Сталь 95х18 гост 5632 72

Обновлено: 07.05.2024

1.1. В зависимости от основных свойств стали и сплавы подразделяют на группы:

I - коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.;

II - жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии;

III - жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной стойкостью.

1.2. В зависимости от структуры стали подразделяют на классы:

мартенситный - стали с основной структурой мартенсита;

мартенситно-ферритный - стали, содержащие в структуре кроме мартенсита, не менее 10 % феррита;

ферритный - стали, имеющие структуру феррита (без α

аустенито-мартенситный - стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах;

аустенито-ферритный - стали, имеющие структуру аустенита и феррита (феррит более 10 %);

аустенитный - стали, имеющие структуру аустенита.

Подразделение сталей на классы по структурным признакам является условным и произведено в зависимости от основной структуры, полученной при охлаждении сталей на воздухе после высокотемпературного нагрева. Поэтому структурные отклонения причиной забракования стали служить не могут.

1.3. В зависимости от химического состава сплавы подразделяют на классы по основному составляющему элементу:

сплавы на железоникелевой основе;

сплавы на никелевой основе.

2. МАРКИ И ХИМИЧЕСКИЙ СОСТАВ

2.1. Марки и химический состав сталей и сплавов должны соответствовать указанным в табл. 1. Состав сталей и сплавов при применении специальных методов выплавки и переплава должен соответствовать нормам табл. 1, если иная массовая доля элементов не оговорена в стандартах или технических условиях на металлопродукцию. Наименования специальных методов выплавки и переплава приведены в примечании 7 табл. 1.

Массовая доля серы в сталях, полученных методом электрошлакового переплава, не должна превышать 0,015 %, за исключением сталей марок 10Х11Н23Т3МР (ЭП33), 03Х16Н15М3 (ЭИ844), 03Х16Н15М3Б (ЭИ844Б), массовая доля серы в которых не должна превышать норм, указанных в табл. 1 или установленных по соглашению сторон.

(Измененная редакция, Изм. № 1, 2, 3, 5, Поправка).

2.2. В готовой продукции допускаются отклонения по химическому составу от норм, указанных в табл. 1.

Предельные отклонения не должны превышать указанные в табл. 2, если иные отклонения, в том числе и по элементам, не указанным в табл. 2, не оговорены в стандартах или технических условиях на готовую продукцию.

(Измененная редакция, Изм. № 5).

2.3. В сталях и сплавах, не легированных титаном, допускается титан в количестве не более 0,2 %, в сталях марок 03Х18Н11, 03Х17Н14М3 - не более 0,05 %, а в сталях марок 12Х18Н9, 08Х18Н10, 17Х18Н9 - не более 0,5 %, если иная массовая доля титана не оговорена в стандартах или технических условиях на отдельные виды стали и сплавов.

По согласованию изготовителя с потребителем в сталях марок 03Х23Н6, 03Х22Н6М2, 09Х15Н8Ю1, 07Х16Н6, 08Х17Н5М3 массовая доля титана не должна превышать 0,05 %.

2.4. В сталях, не легированных медью, ограничивается остаточная массовая доля меди - не более 0,30 %.

По согласованию изготовителя с потребителем в стали марок 08Х18Н10Т, 08Х18Н12Т, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т, 12Х18Н9, 17Х18Н9 допускается присутствие остаточной меди не более 0,40 %.

Для стали марки 10Х14АГ15 остаточная массовая доля меди не должна превышать 0,6 %.

2.5. В хромистых сталях с массовой долей хрома до 20 %, не легированных никелем, допускается остаточный никель до 0,6 %, с массовой долей хрома более 20 % - до 1 %, а в хромомарганцевых аустенитных сталях - до 2 %.

2.6. В хромоникелевых и хромистых сталях, не легированных вольфрамом и ванадием, допускается присутствие остаточного вольфрама и ванадия не более чем 0,2 % каждого. В стали марок 05Х18Н10Т, 08Х18Н10Т, 17Х18Н9, 12Х18Н9, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т массовая доля остаточного молибдена не должна превышать 0,5 %; для предприятий авиационной промышленности в стали марок 05Х18Н10Т, 08Х18Н10Т, 12Х18Н9, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т массовая доля остаточного молибдена не должна превышать 0,3 %. В остальных сталях, не легированных молибденом, массовая доля остаточного молибдена не должна превышать 0,3 %.

По требованию потребителя стали марок 05Х18Н10Т, 08Х18Н10Т, 12Х18Н9, 17Х18Н9, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т изготовляются с остаточным молибденом не более 0,3 %, стали марок 05Х18Н10Т, 03Х18Н11, 03Х23Н6, 08Х18Н12Б, 08Х18Н12Т, 08Х18Н10Т - не более 0,1 %.

2.6.1. В сплавах на никелевой и железоникелевой основах, не легированных титаном, алюминием, ниобием, ванадием, молибденом, вольфрамом, кобальтом, медью, массовая доля перечисленных остаточных элементов не должна превышать норм, указанных в табл. 3.

2.3 - 2.6.1. (Измененная редакция, Изм. № 5).

2.7. В сталях и сплавах, легированных вольфрамом, допускается массовая доля остаточного молибдена до 0,3 %. По соглашению сторон допускается более высокая массовая доля молибдена при условии соответственного снижения вольфрама из расчета замены его молибденом в соотношении 2:1. В сплаве ХН60ВТ (ЭИ868) допускается остаточная массовая доля молибдена не более 1,5 %. В сплаве ХН38ВТ допускается остаточная массовая доля молибдена не более 0,8 %.

(Измененная редакция, Изм. № 3, 5).

Марка сталей и сплавов

Массовая доля элементов, %

1. Стали мартенситного класса

Бор не более 0,004

2. Стали мартенсито-ферритного класса

Бор не более 0,003

3 Стали ферритного класса

Церий не более 0,1 (расч.). Кальций не более 0,05 (расч.)

4. Стали аустенито-мартенситного класса

5. Стали аустенито-ферритного класса

6. Стали аустенитного класса

Бор не более 0,02

Бор не более 0,05; церий не более 0,02

Бор не более 0,03; церий не более 0,02

Бор не более 0,005; церий не более 0,03

00Х18Н10, ЭИ842, ЭП550

Азот 0,30 - 0,45; Бор не более 0,010

Бор не более 0,008

7. Сплавы на железоникелевой основе

Бор не более 0,020

Церий не более 0,05

Бор не более 0,005; азот 0,15 - 0,30

Барий не более 0,10 Церий не более 0,03

8. Сплавы на никелевой основе

Бор не более 0,01; церий не более 0,02; свинец не более 0,001

Бор не более 0,01

Бор не более 0,02; церий не более 0,02

Бор не более 0,01; церий не более 0,01

Бор не более 0,01; церий не более 0,02

Бор не более 0,01; церий не более 0,025

Бор не более 0,015; церий не более 0,020

Бор не более 0,005; церий не более 0,01

Бор 0,01 - 0,02; церий не более 0,01

Кобальт 4,0 - 6,0; бор не более 0,02; церий не более 0,02

Кобальт 11,0 - 13,0; бор не более 0,02; церий не более 0,02

Кобальт 12,0 - 16,0; бор не более 0,02

Бор не более 0,01 Церий не более 0,02 Свинец не более 0,001

1. В первой графе таблицы цифра, стоящая перед тире, обозначает порядковый номер класса стали (1 - 6) или вида сплавов (7 - 8); цифры после тире обозначают порядковые номера марок в каждом из классов стали или видов сплавов.

2. Химические элементы в марках стали обозначены следующими буквами: А - азот, В - вольфрам, Д - медь, М - молибден, Р - бор, Т - титан, Ю - алюминий, X - хром, Б - ниобий, Г - марганец, Е - селен, Н - никель, С - кремний, Ф - ванадий, К - кобальт, Ц - цирконий, ч - редкоземельные элементы. Буква У в обозначении сплава марки ХН77ТЮРУ предусматривает отличие по химическому составу по массовой доле углерода, титана и алюминия от сплава марки ХН77ТЮР.

Для сплава ХН65МВУ буква У предусматривает отличие по массовой доле углерода, кремния и железа от сплава ХН65МВ.

3. Наименование марок сталей состоит из обозначения элементов и следующих за ними цифр. Цифры, стоящие после букв, указывают среднее содержание легирующего элемента в целых единицах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед буквенным обозначением указывают среднее или максимальное (при отсутствии нижнего предела) содержание углерода в стали в сотых долях процента. Букву А (азот) ставить в конце обозначения марки не допускается.

4. Наименование марок сплавов состоит только из буквенных обозначений элементов, за исключением никеля, после которого указываются цифры, обозначающие его среднее содержание в процентах.

5. В документации, утвержденной до введения в действие настоящего стандарта, допускается пользоваться ранее установленным обозначением марок сталей и сплавов. Во вновь разрабатываемой документации необходимо применять новое наименование. При необходимости прежнее обозначение указывают в скобках.

6. Знак «+» означает применение стали по данному назначению; знак «++» обозначает преимущественное применение, если сталь имеет несколько применений.

7. Стали и сплавы, полученные специальными методами, дополнительно обозначают через тире в конце наименования марки буквами: ВД - вакуумно-дуговой переплав, Ш - электрошлаковый переплав и ВИ - вакуумно-индукционная выплавка, ГР - газокислородное рафинирование, ВО - вакуумно-кислородное рафинирование, ПД - плазменная выплавка с последующим вакуумно-дуговым переплавом, ИД - вакуумно-индукционная выплавка с последующим вакуумно-дуговым переплавом, ШД - электрошлаковый переплав с последующим вакуумно-дуговым переплавом, ПТ - плазменная выплавка, ЭЛ - электронно-лучевой переплав, П - плазменно-дуговой переплав, ИШ - вакуумно-индукционная выплавка с последующим электрошлаковым переплавом, ИЛ - вакуумно-индукционная выплавка с последующим электронно-лучевым переплавом, ИП - вакуумно-индукционная выплавка с последующим плазменно-дуговым переплавом, ПШ - плазменная выплавка с последующим электрошлаковым переплавом, ПЛ - плазменная выплавка с последующим электронно-лучевым переплавом, ПП - плазменная выплавка с последующим плазменно-дуговым переплавом, ШЛ - электрошлаковый переплав с последующим электронно-лучевым переплавом, ШП - электрошлаковый переплав с последующим плазменно-дуговым переплавом, СШ - обработка синтетическим шлаком и ВП - вакуумно-плазменный переплав.

(Измененная редакция, Изм. № 5).

8. Указанное в таблице количество бора, бария и церия является расчетным и химическим анализом не определяется (за исключением случаев, специально оговоренных в стандартах или технических условиях).

9. Сплав марки ХН35ВТЮ (ЭИ787) при использовании вместо сплавов на никелевой основе поставляется с содержанием серы не более 0,010 %, фосфора - не более 0,020 %.

10. Сталь марки 55Х20Н4АГ9 (ЭП303) допускается поставлять с ниобием в количестве 0,40 - 1,00 %; в этом случае сталь маркируют 55Х20Н4АГ9Б (ЭП303Б).

11. Сплав марки ХН38ВТ (ЭИ703) допускается поставлять с ниобием в количестве 1,2 - 1,7 % вместо титана; в этом случае сталь маркируют ХН38ВБ (ЭИ703Б).

12. По соглашению сторон в стали марки 03Х18Н12-ВИ допускается содержание титана до 0,008 %.

13. По соглашению сторон допускается уточнение химического состава сталей и сплавов.

14. По соглашению сторон сплав марки ЭИ893 поставляется с содержанием углерода не более 0,06 %.

15. (Исключено, Изм. № 5).

16. Для стали марки 12Х18Н10Т, прокатываемой на полунепрерывных и непрерывных станах, содержание титана должно быть [5 (С - 0,02)] - 0,7 %, а отношение содержания хрома к никелю - не более 1,8.

17. Для сплава марок ХН77ТЮРУ (ЭИ437БУ) предельное отклонение по титану плюс 0,05 %.

Для сплава марки ХН77ТЮР допускаются предельные отклонения по титану плюс 0,1 %, по алюминию плюс 0,05 %.

18. В графе «Титан» табл. 1 в формуле определения содержания титана буква С обозначает количество углерода в стали.

19. Для сплава марки ХН55ВМТКЮ (ЭИ 929) допускается введение церия до 0,02 % по расчету.

20. В химическом составе сплава марки Н70МФВ допускается увеличение массовой доли углерода на плюс 0,005 % и кремния на плюс 0,02 %.

(Измененная редакция, Изм. № 1, 2, 3, 5).

21. В стали марки 10Х13Г18Д (ДИ-61) допускаются отклонения по содержанию марганца на плюс 0,5 %, хрома на плюс 0,5 % и меди на плюс 0,2 %.

(Введено дополнительно, Изм. № 5 ).

22. По согласованию изготовителя с потребителем в сталях марок 12Х18Н9, 17Х18Н9, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т, 08Х18Н10Т и 08Х18Н12Т установить массовую долю фосфора не более 0,040 %.

Сталь 95х18 гост 5632 72


Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно

СТАЛИ ВЫСОКОЛЕГИРОВАННЫЕ И СПЛАВЫ
КОРРОЗИОННО-СТОЙКИЕ, ЖАРОСТОЙКИЕ И ЖАРОПРОЧНЫЕ

High-allоу steels аnd соrrosion-рrооf, heat-resisting
and hеаt trеаtеd аllоуs. Grades

____________________________________________________________________
Текст Сравнения ГОСТ 5632-2014 с ГОСТ 5632-72 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 1975-01-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

И.Н.Голиков, д-р техн. наук (директор института), А.П.Гуляев, д-р техн. наук (руководитель работы), А.С.Каплан, канд. техн. наук (руководитель работы), О.И.Путимцева

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 27.12.72 N 2340

3. СТАНДАРТ РАЗРАБОТАН с учетом требований международных стандартов ИСО 683-13-85, ИСО 683-15-76, ИСО 683-16-76, ИСО 4955-83

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта, перечисления, приложения

5. Ограничение срока действия снято по протоколу N 7-95 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-95)

6. ИЗДАНИЕ (ноябрь 1990 года) с Изменениями N 1, 2, 3, 4, 5, утвержденными в августе 1975 года, августе 1979 года, июне 1981 года, октябре 1986 года, июне 1989 года (ИУС 9-75, 10-79, 9-81, 12-86, 10-89), Поправками (ИУС 5-92, 7-93, 11-2001)

ВНЕСЕНЫ поправки, опубликованные в ИУС N 3, 2007 год, ИУС N 1, 2009 год

Поправки внесены изготовителем базы данных

Настоящий стандарт распространяется на деформируемые стали и сплавы на железоникелевой и никелевой основах, предназначенные для работы в коррозионно-активных средах и при высоких температурах.

К высоколегированным сталям условно отнесены сплавы, массовая доля железа в которых более 45%, а суммарная массовая доля легирующих элементов не менее 10%, считая по верхнему пределу, при массовой доле одного из элементов не менее 8% по нижнему пределу.

К сплавам на железоникелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе (сумма никеля и железа более 65% при приблизительном отношении никеля к железу 1:1,5).

К сплавам на никелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в никелевой основе (содержания никеля не менее 50%).

Стандарт разработан с учетом требований международных стандартов ИСО 683-13, ИСО 683-15, ИСО 683-16, ИСО 4955.

1. КЛАССИФИКАЦИЯ

мартенситно-ферритный - стали, содержащие в структуре, кроме мартенсита, не менее 10% феррита;

ферритный - стали, имеющие структуру феррита (без превращений);

аустенито-ферритный - стали, имеющие структуру аустенита и феррита (феррит более 10%);

Подразделение сталей на классы по структурным признакам является условным и произведено в зависимости от основной структуры, полученной при охлаждении сталей на воздухе после высокотемпературного нагрева. Поэтому структурные отклонения причиной забракования стали служить не могут.

2.1. Марки и химический состав сталей и сплавов должны соответствовать указанным в табл.1. Состав сталей и сплавов при применении специальных методов выплавки и переплава должен соответствовать нормам табл.1, если иная массовая доля элементов не оговорена в стандартах или технических условиях на металлопродукцию. Наименования специальных методов выплавки и переплава приведены в примечании 7 табл.1.

Сталь 95Х18 коррозионно-стойкая мартенситного класса

Закалка с 1010-1070 °C в масле или на воздухе и последующий низкий отпуск при 150-370 °C.

При контроле закаливаемости рекомендуется температура закалки 1050°C и 150-200 °C для стали 95X18. Для полного смягчения стали (~220 HB) рекомендуется отжиг при 880-920 °C с замедленным охлаждением (скорость охлаждения 25 °C/ч), для улучшения обрабатываемости при точении рекомендуется отжиг при 730-760 °C. Следует избегать отпуска при 450-600 °C, а также нагрева при закалке выше 1065 °C, вызывающего рост зерна, так как в обоих случаях наблюдается снижение ударной вязкости. [1]

Влияние температуры закалки на свойства стали 95X18

tзак, °C Остаточный
аустенит γ, %
Твердость
HRC
Диаметр
аустенитного
зерна, мкм
Содержание
хрома в
твердом
растворе, %
900 >1 47 18 9,5
1000 55 16
1050 17 58 40 11,0
1100 32 55 12,2
1150 76 40 35
1200 33 42
1250 93 26 63 16,4

Влияние продолжительности отпуска при 200 °C на твердость сортовой стали 95X18 после закалки с 1040-1060 °C [6]

Продолжительность отпуска, ч Твердость HRC
0 57,5
1 55,5
1,5 55
2 54
3 53

Влияние температуры отпуска на свойства стали 95X18 (закалка с 1040 °C) [1]

tзак, °C Остаточный
аустенит γ, %
Твердость
HRC
140 15 56
300 12 51

Механические свойства прутков стали 95X18 после различных режимов отжига и закалки [1]

Режим
термической
обработки
Твердость HB σв, Н/мм 2 σ0.2, Н/мм 2 δ5 % ψ, %
Закалка с
1010-1065 °C в масле,
охлаждение на воздухе
60-62 HRC
Закалка и отпуск
при 150-379 °C
55-60 HRC
Неполный отжиг
при 730-790 °C,
2-6 ч
22-27 HRC ≥880 ≥770 ≥12
Полный отжиг
при 885-920 °C,
1-2 ч
215-240 ≥770 ≥420 ≥12 ≥30

Механические свойства

Состояние поставки σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см 2 Твердость HRCэ
не менее
Закалка с 1000-1050 °C
в масле; отпуск при
200-300 °C,
охл. на воздухе или в масле
Св. 56
Пруток. Полный отжиг
при 885-920 °C, 1-2 ч
420 770 15 30
Пруток. Неполный отжиг
при 730-790 °C, 2-6 ч
770 880 12 25 24-29
Подогрев 850-860 °C;
закалка с 1000-1070 °C
в масле или на воздухе;
обработка холодом при 70-80 °C;
отпуск при 150-160 °C,
охл. на воздухе
1980-2300 63 Св. 5

Механические свойства в зависимости от температуры отпуска [3]

Механические свойства при повышенных температурах [3]

ПРИМЕЧАНИЕ. Закалка с 1050 °C в масле; обработка холодом при -70 °C; отпуск при 400 °C.

Предел выносливости [5]

Термообработка σ-1, МПа
Закалка с 1050 °C в масле;
отпуск при 150 °C;
твердость HRCэ 61
960

Механические свойства по ТУ [5]

Вид
полуфабриката
ТУ Состояние
полуфабриката
или контрольных
образцов
НВ
dотпмм
не менее
Прутки
горячекатаные
ТУ 14-1-377-72 Отпущенные
или
отожженные
3,7

Механические свойства при комнатной температуре [5]

Вид полуфабриката Состояние σ0,2 σв δ ψ HRC
кгс/мм 2 %
Прутки Термически
обработанные
по режиму:
закалка с
1010-11б5 °C
в масле или
на воздухе
60-62
Термически
обработанные
по режиму:
закалка с
1010-1065 °C
и отпуск при
150-370 °C
190 200 2 10 55-60

ПРИМЕЧАНИЕ. После отпуска в интервале температур 450-600 °C сталь обладает наименьшим сопротивлением удару. Нагрев под закалку выше 1060°C вызывает рост зерна и снижает вязкость стали.

Жаростойкость [5]

Сталь устойчива против окисления в воздушной среде при температурах до 800°C.

Коэффициент термического линейного расширения [5]

Температура °C αx10 6 1/град
20-100 11,8
20-200 12,3
20-300 12,7
20-400 13,1
20-500 13,4
Температура °C αx10 6 1/град *
100-200 12,8
200-300 13,6
300-400 14,4
400-500 14,6

* После термической обработки по режиму: закалка с 1050°C (выдержка 45 мин) в масле, отпуск при 425°C (выдержка 1 час), охлаждение на воздухе.

Сталь 95Х18 конструкционная подшипниковая

Число 95 в обозначении стали 95Х18 указывает среднее содержание углерода в долях процента, т.е. среднее содержание углерода в стали 0,95%.

Буква Х указывает на то, что сталь легирована хромом, а цифра 18 за ней указывает, что среднее содержание хрома в стали 18%.

Зарубежные аналоги

Германия
(DIN)
Евронормы
(EN)
США
(AISI, ASTM)
Япония
JIS
Чехия
(CSN)
Польша
PN/H
X105CrMol7 1.4125 440FSe SUS440C 17042 H18

ВАЖНО. Возможность замены определяется в каждом конкретном случае только после оценки и сравнения свойств сталей

Вид поставки

  • Поковка по ГОСТ 8479-76.
  • Сортовой прокат ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 1133-71, ГОСТ 7417-75.
  • Полоса ГОСТ 103-76.
  • Заготовка квадратная ГОСТ 4693-77.

Характеристики и применение

Сталь 95Х18 является легированной высокохромистой нержавеющей сталью мартенситного (основная структура мартенсит) класса с высоким содержанием углерода, которая применяется как коррозионностойкая сталь и не применяется как жаростойкая и жаропрочная. Являясь высокохромистой сталью обладает хорошей кислотостойкостью и высокой окалиностойкостью (до 700-800 °С).[1]

Назначение

Подшипниковая сталь 95X18 применяется при изготовлении деталей к которым предъявляются требования высокой прочности и износостойкости и работающие при температуре до 500°С или подвергающиеся действию умеренных агрессивных сред (морской или речной воды, щелочных растворов, азотной и уксусной кислоты и др.), например:

  • кольца,
  • шарики и ролики подшипников,
  • втулки,
  • оси,
  • стержни

Согласно ГОСТ 5632-2014 сталь 95Х18 также применяется при изготовлении шарикоподшипников высокой твердости для нефтяного оборудования и ножей высшего качества. Сталь применяется после заказлки с низким отпуском.

Согласно ГОСТ 5949-2014 сталь 95Х18 применяется для изготовления горячекатаной, кованой, калиброванной металлопродукции и металлопродукции со специальной отделкой поверхности.

Химический состав, % (ГОСТ 5632-2014)

Номер марки Марка
стали или
сплава
Массовая доля элементов, %
Обозначение
(Условное
обозначение)
C Si Mn Cr Ni Ti Al W Mo Nb V Fe S P Прочие
не более
1-20 95X18
(ЭИ229)
0,90-1,00 ≤0,80 ≤0,80 17,00-19,00 Осн. 0,025 0,030
  1. В первой графе таблицы цифра, стоящая перед тире, обозначает порядковый номер класса стали (1-6) или вида сплавов (7-8); цифры после тире обозначают порядковые номера марок в каждом из классов стали или видов сплавов.
  2. Знак «-» означает, что массовая доля данного элемента не нормируется и не контролируется. В сталях, не легированных титаном, допускается массовая доля титана в соответствии с 6.3 ГОСТ 5632-2014.

Температура критических точек, °С [162 ]

Термообработка

ВАЖНО. Описанные рекомендации по термообработке указаны не конкретно для стали 95Х18, а для легированных высокохромистых сталей, которой и является сталь 95Х18, в целом.

Наиболее распространенным и рекомендуемым режимом термической обработки высокохромистой стали является отжиг при 760-780°С с последующим охлаждением на воздухе или вместе с печью. В результате такой термообработки сталь приобретает наиболее равновесную структуру в виде ферритокарбидной смеси, характеризующейся благоприятным сочетанием прочности и коррозионной стойкости. Иногда применяется также нагрев и выдержка стали при 850-900°С в течение нескольких часов с последующим быстрым охлаждением. При этом наблюдается растворение карбидов и несколько повышается пластичность.

Хромистая сталь характеризуется склонностью к отпускной хрупкости, поэтому после отпуска ее следует охлаждать быстро (в масле).

Твердость HB по Бринеллю (ГОСТ 5949-2018)

ПРИМЕЧАНИЕ.
Твердость НВ по Бринеллю указана для горячекатаной, кованой и калиброванной металлопродукциии, металлопродукции со специальной отделкой поверхности в термически обработанном (отожженном или отпущенном) состоянии.

Твердость HRC по Роквеллу (ГОСТ 5949-2018)

Марка стали Рекомендуемый режим термической обработки Твердость HRC,
не менее
95X18
(ЭИ229)
Закалка с температуры (1000-1050)°С,
охлаждение в масле,
отпуск при температуре (200-300) °С,
охлаждение на воздухе или в масле
55

ПРИМЕЧАНИЕ.
Твердость HRC по Роквеллу металлопродукции из стали марки 95X18 (ЭИ229), определяется на образцах, вырезанных из термически обработанных заготовок.

Условия применения стали 95Х18 для узла затвора арматуры (ГОСТ 33260-2015)

Материал Температура
рабочей
среды, °С
Твердость Дополнительные указания
по применению
Наименование Марка или тип
Шарики 95X18
ГОСТ 5632
От -253
до 350
59…63 HRC
HRC≥56
(для температуры≥300°С)
Для сред слабой
агрессивности

Условия применения стали 95Х18 для направляющих и резьбовых втулок (ГОСТ 33260-2015)

Материал НД на
поставку
Температура
рабочей
среды, °С
Дополнительные указания
по применению
Наименование Марка
Сталь
коррозионно-
стойкая
95X18
ГОСТ 5632
Сортовой
прокат
ГОСТ 5949
От -40
до 200
Применяется для работы в
условиях атмосферной коррозии и
средах слабой агрессивности.
Твердость втулок выбирается с
учетом твердости шпинделя.

Согласно ГОСТ 5949-2018 механические свойства металлопродукции из стали марки 95X18 (ЭИ229) не контролируют.

Технологические свойства

Температура ковки, °С: начала 1180, конца 850.

Обрабатываемость резанием Kv тв.спл = 0,86 и Kv б.ст = 0,35, металл отожженный НВ 212-217 и σ0,2 = 710 МПа.

Читайте также: