Сталь 9cr2 характеристики применение

Обновлено: 17.05.2024

Существует несколько марок инструментальных сталей, плюсы и минусы которых, отлично подходят для изготовления ножей. Характеристика стали 9хс основана включениями кремниевых и хромовых легирующих добавок. Которые существенно улучшают ее эксплуатационные качества. Эта сталь обладает такими свойствами, позволяющими ее использовать для производства компонентов, к которым предъявляются серьезные требования по упругости, сопротивлению на изгиб и износостойкости.

Ассортимент ножей, использующихся в быту, сегодня довольно большой. Конечно, при выборе клинка в магазине мало кто обращает внимание на марку стали. Этим «страдают» только любители холодного оружия. Если вы увидите в магазине нож из 9хс можете смело приобретать его в свое пользование. Ведь характеристики этой марки говорят сами за себя.

Эта марка применяется для производства измерительных и резочных инструментов. Из нее изготавливают:

  • Сверла
  • Устройства для нарезки резьбы
  • Фрезы
  • Устройства штемпелей и клейм

ВАЖНО: Обозначение марки 9хс говорит о том, что сталь содержит 0,9% углерода, а буквы рядом с цифрой указывают на нахождение в составе хрома (X) и кальция (С).

Аналоги

Зарубежными аналогами являются:

Изготовленные из этой стали клинки хорошо себя зарекомендовали на рыбалке, охоте и сборе грибов. Их можно применять во время туристических вылазок. В отличие от более популярных марок ножи, произведенные из 9хс методом ковки, более надежны и хорошо переносят агрессивные условия окружающей среды.

Инструментальные стали сегодня имеют широкое использование. Они отличаются высокой прочностью. Благодаря которой и обладают большой сферой применения. Современная промышленность позволяет изготовить инструментальную сталь нескольких марок. Описываемый в этой статье материал имеет все необходимы свойства для изготовления ножей. Своими характеристиками они в несколько раз превосходят ножи из подшипниковой стали.

Особенности материала

В качестве главной легирующей присадки в такой стали используется хром. Его количество колеблется в пределах 0,95-1,25%. Хром делает сталь твердой и прочной. К тому же, он защищает железо от коррозии. Похожим эффектом обладает и кремний. Количество этого вещества в 9хс достигает 1%. Кремний увеличивает порог прочности, снижая уровень вязкости и пластичности.

Минусы стали заключаются в том, что она не подходит для сварных конструкций. Единственно возможный способ использования сварки для такого сплава – контактный. Также важно использовать сталь этой марки в обычных температурных режимах. При высоких температурах она теряет свои качества.

Плюсы марки:

  • Более равномерное распределение карбидов по сечению. Что дает важное преимущества этой марки при изготовлении из нее режущих предметов.
  • Сталь практически не поражается внутренними дефектами. Которые могут привести к поломкам ножа и снижению важных качеств лезвия.
  • Повышенная твердость в отожженном состоянии.

При термической обработки стали очень важен контроль температуры. Именно поэтому вся работа с металлом проводится в электрических печах с автоматизированной регулировкой температурных показателей.

После всех необходимых работ к изделию применяют структурный металлографический контроль и анализ с помощью рентгена. Хоть в стали марки 9хс флокены практически не появляются, важно проверить ее структуру на качество. После такой проверки можно быть уверенным, что стальной клинок прослужит верой и правдой долгое время.

Закалка и заточка

  1. Одним из главных недостатков этой стали является сложность соблюдения температурного режима при работе с ней. Сталь очень капризная и требует к себе особого подхода. Техническая закалка изделия – важный этап производства ножей. Если нож перегреть, он станет хрупким. А при недогреве – станет быстро тупиться. Держаться «золотой середины» — важное условие при работе с этой статью.

Накаливание клинка должно проводиться не очень жестко. Хороший мастер проведет неполную закалку, а частичную. Лезвие нужно подвергнуть большему нагреву, чем обух.

  1. Заточка готового клинка не менее важная часть при изготовлении ножа, чем его закалка. Для этой стали подходят два варианта заточки:
  • Под 00. Заточка с помощью торца заточного круга до достижения HRC 62 – 64. Это самые максимальные показатели для металлических ножей. После чего они найдут свое применение там, где важна идеальная заточка.
  • Под 450. Этот вид заточек применяется для силовых клинков. С помощью которых можно нарубить веток, вскрыть консервы и т.п. После такой заточки клинки быстро тупятся, но зато пригодны для более сурового использования. Ножи с такой заточкой считаются туристическими и хорошо помогают в условиях дикой природы.

Преимущества ножей из 9хс

Многие люди выбирают ножи из этой стали потому что они производятся не штамповкой, а с помощью настоящего ручного труда. Кузнецы, работающие с этой сталью, отмечают ее непокорность. Но если им удается ее обуздать, то она становится лучшим решением для изготовления ножей. И можно быть уверенным, что пропитанная живой энергетикой и силой эта сталь поможет создать эксклюзивный и неповторимый нож. Который можно использовать в быту или вручить в качестве подарка.

Эта углеродистая легированная сталь обладает великолепной прочностью и способностью долго держать заточку. При покупке ножей из отдавайте предпочтение ведущим производителям. Так можно быть уверенным, что над ними работали настоящие кузнецы. Профессиональное оборудование и опыт в кузнечном деле поможет создать не просто нож, а настоящий шедевр.

Несмотря на трудности обработки, сталь 9хс является отличным материалом для создания высококачественного изделия. Благодаря своим великолепным качествам эта легирующая сталь превосходит все аналоги. И нашли применение во многих сферах жизнедеятельности. Все, кто имел дело с ножами из этого материала отмечают их отличные эксплуатационные качества и характеристики.

Сталь 9ХС для ножей: плюсы и минусы


От стали, из которой сделан нож, зависят его основные характеристики: упругость, твердость, прочность, износостойкость. Марка стали 9ХС полностью отвечает заявленным требованиям, поэтому ее часто используют для изготовления клинков для ножей.

Что представляет собой сталь 9ХС для ножей?

Сталь марки 9ХС – инструментальная углеродистая сталь. В качестве легирующих добавок в ней используется хром и кремний. Они придают сплаву прочность и надежность, а также хорошую упругость, сопротивление на изгиб и износостойкость.

Преимущественно 9ХС используется в промышленности. Из нее делают:

  • сверла;
  • метчики;
  • резцы;
  • фрезы;
  • машинные штемпели;
  • клеймы для холодных работ.

Также она достаточно популярна у производителей ножей.

Характеристики стали 9ХС

Сталь 9ХС характеризуется:

Эти свойства определяются ее химическим составом, особенности которого видны уже из маркировки – 9ХС, которая указывает на количество углерода в сплаве и основные легирующие элементы:

  • Цифра «9» показывает содержание углерода в сплаве – 0,9%.
  • Буква «Х» обозначает химический элемент хром. Его в сплаве содержится 0,95-1,25%.
  • «С» указывает на то, что в сплаве содержится кремний – от 1,2 до 1,6%.

Углерод – один из основных элементов любого вида стали. Чем выше его процентное содержание в сплаве, тем прочнее и тверже получится металл. В 9ХС углерода оптимальное количество, чтобы сталь была твердой, но не слишком хрупкой.

Легирующих элементов в стали 9ХС минимальное количество. Хром отвечает за прочность стали. Еще одна его важная функция – предупреждение развития коррозии. Но для полноценной защиты в сплаве его должно быть не менее 13%. В 9ХС хрома значительно меньше, но даже в таком количестве он выполняет свою функцию: кратковременный контакт с водой ножам не страшен. Кремний имеет схожее воздействие с хромом на металл. Его вводят в состав стали, чтобы повысить ее теплоемкость и увеличить прочность.

Помимо этого в составе 9Хс есть еще 9 веществ, которые вводят для улучшения качества стали:

Наименование Количество Описание
Марганец 0,6 % Увеличивает износоустойчивость, стойкость против ударных нагрузок.
Никель 0,35 % Увеличивает прокаливаемость стали и защищает металл от коррозии.
Медь 0,3 % Улучшает антикоррозийные свойства сплава.
Молибден 0,2 % Увеличивает красностойкость и упругость стали.
Вольфрам 0,2 % Образует карбиды, которые придают сплаву особую твердость. Благодаря им, зернистость при нагреве не увеличивается, а при отпуске металл становится не таким хрупким.
Ванадий 0,15 % Уменьшает зерно, увеличивает плотность стали.
Серы и фосфор 0,03 % Cчитаются вредными примесями, более 0,045 делает сталь красноломкой.
Титан

Основные физические характеристики стали 9ХС:

  • твердость, HRC = 63,
  • плотность — 7830 кг/м 3 ;
  • температурный интервал ковки: от 1180 до 800 градусов.

Для каких ножей используется?

Сталь 9ХС широко применяется для изготовления клинков ножей. Чтобы придать сплаву необходимую форму, не требуется специальное оборудование, поэтому изготовители ножей любят эту марку.

Ножи из стали 9ХС чаще всего приобретают для туризма, охоты, рыбалки. Они замечательно справляются с задачами, которые возникают в походных условиях. Благодаря особому сплаву 9ХС, ножи обладают высокой прочностью. Он способен выдержать значительные нагрузки: удары, скручивание, контактное нагружение.


Нож Куница 24.5 см — 8100 руб.

Одна из самых важных характеристик для туристического или охотничьего ножа – хорошие режущие свойства. Клинки из стали 9ХС с легкостью разрежут твердые предметы, такие как ветки деревьев или кости животных, подходят для разделки туши. Хорошо переносят агрессивные условия окружающей среды, не боятся воды и воздействия высоких температур. Хотя из-за недостаточно высокого процента хрома в составе их нельзя отнести к нержавеющим.

Плюсы и минусы стали 9ХС

Сталь 9ХС подходит для изготовления ножей, благодаря своим свойствам:

— Твердость. Нож из стали твердостью 63 единицы без проблем справится с любой задачей. Он с легкостью разрежет даже твердые материалы: ветки дерева, кости, жилы.
— Защита от коррозии. Благодаря содержанию хрома в составе, такие ножи не боятся воды. После контакта с разными видами жидкости на них не появится ржавчина.
— Упругость.
— Высокие качества режущей кромки.
— Долгое время держит заточку.
— Высокая устойчивость к механическим повреждениям и образованию трещин.
— Карбиды равномерно распределены по сечению, что повышает эксплуатационные качества готового изделия.
— Повышенная прокаливаемость.
— Высокая термическая устойчивость. При обработке вероятность появления флокенов минимальна.

Есть у этой марки и некоторые недостатки. К ним можно отнести:

— Внешний вид. Клинок из стали 9ХС не блестит и имеет своеобразный рисунок.
— Высокая цена. Из-за особенностей производства, требующего повышенного контроля за температурой во время закалки, и необходимости ручной ковки ножи из стали 9ХС стоят недешево.
— Сложность в обработке. Даже небольшое нарушение технологического процесса изготовления стали способно привести к снижению ее качеств. При термической обработке очень важно соблюдать определенный температурный режим. Если сталь перегреть, она станет твердой, а если недогреть, то лезвие быстро потеряет свою остроту. Поэтому для этой цели чаще всего используют электрические печи с автоматической регулировкой температуры.
— Теряет свои положительные качества при высоких температурах. При нагреве выше 200°С снижаются режущие свойства инструмента.
— Требует ухода. Хром, содержащийся в составе 9ХС, предотвращает развитие коррозии, но его недостаточно для полноценной защиты. Чтобы не появилась ржавчина, нож после контакта с водой или другими жидкостями, надо тщательно просушить.

9ХС имеет как отечественные, так и зарубежные аналоги. К ним относятся:

  1. ХВГ и ХВГС. В этой марке содержание марганца больше, по сравнению с 9ХС. Это увеличивает ее склонность к деформации. Благодаря этому качеству, ХВГ часто используют для изготовления мерительных инструментов.
  2. 90 CrSi и 90CrSi5 — немецкий аналог.
  3. 150Cr14 — производство Германия.

9ХС – дорогой вид стали. Связано это с особенностями ее производства. Такие клинки – не штамповка. Они требуют ручной ковки. Это значительно удорожает стоимость изделия, но с другой стороны эксклюзивность привлекает покупателей. Средняя цена за нож из этой марки стали составляет от 6000 до 25000 рублей.

Нож из стали 9ХС отличается надежностью, огромным запасом прочности и отличными режущими качествами. При правильном уходе он прослужит много лет, не сломается и не подвергнется коррозии.

Сталь 9ХС: плюсы и минусы для ножей, характеристики, отзывы

Инструментальная легированная сталь 9ХС применяется для изготовления деталей, материал которых должен обладать повышенной износостойкостью, прочностью при изгибе, кручении, контактном нагружении, а также упругими свойствами.

Расшифровка

Марку 9ХС довольно легко расшифровать. Цифра 9 будет обозначать среднее содержание углерода (0,9%). Знак Х укажет на то, что сталь легирована хромом. При этом его доля составляет около 1%. Знак С указывает, что материал также легирован кремнием. В среднем он содержит его около 1%.

Плюсы и минусы

Металл 9ХС отличается рядом преимуществ.

  • Уникальные технические характеристики. Данный металл считается довольно прочным. Из него получаются износостойкие изделия, которые практически не подвергаются механическим воздействиям, они очень устойчивы на изгиб, кручение. Даже при постоянной эксплуатации они не станут деформироваться. Кроме того, на их поверхности практически не образуются трещины и прочие мелкие дефекты.
  • Повышенная твердость. Она достигается после отжига. Также после этой процедуры материал становится абсолютно податливым к прокаливанию.
  • Защита от коррозии. В составе этой стали имеется хром, который защищает материал от негативного воздействия воды.
  • Твердость. Инструменты, сделанные из такой стали, смогут легко порезать другие металлы, плотную древесину.
  • Одинаковое распределение карбидов. За счет этого обеспечиваются преимущества при применении данного металла в ходе изготовления резьбонарезных приспособлений, у которых мелкий шаг резьбы.

Кроме этого, можно отметить, что металл отличается повышенной прокаливаемостью, упругостью. Он длительное время может держать заточку.

Но сталь марки 9ХС обладает и некоторыми недостатками.

  • Внешний вид. Этот металл не будет блестеть, на его поверхности можно будет увидеть своеобразный рисунок.
  • Относительно высокая стоимость. Изделия, сделанные из такого металла, производятся путем ковки вручную, поэтому и цена на них довольно большая.
  • Сложность обработки. Даже маленькие ошибки при изготовлении такой стали могут привести к снижению ее качеств. Она довольно капризно ведет себя в процессе термообработки, заточки.
  • Теряет свои свойства при повышенных температурах. При разогреве свыше 200 градусов снижаются в первую очередь режущие качества инструментов. Также следует отметить, что эта разновидность не подходит для производства сварных конструкций. При термообработке материал потребует соблюдения конкретного оптимального температурного режима.
  • Требования к уходу. Хром и кремний не смогут полностью защитить сталь, поэтому необходимо будет тщательно протирать и сушить инструменты после контакта с водой. В противном случае со временем она начнет ржаветь.

Основные характеристики

Основные характеристики этой стали можно будет найти в ГОСТ 5950-2000 и ГОСТ 2590-2006. Для начала мы разберем химический состав этого металла. В него входят следующие компоненты:

  • углерод;
  • железо;
  • вольфрам;
  • титан;
  • кремний;
  • хром;
  • марганец;
  • ванадий;
  • молибден;
  • никель;
  • медь;
  • фосфор;
  • сера;

Хром в составе металла обеспечивает в том числе повышенную твердость и прочность. Также он отвечает и за коррозийную стойкость материала. Таким же свойством обладает и кремний, который имеется в составе. За счет него у стали увеличивается прочность, но при этом снижаются вязкость и пластичность.

Медь также способна значительно повышать стойкость к коррозии. Молибден увеличивает упругость стали. Вольфрам формирует карбиды, которые придают готовому сплаву максимальную твердость. Из-за карбидов в процессе нагревания увеличивается зернистость.

Ванадий значительно повышает плотность материала. Титан используется для того, чтобы предотвратить межкристаллическую коррозию. За счет марганца увеличиваются износостойкость, стойкость к ударным воздействиям.

Далее мы разберем основные физические характеристики стали 9ХС. Ее плотность составляет 7830 кг/м3. Удельное электросопротивление достигает 400 нОм*м. Твердость материала по Роквеллу будет зависеть от температуры отпуска, она варьируется от 63–64 до 39–48 д.

Металл прокаливается в заготовках с диаметром до 40 миллиметров при охлаждении в специальном масляном составе и до 30 миллиметров при обработке в горячих субстанциях. Микроструктура этого металла после термообработки – мартенсит и карбиды.

Химический состав стали 9ХС

Химический элемент %
Углерод (C) 0,85 – 0,95
Кремний (Si) 1,2 – 1,6
Марганец (Mn) 0,3 – 0,6
Никель (Ni) до 0,4
Фосфор (P) до 0,03
Хром (Cr) 0,95 – 1,25
Молибден (Mo) до 0,2
Вольфрам (W) до 0,2
Ванадий (V) до 0,15
Титан (Ti) до 0,03
Сера (S) до 0,03
Медь (Cu) до 0,3
Железо (Fe) ~94

Механические свойства стали 9ХС при повышенных температурах

Температура испытаний, °С σ0,2 (МПа) σв(МПа) δ5 (%) ψ % KCU (кДж / м 2 ) НВ
Состояние поставки
20 445 790 26 54 39 243
200 320 710 22 48 88 218
400 330 620 32 63 98 213
600 170 200 52 77 172
700 83 98 58 77 147
Образец диаметром 10 мм, длиной 50 мм, прокатанный. Скорость деформирования 20 мм/мин. Скорость деформации 0,007 1/с
800 110 130 26 68
900 65 74 41 95
1000 42 46 52
1100 20 31 54
1200 15 20 83 100

Твердость стали 9ХС в зависимости от температуры отпуска

Теплостойкость стали 9ХС
Температура °С
Время, ч HRC
150-160
240-250
1
1
63
59

Физические свойства стали 9ХС

T (Град) E 10 — 5 (МПа) a 10 6 (1/Град) l (Вт/(м·град)) r (кг/м 3 ) C (Дж/(кг·град)) R 10 9 (Ом·м)
20 1.9 7830 400

Сферы применения

Из инструментальной стали 9ХС изготавливается следующее:

  • сверла, используемые для сверления мягких материалов (древесины), так как металл реагирует на перегрев и высокую скорость вращения;
  • развертки – режущий инструмент, которым обрабатывают отверстия после сверления;
  • метчики, используемые для нарезки внутренней резьбы;
  • ударные клейма, применяемые для штамповки готовой продукции.

Из этого металла делают ножи, которые могут эксплуатироваться не только в бытовых, но и в походных условиях. Уникальные характеристики материала позволяют резать древесину и даже металл. К основным преимуществам ножей, изготовленных с применением стали 9ХС, относятся следующие качества:

  • упругость и устойчивость к изгибам;
  • продолжительное сохранение качества заточки;
  • повышенный порог твердости;
  • устойчивость к высоким показателям температуры и влажности.

9ХС – это легированная сталь, обладающая высокими прочностными характеристиками. Ножи долго держат заточку, поэтому нанесенная на них маркировка «9ХС» гарантирует высокое качество продукции и длительный срок ее эксплуатации. К тому же такие ножи производятся вручную методом ковки.

Заменить данную марку можно как российскими, так и зарубежными аналогами. К первым относятся ХВГ и ХВСГ. Среди зарубежных сплавов аналогичными характеристиками обладают следующие марки:

Преимущества марки 9хс

Когда стоит задача изготовить режущие элементы или их составные части, то специалисты чаще всего делают выбор в пользу инструментальной стали марки 9хс. Такое решение обусловлено целым рядом причин.



У стали этой марки более равномерным является распределение карбидов по сечению. Это обеспечивает преимущества при использовании этого материала для изготовления резьбонарезных инструментов, у которых шаг резьбы мелкий.

  • Заготовки из этой стали, которые используются для изготовления инструментов и ножей , отличаются высокой стойкостью к образованию трещин.
  • Характерной особенностью этой стали является повышенная твердость в отожженном состоянии. Также она без каких-либо сложностей поддается прокаливанию и наряду с этим отличается хорошей теплостойкостью. Это же характерно и для ножей.

Химический состав

В создании стали 9ХС используется 13 веществ, комбинация которых в правильном количестве даёт в результате качественно лучшие физические, механические и эксплуатационные характеристики.

Вот компоненты, которые входят в состав стали 9ХС:

  • железо (Fe) – 94%;
  • кремний (Si) – до 1,6%, но не менее 0,9%;
  • хром (Cr) – до 1,25%, но не меньше 0,95%;
  • углерод (C) – 0,9%;
  • марганец (Mn) – до 0,6%;
  • никель (Ni) – 0,35%;
  • медь (Cu) – 0,3%;
  • молибден (Mo) – 0,2%;
  • вольфрам (W) – 0,2%;
  • ванадий (V) – 0,15%;
  • сера (S) – 0,03%
  • фосфор (P) – 0,03%;
  • титан (Ti) – меньше 0,03%.

У разных производителей могут незначительно меняться процентные соотношения. Отклонения не должны превышать 1/10 долю процента, иначе свойства полученного сплава могут отличаться.

Термообработка материала и его применение

Процедура термообработки этой стали для изготовления ножей осуществляется в электрических печах, имеющих герметичный кожух, снабженных автоматической регулировкой температуры нагрева и контролируемой атмосферы. При этом на стадиях термообработки должно осуществляться следующее:



постоянный контроль температурного режима;

  • металлографический контроль структуры материалов, а также магнитной проницаемости его основных составляющих;
  • рентгенанализ наличия в структуре материала внутренних пороков;
  • постоянная проверка твердости.

Для задач дальнейшей эксплуатации сталь этой марки выпускается в форме листов, различающихся между собой толщиной и длиной, а также кругов.

Использование стали

Для производства изделий используется современное оборудование, а заготовки, подвергаемые обработке, могут быть самых разных видов. Из стали этой марки могут изготавливаться:

  • ножи специального применения;
  • детали, используемые в составе механизмов, применяемых для работы по резке и измерению.

Характеристики

В стали марки 9ХС есть множество легирующих добавок, которые обеспечивают нужные характеристики и свойства. Кроме основных компонентов есть кремний, кальций, хром, углерод, сера, в общем 12 легирующих и дополнительных компонентов. Благодаря такому комплексу веществ, у стали есть такие основные характеристики:

  • плотность (r) – 7830 кг/м3;
  • твёрдость по Роквеллу (HRC) зависит от температуры отпуска – от 63-64 до 39-48 ∂;
  • HB 10-1 = 241 МПа;
  • температурные показатели ковки: от 1180 до 800 градусов.

Благодаря повышенной упругости, выраженной прочности, износоустойчивости и плотности, сталь такого типа считается оптимальным вариантом для создания режущих инструментов и составляющих этого типа.

Расшифровка маркировки

У каждого типа стали есть своя маркировка, в которой зашифрованы особенности состава. Маркировка стали 9ХС имеет такую расшифровку:

  • цифра «9» показывает, что в составе сплава есть 0,9% углерода;
  • буква «х» обозначает наличие в стали хрома;
  • буква «с» указывает на то, что в состав добавлен кремний.

Наличие углерода обеспечивает повышенную вязкость вещества. Хром – универсальный компонент, он повышает возможности термического воздействия на сплав, делает его максимально прочным и устраняет риск возникновения коррозии.

Плюсы

У стали 9ХС есть преимущества, которые выделяют её на фоне других сплавов.

  1. Обладает уникальными техническими характеристиками, позволяющими использовать его в изготовлении прочных, упругих, износоустойчивых деталей с высоким коэффициентом сопротивления изгибам.
  2. В сплаве 9ХС карбиды всегда равномерно и правильно распределены по сечению, что повышает эксплуатационные качества готовой продукции, в частности, резьбовых элементов, созданных из него.
  3. Обладает высокой степенью устойчивости к механическим повреждениям и образованию трещин.
  4. После отжига приобретает ещё одно неоспоримое преимущество – повышенную твёрдость и податливость прокаливанию.
  5. Обладает высокой термической устойчивостью.
  6. Сплав устойчив к образованию флокенов во время отделки.

Благодаря таким преимуществам сталь 9ХС является востребованным и практичным инструментальным сплавом.

Минусы

Есть и недостатки у этого сплава, которые, тоже нужно учитывать в производстве инструментов и режущих изделий.

  1. Специфические требования в термической обработке.
  2. Не подходит для выполнения сварочных работ.
  3. При обработке требуется строгое соблюдение температурного режима.
  4. Осложнённая механическая обработка.

Работать со сплавом 9ХС необходимо только высококвалифицированным специалистам, так как существует условия и нюансы, которые необходимо соблюсти.

Клинок для ножа из 9ХС


Клинок сделанный из стали 9ХС.



Нож Куница 24.5 см — 8100 руб.

Применение 9% хромистой стали в парогазовых установках

Применение 9% хромистой стали в парогазовых установках

9% хромо-молибденовые стали (9Cr-1Mo) успешно используются в США с 1980 года при изготовлении котлов, работающих на органическом топливе. В последние годы сталь (известная как Р91 в применении для труб большого диаметра и T91 – для труб малого диаметра) была применена в энергетических парогазовых установках в целях снижения термической усталости и повреждений, связанных с ползучестью металла в главных паропроводах и пароперегревателях.

На парогазовых установках были выявлены проблемы, связанные изготовлением монтажом и ремонтом оборудования из Р91/T91. Выявлены разрушения швов и переходных зон разнородных металлов после 1000 часов эксплуатации, а также разрушения, вызванные нарушением геометрии сварных швов и несоблюдением технологии термообработки после 5000 часов эксплуатации.

История Р91/T91 началась в конце 1970-х годов. Исследователи разрабатывали усовершенствованные стали и обнаружили, что 9Cr-1Mo стали обладают низким тепловым расширением, высокой тепловой проводимостью и улучшенным сопротивлением окислению по сравнению с традиционными в энергетике сталями, такими как 2.25Cr-1Mo ферритная сталь и серии 300 аустенитными нержавеющими сталями. Эти улучшенные свойства оказались востребованными для уменьшения толщин стенок при изготовлении оборудования тепловых электростанций, что привело к снижению термических напряжений. Добавление ниобия, ванадия и азота в «стандартную» 9Cr-1Mo (ASTM P9/T9) сталь привело к существенному увеличению сопротивления ползучести по сравнению с традиционными сталями. Это и дало рождение известной сейчас «модифицированной» стали 9Cr-1Mo.

Модифицированная сталь была сертифицирована в 1980-х годах как ASTM A213 Grade T91 (для труб небольшого диаметра) и ASTM A/Sa 335 Grade P91 (для коллекторов и труб большого диаметра). В то время как эти стали имеют много общего между собой, есть и тонкие различия. В трубопроводах большого диаметра температура металла никогда не превышает температуру пара, потому, что пар является источником тепла. Тепловая энергии течет от центральной линии трубы к внешним стенкам. В трубах пароперегревателей и подогревателей котлов, работающих на органическом топливе источником тепла является горючий газ и тепловая энергия течет в противоположном направлении – от стенок трубы к центру. В этих условиях температура металла может быть выше, чем температура пара. В этих условиях 9% хромистая сталь может быть использована в трубопроводах большого диаметра до температуры пара 1100°F (593,3°С). В то время как применение этой стали для труб малого диаметра ограничено температурой 1050°F (565,5°С).

  • Более высокие допустимые напряжения при рабочих температурах.
  • Более низкий коэффициент теплового расширения, чем у нержавеющих аустенитных сталей.
  • Возможность повышения КПД путем повышения рабочей температуры.
  • Уменьшение риска получения термических усталостных трещин вследствие уменьшения стенок труб.
  • Более высокая стоимость изготовления вследствие необходимости снятия напряжений после гибки и сварки, а также удаления окалины после термообработки.
  • Проблемы обеспечения качества труб, связанные с ограниченным опытом их производства.
  • Поддержание проектного падения давления в пароперегревателе второй ступени, вследствие более тонкой толщины стенок труб из Т91.
  • снижение термической усталости толстостенного оборудования, такого как главный паропровод и коллектора пароперегревателей;
  • устранение дефектов, вызванных повышенной ползучестью металла (Рис. 1).

Повышенные механические характеристики стали 9Cr-1Mo позволяют уменьшить толщину стенки, что приводит к уменьшению температурного градиента в стенках труб и времени достижения теплового баланса, что, соответственно, приводит к уменьшению тепловой усталости. Например, замена стали Р22 на Р91 уменьшает толщину стенки коллектора пароперегревателя на 54% и его вес на 65%.

Внимание на микроструктуру

Механические свойства модифицированной стали 9Cr-1Mo зависят от создания точной микроструктуры и поддержания этой микроструктуры на протяжении всех стадий жизненного цикла оборудования. Превосходные свойства P91/T91 зависят от точности добавок V, Nb и N, а также тщательно контролируемого процесса нормализации для полного превращения аустенита в мартенсит. Это позволяет получить сталь с высоким пределом прочности при повышенных температурах и с высоким сопротивлением ползучести. На следующем этапе проводится контролируемый процесс отпуска, в результате которого V и Nb осаждаются в виде карбидов и нитридов углерода как дефекты кристаллической решетки, тормозящие движение дислокаций и тем самым стабилизируя микроструктуру и повышая сопротивляемость ползучести.

Если соответствующая микроструктура не будет получена в процессе изготовления стали или она не будет сохранена в процессе изготовления, монтажа или ремонта оборудования из этой стали с применением таких операций, как гибка «на горячо», ковка или сварка, то любое из этих нарушений приведет к ухудшению механических характеристик стали.

Общая ошибка при работе с Р91 это использование локального нагрева кислородосодержащим факелом (Рис.2).

art02.png


Рис.2

Общеизвестно, что такой нагрев трудно контролировать и он приводит к разрушительному неоднородному нагреву. Другая общая ошибка возникает вследствие некорректного проведения термической обработки – температура слишком высокая, температура слишком низкая или температура не поддерживается в течение заданного периода времени. И еще хуже, когда ремонт Р91 выполняется без термической обработки.

Термическая обработка после сварки

Очень важно определить влияние легирующих добавок в сварочных материалах на термообработку после сварки. Определенные легирующие элементы, такие как никель и марганец снижают температуры фазовых превращений АС1 и АС2, также как температуры начала превращения мартенсита (Мн) и окончания (Мк). Во время термообработки существуют риски повреждений в интервале межкритических температур и образование не отпущенного мартенсита в металле шва. Стандарт AWS допускает содержание Ni в металле шва 1%, в противовес максимального содержания Ni в металле 0,4%. Последние исследования предложили новые ограничения суммарного содержания Ni и Mn в сталях класса Grade 91 для проведения термической обработки:

Температура термообработки должна быть в пределах 1,350 F — 1,425 F (732-774°С), если точный химический состав сварочного материала не известен.

Если точный химический состав сварочного материала известен, то максимальная температура ТО может быть увеличена до 1,470 F (799°С) при суммарном содержании Ni + Mn < 1%, или до 1,450 F (788°С), если суммарное содержание Ni + Mn между 1% и 1.5%.

Для толщин стенок до 5 дюймов (127 мм) минимальное время ТО должно быть 1 час на 1 дюйм (25,4 мм), но не менее 30 минут.

Для толщин стенок больше 5 дюймов (127 мм) время ТО должно быть 5 часов плюс 15 минут на каждый дюйм (25,4 мм) свыше 5 дюймов (127 мм).

Для толщин стенок меньше половины дюйма (12,7 мм) минимальная температура ТО должна быть 1,325 F (718°С).

Межкритический интервал температур

Одной из наиболее важных проблем сталей класса Grade 91 является выдержка в межкритическом интервале температур после изготовления. Это выше температуры, при которой мартенсит начинает трансформироваться назад в аустенит (известная как низшая критическая температура трансформации или АС1) и ниже температуры, при которой фаза трансформации завершена (известная как высшая критическая температура трансформации или АС3). Когда сталь класса Grade 91 выдерживается в межкритическом интервале температур мартенсит частично реаустенизируется и карбидно-нитридные осаждения коагулируют но не полностью распадаются. В результате структура получается частично аустенитной и частично мартенситной, и такая структура имеет пониженное сопротивление ползучести.

Выдержка в межкритическом интервале температур связанная с понижением прочностных характеристик приводит к появлению трещин IV типа в швах из стали Р91. Трещины IV типа имеют место в мелкозернистой области зоны термического влияния основного металла. Резкие изменения толщины стенки или другие особенности, которые создают высокие напряжения в районе шва, провоцируют условия для образования таких трещин. Трещины IV типа вызывают значительную озабоченность потому, что они появляются на относительно ранней стадии эксплуатации 20,0 – 30,0 тыс. часов при более низких температурах, чем максимально предусмотрено проектом -1110 F (599°С) и они могут зарождаться и расти внутри металла прежде, чем выйти на поверхность. Около дюжины таких дефектов было обнаружено на оборудовании из P91/T91 в UK, где эти стали эксплуатируются дольше, чем в USА.

Родственной проблемой является перегрев, который возникает на P91/T91 при передержке металла при повышенных температурах ниже критической температуры трансформации. Это не влияет на мартенсит, но вызывает укрупнение карбидов и нитридов с соответствующим снижением сопротивления ползучести вследствие снижения эффекта дисперсионного упрочнения.

Перегрев имеет меньший риск во время изготовления, вследствие относительно короткого времени термообработки. Но, во всех случаях, когда многократная термообработка применяется при производстве толстостенных конструкций, это может стать проблемой. Недогрев также может подвергать опасности высокотемпературные характеристики P91/T91, так как процесс выделения вторичных фаз может не начаться или карбиды и нитриды будут в недостаточном количестве, чтобы стабилизировать структуру (Рис. 3).

art03.png


Рис. 3

В добавление, происходит снижение сопротивления ползучести, риск получения хрупких структур и коррозионного растрескивания под напряжением.

Чтобы избежать опасности выдержки в межкритическом интервале температур, перегрева и недогрева последние исследования рекомендуют несколько изменений к коду ASME.
Предлагаются следующие специфические ограничения:

  • 1900-1975 F (1038 — 1080°С) для нормализации.
  • 1350-1470 F (732 — 799°С ) для отпуска.
  • 1325-1470 F (718 — 799°С) для термообработки оборудования с толщиной стенки меньше 5 дюймов (127 мм).
  • 1350-1470 F (732 — 799°С) для термообработки оборудования с толщиной стенки выше 5 дюймов (127 мм).

Испытания на твердость

Другой задачей последних исследований являлось обеспечение качества. Чтобы определить, выполнен ли процесс обработки сталей с высоким сопротивлением ползучести правильно, необходима неразрушающая оценка, которая позволит быстро и недорого получить информацию о состоянии металла. Поэтому твердость обеспечивает прямое указание на прочностные характеристики металла при комнатной температуре, которые могут быть использованы для примерной оценки поведения металла при повышенной температуре. Для этой цели могут быть использованы портативные приборы для замера твердости.

Поэтому возникла необходимость в разработке приборов, которые могут быть использованы для работы на действующем оборудовании при высоких температурах. Пока нет таких приборов, невозможно рекомендовать пределы твердости для этих сталей. Однако есть разработки, которые показывают, что для сталей класса Grade 91, если материал подвергался соответствующей термической обработке, твердость не должна быть слишком высокой или слишком низкой. Например, если термическая обработка проводилась при температуре 1380-1420 F (749 — 771°С) с выдержкой в пределах 2 – 3-х часов, то твердость должна быть в пределах 200-270 VHN. В этом случае пластические и прочностные характеристики при высоких температурах будут соответствовать требованиям для эксплуатации.

Определение повреждений, связанных с ползучестью

Различные виды неразрушающего контроля, которые позволяют измерять деформации, вызванные ползучестью в критических зонах (зонах термического влияния) сварных соединений трубопроводов и коллекторов, были обсуждены ведущими специалистами. Предложена технология, которая может быть применена на оборудовании станций, работающем при высоких температурах. Работники станций могут использовать измерение напряжений, как определение скорости ползучести, которую можно использовать как оценку использованного срока службы и остаточного ресурса оборудования.

Примечание: «ползучесть» это набор диффузионных процессов, происходящих в условиях температуры и механических воздействий, которые вызывают необратимые деформации, и могут быть измерены как напряжения.

Технология заключается в выполнении оптического цифрового отпечатка на поверхности действующего оборудования и оценке деформаций в продольном и поперечном направлениях. Затем, после определенного срока эксплуатации оборудования процедура повторяется. Результат по способности металла сопротивляться ползучести оценивается, как корреляция с результатом предыдущего замера. Указанная технология была применена на нескольких стациях ФРГ в течение последних семи лет.

По материалам статьи:
«Handling Nine-Chrome Steel in HRSGs», Jay Kilburn. Power Engineering

Ножевые Стали


Импортные ножевые стали:
1095/1080/1070/…/1050/…
Обычная углеродистая сталь, используемая для изготовления ножей. Страна изготовления — США. Низкая коррозионная стойкость. Число «10» в начале номера указывает на то, что эта сталь специально разработана для производства ножей. Последние две цифры в номере показывают количество углерода — соответственно чем его меньше — тем сталь мягче и хуже держит заточку. Стали из этой серии с низким содержанием углерода используются при изготовлении мечей, где требуется пластичность. Для ножей обычно берется 1095. Применяется при производстве ножей Ka-Bar и Cold Steel. Аналоги — наши У8, У10А.

12С27
Нержавеющая сталь, производится в Швеции. Содержание углерода — 0,6%. Простая и качественная сталь. Посторонние примеси отсутствуют. Аналог — 420НС.

15N20
Инструментальная сталь. Страна производства — Швеция. Используется при изготовлении дамасской стали.

154СМ
59-62 HRC. Высокотехнологичная нержавеющая подшипниковая сталь. Страна изготовления — США. Аналог ATS-34. Высокая жесткость. Одна из лучших сталей для ножей, достаточно дорогая. Используется в ножах «Spyderco» и «Benchmade».

1770 SS / 1778 SS / 1870 SS
SS – Sweden Standart. Серия хорошей шведской конструкционной стали.

3Cr13
Нержавеющая сталь, страна производства — Китай. Это модификация стали марки 440А, закаленная до 57 HRC. Используется при производстве ножей среднего ценового диапазона.
Также идет на изготовление топоров.

3G
Композитная порошковая сталь для ножей. Страна изготовления — Швеция. Содержание углерода — 1,4%. Показатели твердости, жесткости, ударной вязкости, износоустойчивости и антикоррозионной стойкости — на высшем уровне.

420
Содержание углерода 0,5%. Самая простая и дешевая ножевая сталь. Высокая стойкость к коррозии. Мягкая, плохо держит заточку, но затачивается без проблем. Область применения — дешевый Китай и различные кухонные ножи. Аналог — японская AUS-4.
Если на дешевом ноже имеется надпись типа «Stainless», «Inox», «Super-steel» и т. д. — то это скорее всего и есть 420-я сталь.

420J2
Японская нержавеющая сталь, дешевая, как правило используется в композиционных сплавах, проста в обработке. Слабая износостойкость. Используется в недорогих ножах, произведенных на бескрайних просторах Юго-восточной Азии. Что бы компенсировать мягкость 420-й стали приходится увеличивать толщину клинка.

420HC
Высокоуглеродистая ножевая сталь. Легка в обработке, антикоррозионная, средняя прочность, но хорошо держит режущую кромку. Достаточно низкая стоимость. Наибольшее применение нашла у фирмы «Buck», причем 420HC от «Buck» значительно превосходит 420HC других ножеделов. Это достигается проводимой криогенной обработкой. Аналог — шведская 12С27.

440А
56 HRC. Нержавеющая сталь. Содержание углерода — 0,75%. Хорошо сопротивляется коррозии. Качественный сплав, хорошо выдерживает нагрузки. Широко используется в ножах фирмы «SOG». Если на клинке стоит маркировка «440», либо «440 Series Stainless» — то это скорее всего 440А.

440В
58 HRC. Содержание углерода 0,9%. хорошо сопротивляется коррозии. Качественный сплав, хорошо выдерживает нагрузки. Аналог — японская AUS-8.Широко используется фирмой «Randell».

440С
60 HRC. Высокотехнологичная нержавеющая сталь, содержание углерода — 1,2%. хорошо держит РК. Одна из самых сбалансированных по своим свойствам ножевая сталь. Сталь 440С более дорогая, чем 440А и 440В. Аналог — японская AUS-10. Стоит отметить, что 440С у испанских ножей более мягкая, чем у остальных европейцев.

5160
Профессиональная высококачественная пружинящая сталь. Очень прочна, хорошо держит РК. Популярна в изготовлении ножей для тяжелых работ.

52100
Подшипниковая сталь. Низкая прочность и стойкость к коррозии. Но хорошо держит заточку. Аналог — ШХ15. Широко применяется для изготовления охотничьих ножей.

8Cr13MoV
56-58 HRC. Ножевая сталь с высоким содержанием углерода, хрома, ванадия и молибдена. Страна изготовления — Китай. Хорошо держит заточку и хорошо затачивается. Используется «Spyderco». Близка к японской AUS-8.

8Cr14MoV
То же самое, что и 8Cr13MoV, но за счет повышенного содержания хрома более антикоррозионная. Многие китайсвкие реплики изготавливаются из этой стали.

9Cr14MoV
За счет большего содержания углерода чуть тверже, чем 8Cr13MoV. Широко используется на китайских репликах. Режет для ножей этой ценовой категории хорошо и легка в заточке.

А-2
60-62 HRC. Американская углеродистая самозакаливающаяся инструментальная сталь. Высокая прочность и способность держать заточку. Используется Крисом Ривом (Chris Reeve) в боевых ножах.

ATS-55
В отличии от ATS-34 не содержит молибден, соответственно более дешевая. Встречается у Spyderco.

AUS-4
54 HRC. Редкая нержавеющая дешевая сталь из-за низкого содержания углерода. Страна изготовления — Япония. Быстро теряет заточку, но легко затачивается. Аналог — 420-я сталь.

AUS-6
56 HRC. Нержавеющая сталь. Страна изготовления — Япония. Аналог 440А. Используется фирмой «Al Mar».

AUS-8
58 HRC. Нержавеющая ножевая сталь. Страна изготовления — Япония. Аналог 440В. Широко применяется благодаря хорошей износоустойчивости. Используется фирмой «Cold Steel».

AUS-10
60 HRC. Нержавеющая ножевая сталь. Страна изготовления — Япония. Аналог американской 440С, но из-за меньшего содержания хрома менее коррозионностойкая. Хорошая износоустойчивость.

Beta-ti Alloy
Титановый сплав. Водолазные и кухонные ножи.

BG-42
60-64 HRC. Японская нержавеющая сталь для ножей. Высокая жесткость, хорошо держит РК. Эту сталь в своих ножах «Sebenza» использует Крис Ривз (Chris Reeves).

Blue Paper Super
Легированная сталь. Производится в Японии. Идет на изготовление профессиональных поварских ножей.

Carbon V
Марка стали, владельцем которой является Cold Steel. По свойствам это ножевая сталь схожа с О-1 и 1095.

CowryX (RT-6)
63-67 HRC. Аморфный металлический коррозионностойкий сплав. Страна изготовления — Япония.

CowryY (CP-4)
61-64 HRC. Аморфный металлический коррозионностойкий сплав. Страна изготовления — Япония.

CPM 440V
Хорошая нержавеющая сталь для ножа. Хорошо держит РК, затачивается с трудом. Эту сталь использует Sean McWilliams/

D-2
60-62 HRC. Инструментальная ножевая сталь, которую также называют «полунержавейкой». Более коррозионностойкая, чем углеродистые стали, но до свойств «нержавейки» не дотягивает. Высокая прочность, хорошо держит заточку. Аналог — наша Х12МФ. Страна изготовления — Япония. Применяется в ножаж Bob Dozier, Benchmade. Оптимальна для универсального ножа. Не поддается окончательной полировке.
Хорошие ножи из D2 выпускает SteelClaw.

DAMASTEEL
Сталь, полученная методом порошковой металлургии. Не является сплавом.

ELMAX
Инструментальная сталь. Широко используется скандинавскими кузнецами.

GIN-1 (G-2)
Хорошая нержавеющая сталь для ножа. Достаточно редка. Используется в ножах«Spyderco».

Н-1
58 HRC. Нержавеющая сталь для ножа. Отличная коррозионная стойкость, хорошие режущие свойства, отлично держит заточку. Сложна в обработке. Используется обычно в ножах «Spyderco».

INFI
Эксклюзивная сталь для ножа, используется только фирмой «Busse».

Inox
54-57 HRC. Высокопрочная нержавеющая сталь для ножей. Повышенная коррозионная стойкость. Широко применяется фирмой «Opinel».

КК
Легированная сталь, Япония, Hitachi. Используется в производстве поварских ножей и бритв.

L-6
Сталь для ленточных пил. Высокая прочность, хорошо держит РК.

LAK41, LAK42
Ножевая сталь, используемая в производстве дешевых кухонных ножей.

М-2
61-66 HRC. Быстрорежущая инструментальная сталь, используемая в производстве ножей. Идеально держит заточку. Низкая коррозионная стойкость и чувствительность к ударным нагрузкам. Применяется для производства фрез и сверл. Используется компанией «Benchmade».

Marss 500
Нержавеющая сталь. Широко применяется на шведских ножах.

О-1
60-64 HRC. Хорошая углеродистая сталь масляной закалки для изготовления клинков. Несмотря на невысокую стоимость отличается хорошей прочностью. Применяется фирмой «Randall Made Knives». Легка в ковке. Быстро ржавеет.

Rostfrei
Нержавеющая сталь, Германия.

Sandvik 12C27
Шведская мартенситная, нержавеющая, хромистая сталь. Эластичная и гибкая сталь и в тоже время износостойкая. Хорошо затачивается даже в походных условиях "на коленке". Достаточно чистая по посторонним примесям. Широко используется при производстве ножей Helle.

S-Star
Недорогая нержавеющая сталь, идет на изготовление кухонных ножей.

Silver 1,3,5
Марка нержавеющей японской стали. Используется при изготовлении кухонных ножей и ножниц.

SRK-8
Инструментальная японская сталь. Как правило используется для изготовления сельскохозяйственных инструментов.

Stellite 6K
42-46 HRC

T508, Т113
Французские стали.

Vascower
Очень редкая сталь ввиду сложности обработки. Превосходная износостойкость

VG-10
59-61 HRC. Японская ножевая сталь. Заточку держит средне. Высокая коррозионная стойкость. Хорошо обрабатывается. Как правило идет на изготовление поварских ножей.

W1 W2
Углеродистая сталь, идет на изготовление напильников

ZDP-189
Порошковая ножевая сталь высшего качества. Страна изготовления — Япония, Hitachi. Аналогов у этой стали пока нет. Применяется в ножах premium-класса. Высокая стоимость. Очень сложна в заточке. Идеальна для ножей, которые предназначены исключительно для своей главной функции — для реза.

Отечественные стали для ножей:

100Х13М
Хромомолибденовая сталь. Применяется при изготовлении медицинского инструмента.

30ХГСА
Другое название — "хромансиль". Высококачественная среднелегированная сталь. Создана советскими учеными в 40-х годах 20-го века для нужд авиации. Выдерживает высокую знакопеременную нагрузку. Превосходная ударная вязкость. Достаточно легка в термообработке. Идеальна для метательных ножей топоров.

40Х13
65Х13
95Х18
110Х18
Отечественные аналоги сталей 420 и 440. Наиболее широкое применение при изготовлении клинков — 95Х18. Достаточно прочная и гибкая, хорошо поддается и держит заточку. Коррозионносттойкая.
40Х13 — 53 HRC,
95Х18 — 57-60 HRC
65Х13 — хирургическая (медицинская) сталь. Из нее также выпускает ножи наш «Кизляр».

65Г
Конструкционная рессорно-пружинная сталь. Быстро ржавеет, плохо держит РК. Но превосходная ударная вязкость. Идеальна для ножей, предназначенных для рубки.

Р6М5
Быстрорежущая сталь. Применяется для изготовления полотен механических пил. Хорошо держит заточку, но хрупка. Низкая коррозионная стойкость.

У7-У16
Отечественная инструментальная сталь, используемая в изготовлении ножей. У7-У9 — стали повышенной вязкости, ножами из этих сталей можно спокойно рубить. У10-У13 — стали повышенной твердости, боятся ударных нагрузок. Все эти стали хорошо держат заточку. Коррозионно не устойчивы, коррозия проникает в глубь клинка.

Х12МФ
Легированная инструментальная штамповая сталь, используемая при изготовлении ножей. Хорошая коррозионная стойкость при тщательной полировке клинка. Отлично держит заточку. Стойкость к ударным нагрузкам — средняя.

ХВ5
65-67 HRC. «Алмазная сталь». Самая высокая твердость среди инструментальных сталей.ХВ5 (хромовольфрамовая сталь) относится к инструментальным легированным сталям, в промышленности из нее изготавливают режущий инструмент для обработки металлов повышенной твердости.
Алмазную сталь можно закалить до значений 68 HRC, но при такой твердости клинка возникнут некоторые проблемы с дальнейшей его заточкой, а также надо соблюсти баланс между твердостью и хрупкостью, поэтому клинки ножей из алмазки желательно термичить до 61-63 HRC.
Химический состав стали ХВ5 (%):
C (Углерод) — 1,25-1,45
Si (Кремний) — 0,15-0,35
Mn (Марганец) — 0,15-0,40
P (Фосфор) — ≤0,03
S (Сера) — ≤0,03
Cr (Хром) — 0,4-0,7
Mo (Молибден) — ≤0,5
Ni (Никель) — ≤0,35
V (Ванадий) — 0,15-0,30
Ti (Титан) — ≤0,03
Cu (Медь) — ≤0,03
W (Вольфрам) — 3,5-4,3
Fe (Железо) — основа
Алмазная сталь имеет красивую характерную фактуру и рисунок — на клинке видны светлые вкрапления — это карбиды вольфрама Fe3W3C (Fe2W2C).
Вопреки расхожему мнению, алмазная сталь не является коррозионностойкой, поэтому клинок после использования рекомендуется насухо протирать.

Конструкционная подшипниковая сталь, применяемая в изготовлении ножей. Хорошо держит заточку. Коррозионно не устойчива, ржавеет поверхностно. Аналог — 52100.

Читайте также: