Сталь 35 л характеристики

Обновлено: 18.05.2024

Структура и особенности стали марки 35Л: среднеуглеродистая литая сталь 35Л без термообработки обычно имеет феррито-перлитную структуру с видманштеттовым (ориентированным) распределением феррита и наличием ферритной сетки по границам бывших аустенитных зерен (рис. 137, а). После нормализации от 850- 870° С, а также после нормализации и высокого отпуска при 620-640° С видны остатки неравномерного ориентированного распределения феррита в виде крупных выделений и остатков сетки. После нормализации от температуры 850-870° С с последующим улучшением литая сталь характеризуется также большой структурной неоднородностью. Применение высокотемпературной нормализации от 950-970° С или нормализации от 950-970° С с последующим улучшением позволяет значительно измельчить феррит, ликвидировать его ориентированность, уменьшить общую неоднородность структуры.

Рентгенографическим исследованием показано, что после фазовой перекристаллизации с нагревом выше Ac3 до 850-870° С обычно восстанавливается исходная внутризеренная ориентировка. Только после высокотемпературного нагрева до 920-960° С полностью ликвидируется наследственная текстура.

Непосредственные наблюдения структурных изменений при нагреве до 1000° С стали 35Л в высокотемпературном микроскопе показали, что в интервале 720-800° С проходит фазовая перекристаллизация, сопровождающаяся образованием большого количества новых границ внутри ферритных игл и перлитных колоний. В интервале 900-930° С вместо большого количества мелких зерен возникают крупные зерна. После 960° С наблюдается быстрый собирательный рост и образование крупных зерен. Однако только при температурах выше 1050° С средний размер зерен аустенита близок к размеру крупного исходного зерна литой стали.

Зарождение аустенита происходит как внутри ферритных игл на субграницах, так и в перлитных колониях на межфазных границах феррита и карбида. При нагреве выше 850° С проходят процессы миграции границ зерен аустенита, которые возникли при фазовом превращении на месте перлитных колоний. Эти зерна аустенита растут за счет поглощения полигонизованных ориентированных зерен, возникших в игольчатом феррите. Разрушение внутризеренной текстуры в литой углеродистой стали происходит в результате миграции границ и собирательной рекристаллизации аустенита, возникшего в перлитных колониях.

По видимому, при нагреве до 900-930° С проходят также процессы растворения карбидных частиц и примесных фаз литой стали, задерживающих процессы рекристаллизации. Следующая за высокотемпературным нагревом повторная нормализация или закалка с температур лишь немного выше Ас3 (850° С) обеспечивает повышение однородности и измельчение структуры литой стали. В результате такой обработки значительно повышаются характеристики размерной стабильности и механических свойств металла.

Наиболее высокие значения характеристик сопротивления микропластическим деформациям (предела упругости и релаксационной стойкости) и механических свойств получены на образцах, которые были подвергнуты нормализации при 950-970° С перед окончательной термообработкой. Относительно более низкие свойства имели образцы после обычной нормализации при 850-870° С. Особенно эффективна высокотемпературная термообработка образцов после литья для повышения предела упругости, релаксационной стойкости и характеристик пластичности. При этом после одинаковых режимов окончательной термообработки в образцах, подвергнутых предварительной высокотемпературной нормализации в сравнении с обычной обработкой, свойства возрастают: предел упругости на 10-30%, релаксационная стойкость на 20-100%, характеристики пластичности на 50-100%. При одинаковой пластичности (б~8%, - 16%) после нормализации при 950-970° С и улучшения предел упругости образцов составляет 64-66 кгс/мм 2 , а после нормализации с 850-870° С с последующим улучшением предел упругости не превышает 50 кгс/мм 2 .

Микропластические деформации в доэвтектоидной стали развиваются прежде всего в отдельных зернах избыточного феррита как наименее прочной структурной составляющей стали. Влияние размера ферритной составляющей на сопротивление микропластическим деформациям аналогично рассмотренному выше (гл. II) влиянию размера зерна на релаксационную стойкость стали: чем меньше размер ферритной составляющей и равномерное ее распределение в структуре, тем выше предел упругости и релаксационная стойкость литой стали.

Таким образом, применение предварительной термообработки, приводящей к измельчению структуры и повышению ее однородности, позволяет обеспечить оптимальное сочетание свойств литых стальных деталей для точного машиностроения и приборостроения.

Сопротивление микропластическим деформациям стали 35Л: механические свойства исследовали на образцах, изготовленных из литых заготовок конусной и клиновидной формы. По микроструктуре определяли среднюю пористость или загрязненность образца включениями в объемных процентах, средний диаметр пор (включений) D, а также удельную поверхность пор (включений). Термическую обработку образцов для исследования механических и релаксационных свойств производили по двум режимам:

1) нормализация при 880-900° С, выдержка при температуре нормализации 3 ч и высокий отпуск при 620-640° С 3 ч;

2) ступенчатый отжиг и улучшение: отжиг при 1200- 1230° С 3 ч, охлаждение с печью до 550° С + отжиг при 950° С 3 ч, охлаждение с печью до 550° С + закалка с температуры 850-870° С в масле и высокий отпуск при 620-640° С 3 ч.

Первый режим наиболее распространен в практике производства стальных отливок, второй - рекомендован С. В. Белынским.

Исследования показали, что сталь, выплавленная по общепринятой технологии, содержала неметаллические включения главным образом III типа с удельной поверхностью в пределах 12-18 мм -1 при Dвкл=5 мкм.

Видно, что механические свойства и релаксационная стойкость понижаются с увеличением пористости стали.

Релаксационная стойкость при комнатной температуре при относительно небольшом среднем диаметре пор практически мало зависит от пористости. С повышением температуры испытаний возрастает влияние пористости стали на релаксационную стойкость. При температуре 150° С релаксационная стойкость значительно понижается с увеличением пористости, начиная с Sпop>=5 мм -1 (0,2 объемного процента). При 350° С релаксационная стойкость понижается при появлении практически любой минимальной пористости.


Исследования показали, что релаксационная стойкость в значительной степени зависит от средней величины пор. При одних и тех же значениях Snop и объемного процента пор релаксационная стойкость резко понижается с увеличением среднего диаметра пор Dnop. При наличии относительно крупных пор (Dnop= 35 мкм) релаксационная стойкость уже при комнатной температуре понижается при незначительном значении Sпор. Следовательно, при развитии осевой пористости в отливках, обычно характеризующейся увеличенными значениями среднего размера пор (Dnop), металл имеет низкую релаксационную стойкость.

Крупные поры, ослабляя сечение металла и создавая условия для неоднородного и неодновременного прохождения пластической деформации, понижают показатели сопротивления как макро-, так и микропластической деформации. Понижение релаксационной стойкости с увеличением пористости при повышенных температурах, по-видимому, связано с ускорением диффузионных процессов вследствие увеличения дефектности металла.

При отсутствии заметных макро- и микропор понижение релаксационной стойкости стали с увеличением количества неметаллических включений связано с большой разницей в значениях коэффициентов линейного расширения неметаллических включений и основного металла и возникающими при этом термическими микронапряжениями. Механизм воздействия микронапряжений на релаксационную стойкость в сплавах с резко различающимися коэффициентами линейного расширения рассмотрен. Как показано выше, ТЦО позволяет практически ликвидировать неблагоприятное влияние включений на релаксационную стойкость литой стали.

Электрошлаковая сварка стали 35Л: если в свариваемой стали содержание углерода превышает 0,25%, следует использовать проволоки Св-08ГС и Св-08ГА. Например, изделия из сталей марок 25 и 35 сваривали с применением проволоки Св-08ГА диаметром 3 мм и флюса АН-8М. Данные о химическом составе (%) металла шва и механических свойствах сварного соединения приведены в табл. 9.3 и 9.4.



Металл толщиной 90 мм сваривали двумя электродными проволоками диаметром 3 мм со скоростью 2 м/ч, при этом скорость подачи электродов равнялась 350 м/ч, величина сварочного тока 750 А, напряжение сварки 55 В.

При сварке плавящимся мундштуком сварочный ток равен сумме тока при плавлении электродной проволоки и тока при плавлении мундштука со скоростью сварки.

С целью поддержания скорости сварки ниже критической, при которой образуются горячие трещины, скорость подачи электродной проволоки ограничивают. Так, при сварке стали 35Л толщиной 350 мм рекомендуемая скорость подачи проволоки 120-130 м/ч. Другие рекомендуемые технологические условия сварки: напряжение 46-48 В, проволока Св-10Г2, пластина мундштука из стали 30ХГСА, флюс АН-8. Исследованиями установлено, что долевое участие в металле шва составляет: 40% электродной проволоки, 50% основного металла, 10% пластины мундштука.


В табл. 9.5 приведен химический состав (%) сварочных материалов, основного металла и шва, в табл. 9.6 - механические свойства сварных соединений при различных видах термообработки. Использованные сварочные материалы в сочетании с правильным выбором режимов сварки и термообработки позволили получить при сварке стали 35Л соединение, равнопрочное с основным металлом.


При сварке сталей, содержащих 0,3-0,5% С, повысить прочность шва удается увеличением в нем доли основного металла. Естественно, что скорость подачи электродной проволоки должна уменьшаться ввиду опасности образования кристаллизационных трещин. Так, для проволоки диаметром 3 мм скорость подачи должна находиться в пределах 160-180 м/ч.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сталь 35ГЛ

Низколегированная сталь для отливок марки 35ГЛ предназначена для производства тяжелонагруженных узлов и деталей.

Цифра 35 расшифровывается как сталь - содержащая в своем химическом составе около 0,35% углерода. Буква Г означает что в стали содержится марганец, в количестве от 1,5% до 2,5-3%. А буква Л классифицирует сталь как - литейную.

  • Заменитель (сталь - близкая по основным параметрам): 40Л, 45Л, 40Г;
  • Основное назначение стали: диски, звездочки, зубчатые венцы, барабаны, шкивы, крестовины, траверсы, ступицы, вилки, решетчатые стрелы, крышки подшипников цапфы.

Химический состав (%)

C Mn Si Cr Ni Cu S P
не более
0,30-0,40 1,20-1,60 0,20-0,40 0,30 0,30 0,30 0,04 0,04
C - углерод;
Mn - марганец;
Si - кремний;
Cr - хром;
Ni - никель;
Cu - медь;
S - сера;
P - фосфор.

Механические свойства

Режимы термообработки Сечение σ0,2 σв δ5 ψ KCU Дж/см2
Мпа %
Не менее
Нормализация 880-900 °С. Отпуск 600-650°С. До 100 мм 300 550 12 20 30
Закалка 850-860°С. Отпуск 600-650°С. 350 600 14 30 50
σ0,2 - условный предел текучести;
σв - временное сопротивление разрыву;
δ5 - относительное удлинение после разрыва;
ψ - относительное сужение;
KCU - ударная вязкость.

Температура критических точек

Ударная вязкость

Ударная вязкость KCU, Дж/см2
Температура (°С) Термообработка
20 -20 -40 -60
80 71 41 16 Нормализация 900°С. Отпуск 650 °С.
52 - 29 29 Отжиг 880-900°С, 3 часа, охлаждение в печи.
Нормализация 880-900°С, 2-3 часа. Отпуск 650°С, 2-3 часа, воздух.

Технологические свойства

Наименование свойства Показатель
Свариваемость: ограниченно свариваемая. Способы сварки: РДС, АДС под газовой защитой. Рекомендуется прогрев и последующая термообработка.
Обрабатываемость резанием: в отожженном состоянии при НВ 202-207
Флокеночувствительность не чувствительна
Склонность к отпускной хрупкости не склонна

Литейные свойства

Наименование свойства Значение
Температура начала затвердевания: 149-1508°С
Показатель трещиноустойчивости: 0,9
Склонность к образованию усадочных раковин: 1,1
Жидкотекучесть: 0,9
Линейная усадка: 2,2-2,4%
Склонность к образованию усадочной пористости: 1,0

При составлении характеристик стали 35ГЛ использованы материалы книги «Марочник сталей и сплавов» (Авт. Сорокин В. Г., Мирмельштейн В.А.). Издательство 1989 года.

Сталь 35ГСЛ

Низколегированная сталь для отливок марки 35ГСЛ предназначена для производства деталей и конструкций в механизмах промышленного оборудования.

Цифра расшифровывает сталь - как содержащую в своем химическом составе около 35% углерода.
Буквенные обозначение означают наличие до 2,5% процента марганца (Г) и кремния (С). Буква Л классифицирует сталь как - литейную.

  • Заменитель (сталь - близкая по основным параметрам): 20ГСЛ, 25ГСЛ, 40ХЛ;
  • Основное назначение стали: зубчатые колеса, ролики, обоймы, зубчатые венцы, рычаги, фланцы, шкивы, сектора, колонны, ходовые колеса.
C Mn Si Cr Ni Cu S P
не более
0,25-0,35 1,10-1,40 0,60-0,80 0,30 0,30 0,30 0,040 0,040
C - углерод;
Mn - марганец;
Si - кремний;
Cr - хром;
Ni - никель;
Cu - медь;
S - сера;
P - фосфор.
Режим термообработки Сечение σ0,2 σв δ5 ψ KCU Дж/см2
Мпа %
Не менее
Нормализация 870-890 °С. Отпуск 570-600°С. До 100 мм 350 600 14 25 29
Закалка 920-950°С. Отпуск 570-650°С. - 400 650 14 30 49
σ0,2 - условный предел текучести;
σв - временное сопротивление разрыву;
δ5 - относительное удлинение после разрыва;
ψ - относительное сужение;
KCU - ударная вязкость.
Наименование свойства Показатель
Свариваемость: Способы сварки РДС, АДС под газовой защитой, ЭШС
Обрабатываемость резанием: при 156 К
Флокеночувствительность не чувствительна
Склонность к отпускной хрупкости не склонна
Наименование свойства Значение
Температура начала затвердевания: 1487°С
Показатель трещиноустойчивости: 1,0
Склонность к образованию усадочных раковин: 1,2
Жидкотекучесть: 0,9
Линейная усадка: 2,2-2,3%
Склонность к образованию усадочной пористости: 1,0

При составлении характеристик стали 35ГСЛ использованы материалы книги «Марочник сталей и сплавов» (Авт. Сорокин В. Г., Мирмельштейн В.А.). Издательство 1989 года.

Первые нагрудные знаки отличия «Гвардия», произведенные на эмальерной фабрике «​Московского товарищества художников»​ (МТХ), были изготовлены 1942 году, из сплава металлов под названием «​Томпак».

Сталь 35Л

Сталь для отливок марки 35Л предназначена для производства деталей работающих под воздействием средних статических и динамических нагрузок.

Цифра 35 расшифровывается как сталь - содержащая в своем химическом составе около 0,35% углерода, а буква Л классифицирует сталь как - литейную.

  • Заменитель (сталь - близкая по основным параметрам): 30Л, 40Л, 45Л.
  • Основное назначение стали: балансиры, бегунки, валки, диафрагмы, задвижки, зубчатые колеса, станины прокатных станов, тяги, катки, кронштейны и другие детали.
C Mn Si Cr Ni Cu S P
не более
0,32-40 0,40-0,90 0,20-0,52 0,30 0,30 0,30 0,045 0,04
C - углерод;
Mn - марганец;
Si - кремний;
Cr - хром;
Ni - никель;
Cu - медь;
S - сера;
P - фосфор.
Режимы термообработки Сечение (мм) σ0,2 σв δ5 ψ KCU Дж/см2 НВ
Мпа %
Не менее
Нормализация 860-880 °С. Отпуск 600-630°С. До 100 280 500 15 25 35 -
Закалка 860-880°С. Отпуск 600-630°С. До 100 350 550 16 20 30 -
Отжиг 850°С, печь. 30 255 530 19 34 49 146
Отжиг 950°С, печь. 22 39 64 143

Механические свойства в зависимости от сечения литой заготовки

Температура критических точек
Ас1 Ас3 (Асм) Ар (Арсм) Ар1
730°С 802°С 795°С 691°С

Ударная вязкость отливок сечением 30 мм KCU, Дж/см2

Ударная вязкость отливок сечением 30 мм KCU, Дж/см2
Температура (°С) Термообработка
20 -20 -40 -50 -60
28 14 10 8 - Без обработки. Отжиг 860 °С
37 28 26 18 -
57-66 31-50 23-45 - 10-34 Нормализация 860-880 °С, воздух до 300-350 °С, затем выдержка 2 часа при 300-350 °С. Отпуск 600-620 °С, выдержка 3 часа, охлаждение 1 час в печи до 500 °С, затем на воздухе.
83-104 41-87 50-69 - 43-61 Нормализация 870-890 °С, воздух до 860-870 °С, в масле. Отпуск 620-630 °С, выдержка 3 часа, воздух.
Наименование свойства Показатель
Свариваемость: ограничено свариваемая. Способы сварки: РДС, АДС под газовой защитой, ЭШС. Рекомендуется прогрев и последующая термообработка.
Обрабатываемость резанием: в термообработанном состоянии при НВ 160
Флокеночувствительность не чувствительна
Склонность к отпускной хрупкости не склонна
Наименование свойства Значение
Температура начала затвердевания: 1480-1490°С
Показатель трещиноустойчивости: 0,8
Склонность к образованию усадочных раковин: 1,2
Жидкотекучесть: 1
Линейная усадка: 2,2-2,3%
Склонность к образованию усадочной пористости: 1,0

При составлении характеристик стали 35Л использованы материалы книги «Марочник сталей и сплавов» (Авт. Сорокин В. Г., Мирмельштейн В.А.). Издательство 1989 года.

Японский иероглиф - 刀,​ звучащий не как иначе как - Катана, в переводе на русский язык, означает слово - Меч. Сталь, используемая для создания меча Катана - называется Тамахаганэ.

Сталь марки 35

Расшифровка марки 35: обозначение 35 свидетельствует о том, что в конструкционной стали содержится 0,35 % углерода, а остальные примеси очень незначительны.

Особенности стали 35: при изготовлении высокоточных металлических деталей основное место занимает механическая обработка резанием. В результате обработки резанием на поверхности изделий возникает пластически деформированный (наклепанный) слой. Последний аккумулирует около 3% энергии, затрачиваемой на его образование, которая расходуется на накопление искажений и дефектов кристаллической решетки. Наличие на поверхности изделий наклепанного слоя с нестабильной структурой и большим уровнем внутренних напряжений, зачастую существенно превышающим величину предела текучести неупрочненного материала, может приводить к значительному изменению размеров во времени, что особенно характерно для изделий сложной конфигурации и малой жесткости.


За счет рационального отжига наклепанного слоя можно значительно повысить сопротивление микропластическим деформациям и размерную стабильность тонкостенных деталей приборов. С этой целью произведена оценка изменения величины макронапряжений в поверхностном слое и исследовано влияние дорекристаллизационного отжига (отдыха) на сопротивление микропластическим деформациям, распространенных в приборостроении конструкционных сталей и сплавов после механической обработки резанием. Напряжения в наклепанном обработкой резанием слое определяли методом послойного стравливания поверхности образца.

Вследствие нестабильной структуры в наклепанном поверхностном слое релаксация напряжений в нем интенсивно протекает при достаточно низких температурах, в то время как в основном материале она относительно мала.


В результате релаксации напряжений в наклепанном точением поверхностном слое цилиндрического стального образца происходит существенное изменение его размеров. После выдержки в течение 4 ч при 150° С размеры образца из стали 35 уменьшаются на 1,2 мкм, что соответствует релаксации растягивающих напряжений в поверхностном наклепанном слое на 25%.

Предел упругости сталей и сплавов после механической обработки резанием в зависимости от температуры дорекристаллизационного отжига изменяется по кривой с максимумом. Температурный интервал максимальных значений предела упругости при отжиге механически обработанных образцов составляет для конструкционной углеродистой стали 350-400° С, для аустенитной стали 450° С, для медных сплавов 230-280° С, для титановых сплавов 500-600° С, для дюралюминия в закаленном и искусственно состаренном состоянии - 200° С. Таким образом, оптимальный отжиг после механической обработки обеспечивает повышение предела упругости различных по природе и структурному состоянию сплавов от 1,5 до 4 раз. Весьма активно возрастает предел упругости при отпуске механически обработанных образцов из закаленной высокоуглеродистой стали.

Как видно из рис. 97, после отпуска шлифованных образцов предел упругости значительно возрастает, в то время как твердость не изменяется.

Зависимость релаксационной стойкости металлов и сплавов после обработки резанием от температуры дорекристаллизационного отжига является аналогичной рассмотренной выше для предела упругости. Отжиг на максимальный предел упругости обеспечивает также и максимальную релаксационную стойкость. Например, для механически обработанных образцов из стали 35 максимальная релаксационная стойкость достигается после отжига при 400° С (рис. 98, 99).

Таким образом, результаты исследования показали, что поверхностный наклепанный слой после механической обработки резанием, обычно являющийся причиной размерной нестабильности изделий, может быть эффективно использован для значительного повышения сопротивления микропластическим деформациям и размерной стабильности тонкостенных деталей.


Наблюдаемое изменение сопротивления микропластическим деформациям механически обработанных образцов обусловлено процессами стабилизации тонкой структуры в наклепанном поверхностном слое в результате дорекристаллизационного отжига.

По-видимому, при оптимальной температуре отжига происходит достаточная стабилизация и закрепление атомами внедрения дислокационной структуры без существенного уменьшения плотности несовершенств, что обусловливает максимальные показатели сопротивления микропластическим деформациям наклепанного слоя. При нагреве выше оптимальной температуры отжига наряду со стабилизацией дислокационной структуры происходит существенное уменьшение плотности дислокаций, что приводит к снижению сопротивления течению в микрообъемах.

Читайте также: