эксплуатации достигает 1050°С.

Кислотостойкие составы по химическому составу делятся на два типа:

  • Высокохромистые. Добавление хрома достигает отметки в 27 или 30% от общей массы. Используются в изготовлении промышленного оборудования.
  • Хромоникелевые. В них входит до 20% хрома и 11-18% никеля. Применяются в архитектуре, машиностроении, пищевой и химической промышленности.

Какими добавками формируются свойства материала

Одним из ведущих элементов, обеспечивающих стойкость изделия, является хром. Он образовывает на поверхности сплошную оксидную пленку, защищающую кристаллическую структуру от внешних воздействий. Пленка является самовосстанавливающейся при механических повреждениях. Изготовляется три вида хромированных сталей: содержание Сr 13%, 17% и 25%-28%. Последние виды пригодны к эксплуатации в тяжелых условиях. Из них создаются баки и трубопроводы для кислот, изделия для отвода кислотонасыщенных газов и смесей. Такие составы относятся к ферритному классу.

Также ферритными являются составы с включением молибдена, такие как 12Х17М2Т. Они отличаются устойчивостью к органическим кислотам – муравьиной, уксусной и т. д. Они устойчивы к коррозии под воздействием высокого давления.

Введение в состав меди и молибдена также повышает кислотоустойчивость. Для упрочнения аустенита вводят небольшое количество алюминия и титана. Никель повышает эксплуатационные свойства, но вместе с ними и значительно удорожает металл. Потому его заменяют другими аустенитообразующими элементами - азотом или марганцем.

Применение кислотостойких нержавеющих составов

Сталь марки AISI 316Ti (10Х17Н13М2Т) создана для эксплуатации в условиях длительного воздействия уксусной и фосфорной кислоты. Из нее изготавливаются резервуары для хранения и перевозки сильноагрессивных жидкостей.

Из сталей 04-12Х18Н10Т создаются конструкции для авиастроения и лакокрасочной промышленности. Также она применяется в деталях насосов, соприкасающихся с кислотной шахтной водой.

Марка Х18Н12М3Т противостоит кипящей фосфорной кислоте, горячим растворам белил и извести, сернистой жидкости. Из кислотостойкой стали 06ХН28МДТ производят сварные конструкции, работаю в серной кислоте при температуре до 80°С.

Стали и материалы стойкие к кислотным средам

Нержавеющие стали относятся к наиболее перспективным конструкционным материалам. Они незаменимы в современной жизни и применяются все шире — от столовых приборов и кастрюль до сложного оборудования в пищевой, химической промышленности, медицине и т.д. Гигиенические преимущества нержавеющей стали основаны на том, что влияние ее на питьевую воду исключено, при концентрации в воде хлорида или бромида до 200 мг/л рекомендуют использовать нержавеющую сталь с содержанием молибдена. В электрохимическом ряду напряжений нержавеющая сталь имеет более высокий потенциал, чем медь и оцинкованная сталь. Широкое применение в пищевой промышленности связано с ее нейтральными вкусовыми показателями и, благодаря высококачественной поверхности, нержавеющая сталь ведет себя нейтрально относительно микробиологического влияния. Это значит, что рост микроорганизмов не перемещается на поверхность из нержавеющей стали (по сравнению с поверхностями из органических материалов), а бактерии, грибки и т.п. не имеют шансов развиться на ее поверхности, что определяет высокую популярность «пищевого» применения нержавеющей стали.

Однако при использовании замечательных свойств нержавеющих сталей надо иметь в виду, что при технологической обработке их «поведение» весьма отличается от простых углеродистых сталей. Это объясняется особенностями их метастабильной аустенитной структуры, использование свойств которой требует учета ряда особенностей. Некоторые характеристики этих сталей на ознакомительном уровне для потребителя описывает настоящая статья с целью подчеркнуть то отличие, что в углеродистых (обычных, «черных») сталях в основном используются свойства стабильных структур сплава, а в нержавеющих сталях – свойства метастабильных (немагнитных) структур. Перенос технологических стереотипов от «черных» на нержавеющие стали могут превратить последние в «ржавеющие».

Предлагаем следующие рекомендации по свойствам и назначению нержавеющих и кислотостойких сталей, выбранные из нормативной и технической литературы.

Жаропрочность и химическая стойкость нержавеющих сталей достигается за счет введения в сталь хрома. Чем больше в стали хрома, тем выше ее сопротивляемость окислению. При 13% и выше хром образует сплошную тонкую прочную пленку окислов, защищающую сталь от коррозии.

Последующий нагрев стали Х18Н9 до температуры свыше 6000, а также холодная механическая обработка аустенитной стали приводит к частичному распаду аустенита, сталь приобретает магнитность. Указанный нагрев вызывает выделение хромовых карбидов, они делают близлежащие зоны металла малохромистыми и потому коррозионно малостойкими.

Так как выделение карбидов идет в основном по границе зерен, то сталь приобретает склонность к интеркристаллической коррозии. Сильно прокорродированная сталь делается совершенно хрупкой, ломается при изгибе и теряет обычный металлический звук при ударе. Этим объясняется и «ножевая» коррозия вблизи сварочных швов. Для предупреждения склонности к интеркристаллической коррозии к нержавеющей стали добавляют небольшое количество титана, ниобия. Эти элементы, образуя более прочные карбиды TiC, NbC, чем хром и железо, связывают углерод и оставляют весь хром в растворе и тем самым устраняют интеркристаллическую коррозию.

Нержавеющие стали хорошо сопротивляются действию органических кислот, слабых минеральных кислот, а также азотной кислоты. Серная и соляная кислоты растворяют эти стали. Из всех нержавеющих сталей наиболее стойкими является хромоникелевые чисто аустенитные стали, которые традиционно выпускаются в виде проката следующих марок: 08Х18Н10 (аналог — AISI 304 по стандарту США), 12Х18Н10Т (AISI 321), 12Х17 (AISI 430).

В «Справочнике металлиста» (т.3 со ссылкой на ГОСТ 5632) указано следующее назначение сталей.

12Х17 – кислотостойка, окалиностойка. Оборудование азотнокислотных заводов (башни, теплообменники для горячих газов и горячей кислоты, баки, трубопроводы ии пр.). Оборудование кухонь, столовых, консервных заводов. Предметы домашнего обихода.

08Х18Н9 – кислотостойка. Конструкционный материал для самолетов; поплавки гидросамолетов. В архитектуре – материал для отделки зданий. Немагнитные части аппаратуры управления.

04-12Х18Н10Т – кислотостойка, не подвержена интеркристаллитной коррозии, жаропрочна до 600 град. С. В азотной промышленности – башни, баки, трубопроводы. Автоклавы, мешалки в лакокрасочной промышленности. Аппаратура для переработки молока, бидоны, фляги. Бродильные баки , бочки чаны пивоваренных заводов. Посуда для пищи, оборудование для кухонь и консервных заводов. Насосы и аппаратура для работы в кислотных шахтных водах. Патрубки и коллекторы выхлопной системы авиамоторов.

Х18Н12М2Т и Х18Н12М3Т — кислотостойки, не подвержены интеркристаллитной коррозии, жаропрочны до 800 град. С. Аппараты и детали, устойчивые против сернистой, кипящей фосфорной, муравьиной и уксусной кислот, против горячих растворов белильной извести и сульфатного щелока, выпускные клапаны моторов.

Для многих целей достаточной жаропрочностью обладает сталь Х18Н9Т. Такая сталь (имеющая при комнатной температуре σв=60 кг/мм2) при 6500 выдерживает тысячечасовую нагрузку около 10 кг/мм2 и при 7000 – сточасовую нагрузку 10 кг/мм2. При 8000 эта сталь выдерживает 100 час. под напряжением в 5 кг/мм2. Аустенитная сталь Х14Н14В с 2% W, 0.4% Мо и 0,4% С еще боле жаропрочна и выдерживает при 7000 100 час. под напряжением в 12 кг/мм2 и при 8000 100 час. под напряжением в 6-7 кг/мм2. Очень высокими значениями прочности при высоких температурах обладает аустенитная сталь Х16Н25М6 (при 0,1% С и 0,4% N), выдерживающая при 7000 100 час. при 20 кг/мм2 и при 8000 100 час. при 8 кг/мм2.

Во всех жаропрочных аустенитных сталях, помимо аустенита, имеется какая-нибудь упрочняющая фаза – карбиды титана, хрома, вольфрама или вольфрамиды и молибдениды железа и т. п. Заметно повышает прочность стали молибден в количестве нескольких десятых долей процента вследствие общего измельчения структуры и выделения дисперсных частиц карбида молибдена. Эти стали применяются для котельных труб.

Возможность распада аустенита, с одной стороны, и выпадения карбидов, с другой, усложняют процессы термообработки нержавеющей стали. В сталях, содержащих более 18% Сr, помимо карбидов, может выделяться богатая хромом σ-фаза, вызывающая хрупкость стали.

Не забудем отметить уникальные свойства нержавеющих сталей как кровельного материала. Из нержавеющей стали сооружают практически «вечную» кровлю с гарантией стойкости — не менее 50 – 100 лет. Особенно впечатляет покрытие «под золото» нитридом титана на полированный нержавеющий лист, которое все шире применяют для кровли «золотых» куполов (например, одна из нових церквей г. Києва возведена «на воде» у речного вокзала), крестов, перил и т.д. Нитрид титана повышает корозионную стойкость и износостойкость стали. Если раньше технически возможно было выполнить ионно-плазменное покрытие лишь мелких деталей (зубне коронки, корпуса часов), то сейчас успешно покрывают кровельные листы с габаритами 1х2м до (500 кв. м. листа в месяц) и кресты высотой 1,6м.

Выбор материала проточной части

Поверхностное разрушение металла под действием внешней среды называется коррозией.

Чистое железо и низколегированные стали неустойчивы против коррозии в атмосфере, в воде и многих других средах, так как образующаяся пленка окислов недостаточно плотна и не изолирует металл от химического воздействия среды. Некоторые элементы повышают устойчивость стали против коррозии, и таким образом можно подобрать сталь, практически не подвергающуюся разрушению в данной среде.

При введении таких легирующих элементов происходит скачкообразное повышение коррозионной стойкости. К примеру, введение в сталь более 12% хрома (Cr) делает ее коррозионностойкой в атмосфере и во многих других промышленных средах. Стали содержащие менее 12% Cr, практически в столь же большой степени подвержены коррозии, как и железо. Стали содержащие 12-14% Cr, ведут себя как благородные металлы: обладая положительным электрохимическим потенциалом, они не ржавеют и не окисляются на воздухе, в воде, в ряде кислот, солей и щелочей.

Хромистые нержавеющие стали

Хромистые нержавеющие стали применяют трех типов: 13, 17 и 27% Cr в зависимости от требований имеют различное содержание углерода.

Стали с более 17% Cr имеют иногда небольшие добавки титана и никеля, которые вводят для улучшения механических свойств. Помимо этого стали с таким содержанием хрома обладают высокой коррозионной стойкостью вплоть до температуры 900 ºС.

Стали с содержанием хрома 13% более распространенные и наименее дорогостоящие, их применяют для бытовых назначений и в технике. Эти стали хорошо поддаются сварке. Сплавы с низким содержанием углерода пластичны, с высоким - обладают высокой твердостью и повышенной прочностью, из них изготавливают детали повышенной прочности и износоустойчивости (хирургический инструмент, подшипники, пружины и другие детали, работающие в активной коррозионной среде).

Аустенитные стали

Введение достаточного количества никеля (Ni) в хромистую сталь обеспечивает лучшую механическую прочность, делает сталь более коррозионностойкой и не хладноломкой. Нержавеющие стали с 18% Cr и 10% Ni получили наиболее широкое распространение в машиностроении.

Для того, чтобы повысить сопротивление коррозии в кислотах в сталь вводят молибден и медь, особенно молибден с медью при одновременном увеличении содержания никеля. При необходимости, чтобы иметь еще и высокие механические свойства вводят титан и алюминий.

Более высокую коррозионную стойкость имеют никеливые сплавы типа хастеллой 80% Ni и 20% Mo (сплавы НИМО) с дополнительным легированием.

Титан

Титан (Ti) имеет высокую удельную прочность, благодаря чему сплавы на его основе получили широкое применение в технике, особенно в тех областях, где важное значение имеет масса (авиация, ракетостроение и др.). Титан обладает высокой коррозионной стойкостью в большом количестве агрессивных сред, превосходя зачастую в этом отношении нержавеющую сталь. Поэтому проще перечислить среды, в которых титан растворяется: например, плавиковая, соляная, серная, ортофосфорная, щавелевая и уксусная кислоты.

Высокая коррозионная стойкость титана обусловлена образованием на поверхности плотной защитной оксидной пленки. Если эта пленка не растворяется в окружающей среде, то можно считать, что титан в ней абсолютно стоек. Например, морская вода за 4000 лет растворит слой титана толщиной 30 - 40 микрон (1 микрон равен 10-4 см). Если же оксидная пленка растворима в данной среде, то применение в ней титана недопустимо.

Тугоплавкие металлы

К тугоплавким относят металлы: ванадий, вольфрам, гафний, молибден, ниобий, тантал, технеций, титан, хром, цирконий, - температура плавления которых выше температуры плавления железа (1539 ºС), кроме металлов платиновой и урановой групп и некоторых редкоземельных.

Следует отметить, что при высоких температурах все тугоплавкие металлы являются кислотостойкими. При этом наиболее сильно выделяется тантал. Ниобий и молибден по коррозионной стойкости превосходят сплавы на основе железа или никеля, однако уступают танталу.

Применение таких материалов целесообразно в средах, в которых другие материалы не обладают коррозионной стойкостью. К таким средам относятся неорганические крепкие кислоты при повышенных температурах, а так же некоторые промышленные среды.

Несмотря на высокую стоимость металлов по сравнению с такими коррозионностойкимиматериалами, как высоколегированная нержавеющая сталь или хастеллой, применение сплавов тугоплавких металлов оправдано, так как вследствие высокой стойкости возможно эксплуатировать химические установки практически весь срок без замены приборов.Коррозионная стойкость нержавеющих сталей в некоторых кислотах.Прии комнатной температуре высокой стойкостью в этой кислоте обладают все

Коррозионная стойкость нержавеющих сталей в некоторых кислотах

Серная кислота

При 70ºС хромоникелевые стали нестойки даже в кислотах слабой концентрации, но примерно до 5% H2SO4 могут работать стали с добавлением молибдена и меди.

Однако последние разрушаются в кипящей серной кислоте до концентрации 30%. В этих случаях следует применять сплавы типа хастеллой, а при концентрации выше 30% в кипящей серной кислоте могут работать лишь тугоплавкие металлы.

Фосфорная кислота

При комнатной температуре любой концентрации устойчивы аустенитные стали, хромистые нет. В горячей кислоте устойчивы стали с добавками молибдена и меди до концентрации 25%, в кипящей - хастеллой до 50%, а при более высокой устойчивы лишь тугоплавкие металлы.

В соляной кислоте устойчивы стали с добавлением молибдена или меди при комнатной температуре и до концентрации 5%.

Коррозионная стойкость металлов и сплавов при нормальных условиях

Данная таблица коррозионной стойкости предназначена для составления общего представления о том, как различные металлы и сплавы реагируют с определенными средами.
Рекомендации не являются абсолютными, поскольку концентрация среды, ее температура, давление и другие параметры могут влиять на применимость конкретного металла и сплава.
На выбор металла или сплава также могут оказывать влияние экономические соображения.

Условные обозначения:

А - обычно не корродирует,
В - коррозия от минимальной до незначительной,
С - не подходит

Травление нержавеющей стали

Травление нержавеющей стали

Процедура травления нержавеющей стали

Химическая и электрохимическая обработка или травление считается одним из лучших способов очистки верхнего слоя нержавейки. Данная процедура отлично очищает поверхность стали от сварных швов, устраняет деформации различного типа, а также способствует укреплению структуры сплава после термической обработки. Кроме очистных свойств, процедура обеспечивает восстановление пассивного слоя стали, необходимого для защиты сплава от разрушения структуры при повышенных температурах.

Суть очистки стали 12х18н10т заключается в химическом взаимодействии верхнего слоя с концентрированным кислотным раствором. В основном используются соляная либо серная кислоты, после чего в ход вступает смесь расплавленной щелочи. Процесс очистки кислотой имеет две стадии: в первую очередь металл обрабатывается основным кислотным составом, а в заключении сплав выдерживается в ванне с раствором азотной кислоты.

Обрабатывая нержавейку, стоит строго соблюдать этапы технологического процесса. Емкость с раствором, в которую помещен сплав, должна обрабатывать лишь верхние слои металла, дополнительно устраняя имеющиеся повреждения. Не рекомендуется допускать изменение макроструктуры нержавеющей стали, так как железо может потерять свои первоначальные свойства.

Применение травления

Процесс травления широко применим на производстве во время очистки верхних слоев стали от сварных швов, окалин, окислов и ржавчин. Используется во время поиска внутренних дефектов путем снятия верхнего слоя заготовки либо для изучения структуры металла.

Эта процедура обеспечивает зачистку материала, благодаря чему увеличивается адгезия верхнего слоя. Это необходимо для успешного соединения металлической заготовки с другой поверхностью, после чего наносится покрасочный, эмалированный, гальванический слой или другое защитное покрытие.

Применение травления нержавеющей стали

Такой вид обработки обеспечивает не только быструю очистку заготовки, но и создаёт на верхнем слое металла заданный рисунок. С помощью травления можно вырезать канал любой толщины или оформить сложное изображение. Также возможна обработка крупных заготовок и проката. Можно легко регулировать глубину обработки до микронов, благодаря чему удастся обработать поверхность со сложными участками и мелкими пазами. Процедура применяется в проведении анализа, определяющего образование межкристаллической коррозии у нержавеющей стали.

Кроме этого данный процесс широко используется во время обработки углеродистых, низколегированных и высоколегированных сталей, цветных металлов и титана. Эта технология незаменима во время обработки мелких металлических деталей, шестеренок наручных часов. С помощью неё изготавливаются полупроводниковые микросхемы и печатные платы в электронике. Этот способ обработки обеспечивает образование токопроводящего канала на микросхемах. В авиастроении травление играет важную роль, так как с помощью этого процесса уменьшается толщина металлических листов, благодаря чему снижается вес самолёта. В нанесении рисунков и надписей данная операция также играет большую роль. Травление производит рельефное изображение, полученное путем разрушения металлической поверхности согласно определенным шаблонам. В быту операция способствует очистке трубопровода.

Методы травления

В домашних условиях и на производственных участках используется следующие виды обработки:

  • Кислотная очистка;
  • Электролитическая очистка;
  • Очистка пастами.

Травление кислотами

Наилучший результат в ходе обработки нержавеющей стали получается путем длительного выдерживания верхнего слоя нержавейки в емкости кислот из серы и азота. Как происходит данный процесс:

  1. Первоначальным этапом считается обезжиривание верхнего слоя стали, с последующей зачисткой заусениц и ожогов;
  2. Далее происходит травление в сернокислотных ваннах. Во время процесса кислотный состав разъедает шероховатость на поверхности, окалины и заусенцы. Наилучшим показателем температуры во время разъедания является 60-80 градусов по Цельсию. В течение процесса важно контролировать данный параметр. Продолжительность травления зависит от концентрации кислоты (10-12%) и маркировки стали. Стоит быть внимательней, так как истощение кислотной ванны приводит образование точечной коррозии на поверхности металла. К примеру, сталь с содержанием хрома (18%) и никеля (8%) потребует 20-40 минут обработке сернокислотной ванне. Есть возможность сократить время данной процедуры в несколько раз. Для этого следует контролировать уровень атмосферы.
  3. Следующий шаг — промывка заготовки в большом количестве жидкости.
  4. Следом стоит погрузить обрабатываемую деталь в ванну, которая наполнена азотнокислым раствором. Время процедуры занимает от 5 до 15 минут с учётом температуры ванны 50-70 градусов по Цельсию.
  5. Заключительный этап – повторное ополаскивание проточной водой.

Описанный метод травления считается стандартным и включает в себя несколько вариантов обработки. К примеру, выдержка в емкости с азотным раствором, который обогащен элементами плавиковой кислоты, увеличивает процедуру до получаса. Если поднять уровень концентрации плавиковой примеси до 15%, то получится провести процесс обработки при низкой температуре, при этом избежав предварительное опускание заготовки в кислоту. Ещё один доступный вариант обработки – очистка стали с помощью ортофосфорной кислоты. Для выполнения процедуры стоит следовать следующим шагам:

  • Обезжирить стальную заготовку любым доступным средством;
  • Промыть деталь в проточной воде и высушить;
  • Залить ванну для обработки ортофосфорной кислотой по пропорции 150 мг на литр воды;
  • Поместить сплав в емкость и ожидать в течение часа;
  • Достать и промыть в проточной воде очищенную деталь.

Сократить время обработки в сернокислой ванне можно с помощью добавления хлористого натрия в размере 5%. Благодаря этому процесс занимает 15 минут, но стоит придерживаться соответствующего температурного режима (80 градусов).

Важно помнить, что в помещении с плохой аспирацией следует заменить состав для второго этапа обработки. Проблема в выделении вредных паров из кислоты, поэтому лучше заменить раствор, используя 8% сернокислого железа и 3% плавикового раствора.

Оказать помощь в определении метода травления может окисная пленка, расположенная на верхнем слое нержавейки. Преимущество в том, что внешнее состояние подсказывает о составе плёночного слоя. Если цвет окалины зелёный, это свидетельствует о высоком уровне хрома в составе. В результате может затрудниться взаимодействие стали и кислотной ванны, следовательно, на обработку уйдет больше времени.

Электролитическое травление

Суть электролитической очистки заключается в неравномерной анодной обработке различных структурных элементов, а также в избирательной окраске металла из-за появления пленок. Отличительной чертой данной обработки считается имение внешних источников тока.

Максимально эффективна электролитическая обработка во время определения макроструктуры металлов, сплавов подвергшихся деформации, а также высоколегированных сталей, которые отличаются высокой химической устойчивостью. Электролитическая обработка имеет три вариации травления:

  • Очистка посредством анодного растворения;
  • Анодная пленочная очитка;
  • Катодная пленочная очистка.

Самым распространённым методом электротравления считается анодное растворение, благодаря которому рельеф на поверхности образуется в результате отдельных границ или фаз зерен.

Травление готовыми пастами

На данный момент современный рынок обеспечен огромным ассортиментом различных паст для травления нержавеющей стали. Главная задача пасты – изменение неровностей окрашенной поверхности в результате высоких перепадов температуры, а также очистка сварных швов. Процесс использования травильной пасты достаточно прост и может быть применён даже в домашних условиях. Нержавейка после сварки хорошо очищается пастой густой концентрации, ведь её эффективность уже начинает проявляться при температуре 80 градусов. Перед травлением металлическую поверхность необходимо очистить от коррозии и прочих дефектов.

Травление нержавеющей стали пастами

Процесс травления пастой состоит из следующих шагов:

  • Обработка верхнего слоя заготовки пастой слоем до нескольких сантиметров;
  • Выдержка в течение полутора часа;
  • Промывка под проточной водой.

Травление пастой идеально подходит для обработки сварных швов на нержавеющих марках стали. После правильной обработки поверхность способна выдерживать коррозийные атаки в самых неблагоприятных условиях.

Нержавейка для эксплуатации в серной кислоте и других кислых средах

При эксплуатации металлов в среде неорганических (серной
H₂SO₄, соляной азотной HNO3) и агрессивных органических кислот предъявляются особые требования, поскольку технологические операции происходят не только в агрессивнейшей среде, но и, как правило, при высоких температурах и давлении. В таких условиях для использования подойдет далеко не каждый металл.

Для изготовления оборудования, обладающего высокой степенью стойкости к агрессивным средам, используют кислотостойкую нержавеющую сталь марки АISI 316. Она нашла применение во многих отраслях промышленности: химической, нефтехимической, машиностроительной и других. Это хороший материал для технологических конструкций, изделий, деталей и узлов, эксплуатирующих в кислых средах. Исходным металлопрокатом для их изготовления является лист кислотостойкий из нержавеющей стали АISI 316.

Характеристики кислотостойкой нержавейки

Хорошую сопротивляемость к воздействию неорганических и органических кислот проявляют особые марки стали из нержавейки.

Кислотостойкая нержавеющая сталь марки АISI 304 и АISI 316 наиболее часто используется в агрессивных кислых средах. Это высоколегированные хромоникелевые сплавы специального целевого назначения, не поддающиеся коррозии в течение определенного времени. Кислотоупорность нержавейке придают легирующие компоненты – хром, никель, молибден, титан, вольфрам.

Нержавейка кислотостойкая марки АISI 316, по сравнению с маркой АISI 304, содержит большее количество никеля, к тому же она была усилена добавлением молибдена (2,5 %), что значительно повысило сопротивление к коррозии во многих агрессивных средах. Кроме этого, она обладает более высокой прочностью. Данная марка является жаропрочной антикоррозионной сталью. На ее поверхности имеется защитная хромоксидная пленка, устойчивая к механическим и химическим повреждениям.

Кислотостойкая сталь АISI 316 обладает отличными свойствами:

  • выдающаяся стойкость к коррозии и окислению;
  • хорошие механические свойства;
  • технологичность;
  • пластичность;
  • легкость в любого вида механической обработке.

Такие уникальные характеристики позволяют использовать изделия из нержавейки АISI 316 во многих вредных производствах, например, трубопроводы для перекачки концентрированных растворов минеральных и органических кислот, а также резервуары и хранилища для едких жидкостей и смесей. Из нее изготавливают различные виды запорной арматуры: заглушки, клапаны, шаровые краны.

Вагоны-цистерны для серной кислоты

Вагоны-цистерны для серной кислоты

Трубы, сосуды и разные другие изделия из нержавейки кислотостойкой с зеркальной поверхностью обладают эстетичным внешним видом и популярны на рынке, благодаря длительному сроку эксплуатации.

Устойчивая к воздействию агрессивных сред, сама нержавеющая сталь не оказывает негативного влияния на окружающую среду, то есть является экологичным материалом. Это и другие достоинств нержавейки делает ее популярной для применения в различных производствах.

Также читайте статьи:

Читайте также: