Сталь для стволов охотничьих ружей

Обновлено: 16.05.2024

Основной параметр стали, необходимый для обеспечения прочности стволов, - предел упругости (или пропорциональности) - такая удельная допускаемая нагрузка, после снятия которой металл возвращается в первоначальное состояние без остаточных деформаций.

Для практических целей можно считать, что предел прочности (и в большой степени предел упругости) среднеуглеродистых сталей не зависит от содержания углерода, а только от твердости. То есть предел прочности и для стали 25, и для стали 50 при одинаковой твердости одинаков, хотя количество углерода отличается вдвое.

Другое дело, что получить твердость в 35 HRC для стали 25 сложно, для стали 50 - просто. Это же относится и к малолегированным сталям, для которых влияние легирующих элементов на твердость невелико. Этот факт применительно к пушечным стволам отмечал еще немецкий профессор В. Швиннинг, перевод книги которого был издан академией им. Дзержинского в 1937 году.

Несколько больший предел прочности легированной стали объясняется, видимо, тем, что эти стали, обычно получают в электропечах, часто после электрошлакового переплава, поэтому они гораздо более чистые. Но дефекты структуры могут появиться и в ней в процессе дальнейшей обработки стволов - попадание окалины при ковке, пережог, отпускная хрупкость и т.д.

Если техпроцесс не обеспечивает отсутствия дефектов, дефектоскопия будет слабым утешением. Кроме ненадежности, дефектоскопия, особенно рентгеновская, - дорогая вещь. Именно из-за внутренних дефектов и загрязняющих включений устанавливают допустимый предел упругости для литой стали 50Л на 30% меньше аналогичной по содержанию углерода стали 50А.

Добавка в ствольную сталь легирующих элементов зачастую является технологическим улучшением - такая сталь лучше термообрабатывается, не требует дополнительных операций подкалки, лучше полируется. Добавка даже 1-2% хрома или никеля позволяет, не меняя режимы термической обработки, получить более твердые, а значит, и более прочные стволы без дополнительных затрат, что с лихвой компенсирует большую стоимость материала. Меньшие остаточные напряжения за счет меньшего содержания углерода ведут к уменьшению объема правки стволов.

С точки зрения прочности, добавка легирующих элементов также позволяет получить вязкость, необходимую для сохранения пластичного, а не хрупкого характера разрушения стволов, что проявляется при увеличении твердости стали. Эта добавка вместе с вязкостью резко уменьшает износ нарезных стволов. Пластичность стали уменьшает вероятность разрушения при длительном настреле и повышает безопасность стрелка - в случае разрыва ствола не образуются осколки.

КОРРОЗИЙНАЯ СТОЙКОСТЬ

Другая причина применения легированных сталей - облегчение ухода за стволами. Практически замечено, что для хорошей коррозионной стойкости необходимо, чтобы в стали было не менее 13% хрома. Поэтому нельзя считать, что сталь 30ХРА или любая другая с 2-5% легирующих добавок не будет ржаветь. Хромовое покрытие, даже тонкое и пористое, значительно тверже ствольной стали и лучше работает на истирание. Видимо, именно потому, что сама по себе марка стали не является гарантией качества, нормативная документация России оговаривает условное обозначение ствольного материала - обязательную маркировку стилизованных знаков Сп и Сл на стволах.

По документации различие между ними в том, что первая имеет гарантированный предел упругости менее 70, а вторая - более 70 кг на квадратный миллиметр. Документация не оговаривает, на какой стадии обработки эта цифра должна быть обеспечена. Обычно Сп - это сталь 50А, Сл - сталь 30ХН2МФА.

Стволы современного нарезного оружия получаются практически готовыми, сразу с нарезами, после холодной ротационной ковки (редуцирования). Часто их даже не обрабатывают снаружи, оставляя «чешуйчатую» кованую поверхность, что, как утверждают, улучшает кучность.

Обрабатывают торцы, посадочные места под соединение с коробкой, прицельные приспособления, электрополируют канал, иногда дорабатывают патронник - и ствол готов.

Видимо, единственной коррозионно стойкой сталью в России, пригодной для изготовления стволов, можно считать сталь 40X13, но и она не избавит от обязательной чистки и смазки стволов. Однако никаких упоминаний о попытке изготовления стволов из стали такого сорта в нашей литературе не встречается. За рубежом изредка встречаются охотничьи ружья и винтовки со стволами и коробками из нержавеющей стали (чаше просто покрытые никелем). Они рекламируются как «всепогодные», в том числе для использования в приморском климате. Деревянные детали при этом заменяются на неразбухающую от воды пластмассу. Тот же В. Швиннинг упоминает ствольную сталь с 18% хрома и 8% никеля, но пишет, что такие стволы очень сложно обработать и закалить.

ТВЕРЖЕ СТАЛЬ - ТОНЬШЕ СТВОЛ

На практике чаше всего размеры стволов назначаются по расчетам минимальной стенки ствола.

Чем тверже ствол, тем тоньше можно сделать его стенки. Минимальная толщина их определяется не столько прочностью на разрыв, сколько их жесткостью. От выстрела тонкий ствол может и не разорваться, но со временем превратится в мятую жестяную трубу.

Наибольший интерес вызывает вопрос о том, как твердость ствола влияет на характеристики боя. Для нарезных стволов это в общем понятно: чем тверже ствол, тем он более напряжен и близок к пружине, что должно влиять на вибрацию дульного среза. Получается парадокс: чем тверже ствол, тем он должен быть толще. Исходя из этого, чем мягче ствол, тем выше должна быть кучность стрельбы пулей. Это можно объяснить меньшим остаточным напряжением в стали. В связи с этим можно вспомнить, как А. Онегов описывает деревенские «лечения» стволов путем выдержки их на русской печи. Это в принципе является не чем иным, как циклическим низкотемпературным отпуском. К ночи печь нагревается, к утру остывает. Так за долгую зиму раз полтораста. Это должно резко снизить остаточные напряжения («успокоить сталь»).

Нечто похожее сейчас начинает применяться в ружейной промышленности для повышения кучности боя нарезных стволов. Это циклическая обработка холодом - многократное замораживание почти до минус 200 градусов Цельсия.

Меньшая твердость увеличивает износ ствола и соответственно уменьшает срок его службы. Один из теоретических путей решения проблемы таков: получить путем ковки и термообработки повышенную твердость в патроннике и пульном входе - зонах максимального давления. Меньшую же твердость в дульной части компенсировать созданием напора канала в дульном срезе.

Россия постепенно теряет былую славу оружейной страны, которую она заслужила спортивными и снайперскими винтовками. В связи с тяжелым материальным положением армии и спорта фундаментальные исследования и совершенствование технологии стволов практически свернуты, заводы же в основном решают проблемы удешевления производства. Сейчас уже говорят, что скоро на винтовках для биатлона АО «ИЖМАШ» будут стоять стволы от «Аншютца».

Несколько по-иному обстоят дела с влиянием свойств стали на бой дробовых стволов. Для них кучность и живучесть довольно просто получаются изменением размеров ствола, его канала и дульного сужения.

КАЧЕСТВО СТАЛИ И БОЙ РУЖЬЯ

Исследования влияния твердости стволов на наиболее мистический параметр боя дробовика - резкость - в России не проводились (а может быть, просто не публикуются?). Можно только предполагать, что чем тверже ствол, тем меньше деформация стенок при выстреле, тем меньше прорыв пороховых газов через пыжи. Это достаточно сложно проверить. Во-первых, потому что очень сложно изготовить два одинаковых ствола. Во-вторых, велик разброс скоростей российских патронов от выстрела к выстрелу, что сводит достоверность испытаний к нулю.

После небольшой практики, особенно если кто-то знающий покажет, довольно просто увидеть дефекты в канале ствола: «пузыри», логовины, кривизну, овальность. Часто можно заранее сказать, что ствол почему-то будет бить не так, как надо, однако практически невозможно предсказать на глаз резкость. Поэтому почти все «выборы» в магазине без пробы стрельбой сводятся к гаданию на кофейной гуще. Теоретически волнистость, овальность и прочие «чудеса» должны, прежде всего, сказываться на резкости боя за счет прорыва пороховых газов через пыжи при движении их «по кочкам и ухабам».

Однако представляется невероятным, что такое влияние может превышать разброс скоростей от допусков на патроны. Эффект от подбора элементов снаряжения должен быть на порядок больше. Установлено, что только прорыв пороховых газов через пыжи составляет около 10%.

Поскольку твердость стали стволов мало информативна для широкого круга охотников, а различие химсостава разных марок невелико, фирмы-изготовители придумывают особые названия своим ствольным сталям. С другой стороны, если разные стали имеют практически одинаковые прочностные характеристики при одинаковой твердости, на первый план выходят надежность технологии связанные с ней доверие и уважение к фирме и торговой марке.

Прославленные марки заслуживают уважения в результате подтверждения временем своего качества и надежности. А что же еще может не хватать охотнику, если надпись на стволах вызывает уважение?

В. ВАЛЬНЕВ (инженер-оружейник)
"РОССИЙСКАЯ ОХОТНИЧЬЯ ГАЗЕТА", 28 июля 1999 г.

Марки руженых сталей: что из чего изготовлено?

Доброго всем дня. Заинтересовал вопрос: какие марки сталей применяются при производстве элементов стрелкового оружия? Просмотрев форум, нашел только информацию по стволам. Но хотелось бы узнать о сталях, применяемых для изготовления затворов (затворных групп), ствольных коробок, рамок и т.д., в том числе и образцов импортного производства. Если кто-нибудь обладает указанной информацией,прошу поделиться. В первую очередь хотелось бы узнать о АК-74, и, как ни странно, о п\п MP5 A3 Хеклер-Кох. Заранее всем благодарен.

Но хотелось бы узнать о сталях, применяемых для изготовления затворов (затворных групп), ствольных коробок, рамок и т.д., в том числе и образцов импортного производства.

Батенька если вам это надо срочно и без усилий то вам на Ижмаш надо писать или к Хеклеру, здесь Вам никто такой информации не даст.
или как все собирайте инфу по кусочкам, к примеру в деталях АКМС (даже исключая основные части) используется с десяток сталей, самая ходовая ст.50, кроме того 40,45, 30ХРА, 25, 15, 3, 70С2ХА.

Да, простите за неточность, совсем из головы вылетело, спасибо за уточнение.
На пружины - пружинные, а на мушки - мушечные марки стали используются.

"АК после 75 года:
Ствол 30ХГСА
Затвор 50А
Затворная рама 50А. "

". В том же АК ствол изготавливают из 30ХРА.
Мало того, что на оригинальных чертежах оно стоит - так самому факту выбору такого материала есть простое объяснение.
Если сейчас в производство допускается 30ХГСА - значит совсем плохо дело. 30ХМА/38ХМА в стопицот раз лучше и не сильно дороже + это де-факто мировой стандарт и классика.
В ПК ствол из 30ХН2МФА или из материала с мех. х-ками не хуже.
Термообработка стволов из легированных сталей 32. 38 HRC. Термообработка стволов из углеродистых сталей (50, 50РА) 25. 32HRC.
Износостойкость - за счет либо покрытия хромом (пористым 0,025. 0,035) или за счет наклепа или за счет нанесения на поверхность канала ствола диффузионных покрытий.
Стали вроде 12ХН3А (а в период с 1933 по 1945 в мире на подобные стали был огромный спрос - в источниках того времени есть десятки марок под конкретные тех.условия, далее забытых до поры) идут на боевые упоры и везде, где идет работа с ударом и истиранием.
Диффузионная обработка или обработка ТВЧ тоже присутствует - в зависимости от назначения конкретной детали.
Рамки и прочие несущие детали изготавливают из 50А, 50РА, 30-40-45 или любого более дорогого материала с как минимум равными мех. х-ками. Твердость 30. 42(35. 40) HRC, - тоже понятно, почему она такая в огнестрельном оружии кругом.
Пружины - 60С2А, 40ХФА, патентированная пружинная проволока для холодной навивки.
Я ж не случайно давал ссылку на "7,62мм пулеметы Калашникова ПК, ПКС, ПКТ и ПКБ. Руководство по среднему ремонту" 1972г. Там вся эта мелочь рассыпная - шайбочки, фиксаторы, пружинки описана.

Наполненные пластмассы(PA66GF, Zytel), поликарбонаты(тот же Lexan), легкие сплавы, тоже присутствуют как конструкционные материалы.

Огромное всем спасибо, и за РЕАЛЬНУЮ информацию (VladiT), и за измышления общего характера, впринципе тоже нужные для поднятия темы.

Правильно спроектированное оружие не требует каких-то фантастических материалов.

На чипмейкере знают лутше. Там каждый второй конструктор, а каждый первый инженер.

А из каких сталей (ну. в смысле, аналогами которых будут современные стали) изготовлено оружие 19-го века?
Например, винтовки Крнка и Бердан-2?
Есть у кого инфа?

В каждой шутке есть доля шутки. (ц)
Даже на ганзе встречаются знатоки, надо же! (ц)

За годы в интернетах цитат накопилось более чем дохрена. Я уже и сам не всегда понимаю - шучу я или пишу по серьезке.

в Германии чаще всего для изготовления затворов пользуются сталью 42СrMo4

Появилась кой-какая информация (по результатам РЕАЛЬНЫХ исследований) стволов, затворов и ствольных коробок немецкого оружия. Правда - условно-немецкого, сделанного по лицензии.
Весь вопрос в том. что лицензионное оружие страдает не изменением марки сталей. как мне казалось до этого. а условиями ее обработки и заклки-отпуска. товарищи лицензионщики упрощают производство путем упрощения техпроцесса и на отдельные моменты закрывают глаза и тактично их опускают.

товарищи лицензионщики упрощают производство путем упрощения техпроцесса и на отдельные моменты закрывают глаза и тактично их опускают.

и получается в итоге детали бывают двух видов: недокаленые(сырые) и перекаленые(стеклянные)
одни расклепываются, а другие лопаютсям =)

А кто-нибудь может подсказать марку стали затвора винтовки Мосина военного выпуска?

VladiT
Если сейчас в производство допускается 30ХГСА - значит совсем плохо дело. 30ХМА/38ХМА в стопицот раз лучше и не сильно дороже + это де-факто мировой стандарт и классика.

Ударная вязкость компенсируется термообработкой.
Увеличение износостойкости за счёт молибдена невелико, а при хромировании ствола вообще не заметно.

Сталь отечественных стволов!

А что вы подразумеваете под качеством стали? Или вы все-таки состав стали имеете ввиду? А может вам на форум металлургов надо?

Сталь на отечественном оржии, что дорогом что дешовом действительно одних и тех же марок. На рядовые Сайги Тигры и Вепри, идёт 30ХРА и 30ХГСА, одни из самых лучших оружейных сталей.
Так что за само железо я не беспокоюсь. Даже старая отечественная 50А и 50РА, превзойдут большенство европейских ствольных сталей. Если бы из этих сталей ещё и оружие не кривое делали!
В "элитном" оружии платят за качество обработки,сборки и имя. А не просто за "сталь".
Про ресурс именно ствола современного гладкоствола вообще говорить нет смысла. Гораздо раньше его выработки, появится шат стволов в колодке, и накроются прочие детали.

50А идет на двустволки и сейчас, на МЦ конечно 30ХН2МФА, но это уже понты, все равно не нержа. Ижевский "Полтинник" шел после войны и на Меркеля в Германию, вполне возможно, идет и до сих пор. Очень приличная сталь, особенно ОСТовская. На Иж-27 когда 12 магнум вводили, даже утолщать патронник не пришлось- держит. Правда потом в муфту паять начали, но сталь тут не при чем. На таком массовом выпуске другая сталь- дело очень сложное. Опять же не понимаю элитное оружие на тех же потоках. Русь и Стрела- не элита в полном смысле. В.

Сталь тоже делается как и все в России, через сами знаете что и с песнями. И я уверен, что сваренная в 50-ые сталь 50А это не то же самое, что сваренное в 90-ые. На металлургических заводах если нет конкретного заказа (типа от космической промышленности или оборонки) варят сталь марки КВ - Какая Выйдет.
И маркировка выпускаемых сталей идет следующая МГ, РГ, ХРЖ и все.
Для расшифровки МГ - мяче г..на, РГ- разное Г..но, ХРЖ - хреново Ржавое Железо. Да, еще забыл - Латунь под этим названием идет все - от бронзы беррилиевой и до меди, и Люмень - все алюминиевые сплавы. Состояние служб металловедения на заводах не просто отвратительное, оно ужасное. На металло базах торгуют непонятно чем, впаривая всякое , извините, дерьмо за качественный металл, о цветовой маркировке сталей совсем забыли и маркируют как бог надушу положет. Если хотите иметь ту сталь которую нужно на вашем производстве выход один - найти пенсионера дюдю Васю, умеющего различать состав стали по искре, теперь этому уже не учат!
Извините за пессимизм, но только вот вчера опять со сталью напоролись. Хорошо токарить еще не начали, пришлось из старых запасов искать , хорошо , что нашли.
Василич
Василич

VASILICH писал(а): Сталь тоже делается как и все в России, через сами знаете что и с песнями. И я уверен, что сваренная в 50-ые сталь 50А это не то же самое, что сваренное в 90-ые. На металлургических заводах если нет конкретного заказа (типа от космической промышленности или оборонки) варят сталь марки КВ - Какая Выйдет.
И маркировка выпускаемых сталей идет следующая МГ, РГ, ХРЖ и все.
Для расшифровки МГ - мяче г..на, РГ- разное Г..но, ХРЖ - хреново Ржавое Железо. Да, еще забыл - Латунь под этим названием идет все - от бронзы беррилиевой и до меди, и Люмень - все алюминиевые сплавы. Состояние служб металловедения на заводах не просто отвратительное, оно ужасное. На металло базах торгуют непонятно чем, впаривая всякое , извините, дерьмо за качественный металл, о цветовой маркировке сталей совсем забыли и маркируют как бог надушу положет. Если хотите иметь ту сталь которую нужно на вашем производстве выход один - найти пенсионера дюдю Васю, умеющего различать состав стали по искре, теперь этому уже не учат!
Извините за пессимизм, но только вот вчера опять со сталью напоролись. Хорошо токарить еще не начали, пришлось из старых запасов искать , хорошо , что нашли.
Василич
Василич

---------------------------------------------------------------------
Да , уж. Далее полный ОФФ .
недавно пришлось коробку от обычного серийного , но японческого автомобиля чинить, ну и на вторичном вале пришлось чуток убрать металла. Смогли убрать только керамическим резцом с каким-то хитрым углом заточки . а в начале лета из нашей российской нержи железяки для катера сваял - ржавеет падла! Хотя металлисты "зуб давали" на то что эти трубы "с титаном, ни за что не заржавеют".

Впорне понимаю Ваши эмоции, но ХОРОШУЮ сталь НАШИ заводы (не все) пока делать УМЕЮТ и проверяют качество не "по искре". Большинство качественных сталей поступает на экспорт в виде проката (прутки) и поковок после их обточки. При этом все 100% подвергается контролю на неметалические включения, "усадку", химсостав, мехсвойства и т.п. Не дай бог, что-то выедет за пределы - возврат и крупные неустойки. Заводы пока на плаву за счет экспортных поставок. Все , что отбраковано (т.е. откровенный брак по меркам зарубежных фирм, но по нашим требованием кое-что проходит) скупают наши коммерческие фирмы (по дешевке) и по нормальной цене впаривают (или пытаются)нашему потребителю. Я это знаю практически наверняка, т.к. имею контакты с рядом ведущих металлугических гигнантов, приобретающих средства контроля качества от автоматических линий до отдельных приборов. по их назначению производительности можно судить и об объемах.
Хотите хорошую качественную сталь- закажите на ЗАВОДЕ в обьеме плавки с выходным контролем качества. Дорого? ДА! ОЧЕНЬ ДОРОГО! Но если завод согласен поставить небольшое количество стали (заведомо меньше плавки), то это уже вызывает серьезное сомнение в ее качестве- врзможно это отбраковынные по какому-то параметру остатки прежних крупных поставок. Нужно самостоятельно провести контроль по всем параметрам. Но, если нужно качество, то другого пути нет. Сталь 50РА выпускалась в больших количествах, т.к. прнименяется не только (скорее не столько) для стволов охотничьих ружей. Думаю, что пока ее качество удовлетворяет требованиям, предьявляемым к ним. Не исключаю что на некоторых заводах могут быть и СТАРЫЕ ЗАПАСЫ, т.к. некоторые массовые изделия из нее по известным причинам в одночасье перестали выпускать.

2 bvi
Владимир! Я понимаю вас полностью и разделяю ваши предложения. Но, наше механическое производство - маленькое и ремонтное по своей сути, хотя приходится делать ответственные детали для полиграфического оборудования. Так что заказать полностью плавку, даже злектродуговую (самые маленькие печи) невозможно. Приходится изыскивать металл по металлобазам и старым связям на разных заводах.
Вот такая икебана.
Василич

to VASILICH:
Ну,Вы, Уважаемый, немножко погорячились. В нашей конторе, а моя контора в основном работает на атом, практически каждая железяка, поступающая в производство, имеет паспорт и сертификат с указанием химсостава, механических свойств и степени соответствия ГОСТу, ОСТу или ТУ, причем все, что заявлено в сертификате, проверяется в нашей центральной лаборатории, прежде чем пойти в работу. Конечно, маленькому предприятию такой входной контроль трудно организовать, но это уже зависит от позиции хозяев. В нашем деле без такого подхода просто не прожить, поэтому так уж на отечественного производителя грешить не стоит. Как говорится: "Дешево и быстро хорошо не бывает". Тут уж как себя поставишь. Изрядное количество металла нам поставляет Ижора. Если внимательно следить, то металл недурственный. Причем качество выше, если в марке стали после основной маркировки через тире идет маркировка ВД или Ш - последнее обозначает электрошлаковый переплав. Впрочем, вам жить труднее, поскольку дядя Вася всегда готов впарить стали марки ПЗ и ПВ - подзаборную и подверстачную.

VASILICH писал(а): 2 bvi
Владимир! Я понимаю вас полностью и разделяю ваши предложения. Но, наше механическое производство - маленькое и ремонтное по своей сути, хотя приходится делать ответственные детали для полиграфического оборудования. Так что заказать полностью плавку, даже злектродуговую (самые маленькие печи) невозможно. Приходится изыскивать металл по металлобазам и старым связям на разных заводах.
Вот такая икебана.
Василич

Не решаемых вопросов нет. Сталь можно приобретать и с помощью металлобаз мелкими партиями с сертификатами, в которых указан не только изготовитель но и плавка. это уже дороже и входной контроль для ответственных деталей внедрять придется. это тоже недешево, а иначе придется делать брак. вот мы и выяснили причины относительно низкого, вернее случайного, или нестабильного качества отечественной продукции, в т.ч. и оружия.
P.S. bvi и Владимир И. один пользователь с разных сетей. В дополнение, если очень нужно решать означенную Вами проблему, то могу дать телефон или адрес в в сети производителей оборудования для неразрушающего контроля. Да это можно и поиском найти. В начале 90-х и сам занимался валками полиграфических машин, вернее вопросами контроля некоторых характеристик. по конверсии.

Путеводитель по оружейным металлам

Ресиверы винтовок которые должны обладать большой прочностью, также требуют много операций по обработке. Очень не просто найти сталь, которая будет служить основой для ресивера, но не будет быстро изнашивать режущие инструменты.

Некоторые оружейные статьи и описания бросаются всяческими терминологиями и марками металлов, о которых мы смутно что понимаем. Для освещения этой темы начнем с небольшой статьи.

Что такое сталь? И почему она важна в оружейном строении? Все просто, сталь это чугун с таким количеством углерода, который позволит его закаливание - но не слишком много, так как это делает будущий сплав хрупким. У стали нет пор, она состоит из кристаллов ( теперь если вы будете выбирать смазку по описанию производителей при каждой фразе " попадает в поры металла " вас будет немного дергать ). Форма, размер и положение этих кристаллов определяют их механические параметры. Кристаллы стали имеют размер и формы, а также имеют свои названия аустенит, мартенсит, цементит (карбид железа) и феррит.

Сталь может быть в смеси с другими металлами как никель, хром и вольфрам - в том числе и не с металлическими элементами как молибден, сера и кремний. Эти добавки в сплаве дают качественные характеристики, как простоту машинной обработки, сопротивляемость коррозии, защита от истирания или прочность на растяжение без хрупкости, все это будет указано в марке стали.

Ассоциация Инженеров Автомобилестроения использует простую систему обозначения, которую вы можете встретить в статьях об оружии; номера 1060, 4140 или 5150 будут давать информацию что в них содержится и в каких количествах (по таблицам АИА).

Первая цифра в марке - углерод, никель, хром и так далее. Следующие три цифры дают понять, сколько чего в них. В частности, возьмем примеры классических сталей для стволов AR платформ - 4140 против 4150.

Сталь 4140 также известна Артиллерийская сталь, была одной из ранних сплавов содержащих много элементов, использовалась в 1920 году для рам в авиастроении и автомобильных валов, помимо оружейного производства. Эта сталь имеет около 1 процента хрома; 0.25 процента молибдена; 0.4 процента углерода, 1 процент марганца, около 0.2% кремния и не больше чем 0.035 процента фосфора, как и не больше 0.04% серы. Все остальное это 94.25% остается чугуну.

Какое большое отличие между сталью 4140 и 4150? 4150 имеет 0,5% углерода в составе. Этот лишний 0,1% дает марке 4150 большую жесткость, которая делает ее более трудно обрабатываемой, но армия США желала эту износостойкость и решила что цена, оправдана.

Что-то вроде спусковой скобы не обязательно делать из высокопрочного сплава стали. Средняя сталь, легкая в обработке и относительно недорогая, отлично справится.

Большинство производителей винтовок осознают, что потребитель не готов к дополнительным тратам и использование стали 4140 для них оправданно. Проще говоря, если винтовка в калибре 30-06 имеет ствол, который даст возможность произвести 5000 точных выстрелов - что примерно три жизни среднестатистической охотничьей винтовки - кто готов заплатить двойную цену что бы продлить ее до 7500 выстрелов?

Однако стандарты SAE ( Ассоциация Инженеров Автомобилестроения ) только частично отображают всю ситуацию. Как и на каких температурах добавляются компоненты в сталь, тоже может менять свойства получаемого сплава. Для примера, болты затвора для AR-15 изготовлены из так называемой марки Carpenter 158. Это продукт компании Carpenter и вы не найдете ее в таблице SAE ( как скорее всего не найдете 3310 ). Это производственная тайна, запатентованная сталь, и если вы хотите купить ее, вы найдете ее только у производства Carpenter.

Есть ли стали, которые будут работать также и даже лучше чем Carpenter 158 на болтах AR? Скорее всего да. Этот сплав технологический продукт 1960 года, и мы многое узнали спустя столько времени, но эта сталь включена в сертифицированный список mil-spec по военным стандартам.

А что о нержавеющей стали? Разработанная до Первой Мировой Войны, нержавейка применяемая в оружии на самом деле не нержавеющая сталь. Она имеет очень большое сопротивление к коррозии, однако - не обладает таким количеством хрома, так как он на поверхности вступает в реакцию с кислородом, чтобы получился независимый слой оксида хрома, который защищает металл от окисления.

Нержавеющие стали имеют свое предназначение, в основном они 400 марок, и 416 сталь очень популярна среди производителей, так как легко обрабатывается, как и углеродная сталь.

Алюминий используется в двух сплавах: 7075 и 6061. Алюминий марки 6061 часто называют " авиационным алюминием " он содержит небольшое количество кремния, меди, марганца, молибдена и цинка. Алюминий 7075 намного более прочный сплав и имеет большее количество меди, марганца, хрома и цинка.

Даже, скорее всего слишком прочный чем нужно, но причина использования 7075 над 6061 это производство ресиверов в платформах AR, в частности речь о сопротивлению к коррозии. Ранние тестирования в Юго-Восточной Азии показали, что человеческий пот, в сочетании с высокими температурами и влажностью джунглей, просто съедает 6061 алюминий. Когда 7075 безразличен к ним.

Закаленные болты затвора, очень-очень прочные, и сложны в машинной обработке. Некоторые фирмы изготавливают их цельными, но большинство производств поняли как делать прочные затворы их из двух частей.

Алюминий слишком мягкий чтобы использовать его просто так. Чтобы упрочнить его свойство, производители используют процесс известный как анодировка ( анодирование ). Они скидывают много алюминиевых деталей в емкость с кислым электролитом и проводят электричество через него. В результате чего, ускоряют формирование природных оксидов которые упрочняют поверхность.

Оксиды имеют поры, поэтому часто используют изоляционный материал. По стандартам mil-spec для этого используют ацетат никеля, черный цвет получается от использования красителя ( естественный цвет после анодировки остается таким же "алюминиевым" ).

Что это все значит для стрелков? Ну, теперь у вас есть больше представлений, о чем оружейные компании (и оружейные магазины) говорят, когда дают характеристики металла при описании оружия и другой продукции.

Часто встречаемые оружейные металлы

Сталь 1020 и 1520 = Часто встречаемая сталь, обычная холоднокатаная сталь. Вы ее найдете на спусковых скобах, крышках магазинов, механических прицелах, антабках и других стальных аксессуарах.

Сталь 4140 = Артиллерийская сталь или хромомолибденовая сталь, имеет 0,4% углерода и по настоящему прочная одновременно являясь эффективной по затратам в машинной обработке. Вы найдете ее на стволах, ресиверов затвора и аксессуарах подверженных большому стрессу как например, дульные модераторы и т.д.

Сталь 4150 = Схожая с артиллерийской сталью, но с содержанием углерода поднятым до 0,5 процента. 4150 лучше в использовании при серьезных нагрузках, и чаще всего можно найти в стволах AR по стандартам mil-spec.

Сталь 41V45 = Хромомолибденовый вариант, он имеет небольшой процент ванадия. Этот сплав используется в стволах получаемых холодной ковкой.

Сталь 8620 = Это много компонентная сталь, имеет в составе никель, хром, молибден, с 0,2% углерода. Литые ресиверы изготавливаются из этого сплава так как она очень хорошо заполняет матрицы ( формы ), чистый в обработке и в конце получается очень-очень прочной сталью.

Сталь 316 = Также известная как нержавейка Морской Пехоты, хорошо сопротивляется коррозии из-за добавок молибдена не легко закаляется. Используется для спусковых скоб и крышек магазина.

Сталь 17-4 = Сплав с 17% хрома и 4% никеля. 17-4 без всяких сложностей закаляется и используется в стволах, болтах затвора и ресиверах.

Алюминий 6061 = Авиационный алюминий, избранный за свою легкость и простоту обработки в сложных деталях. Крышки магазина на охотничьих винтовках, кольца кронштейны для прицелов, спусковые скобы, буферные трубки на AR-15 ( трубка на прикладе ) изготавливаются из алюминия 6061.

Алюминий 7075 = Намного прочнее 6061, этот сплав используется в верхних и нижних ресиверах AR-15, некоторые бренды работающие по стандартам mil-spec изготавливают буферные трубки и некоторые цевья. В mil-spec известен как 7057-T6; последняя часть отображает способ термической обработки, который сплав получает при формировании.

Ружейные стволы. Технология изготовления

Стадии сворачивания трубки простого ствола. Вверху - пластина-заготовка для ствола

Вероятно, многие согласятся со мной, что главная часть ружья - стволы. Ведь стреляют именно они. Эффективность пушечных выстрелов вызвала у человека желание сделать маленькую «ручную» пушку. Такую пушку в середине позапрошлого века нашли в замке Таннеберг в Хессене (Германия). Она была отлита в конце XIV века. Стрелять из неё с рук было, конечно, тяжело и неудобно и вскоре к ней приспособили арбалетную ложу. Оказалось, что по точности стрельбы и кучности новое оружие серьёзно уступает хорошему луку, хотя по энергии, а значит и пробивной силе, значительно его превосходит. Довольно быстро выяснилось, что с увеличением длины ствола, выстрелы становятся более точными. С этого момента и начинается история огнестрельного оружия.

Сегодня у нашего «переломного» охотничьего ружья есть три главные части: ствол (или стволы, образующие ствольный блок), колодка, ложа.

Ствол придаёт направление полёту дроби или пули. Чем правильнее и тщательнее он изготовлен, тем лучше дробовая осыпь и выше точность.

Колодка запирает казённый срез стволов, служит связующим элементом между стволами и ложей и является в оружии главным инерционным элементом, поглощающим силу отдачи. В колодке монтируются запирающие, ударно-спусковые и предохранительные механизмы.

Схема получения скрученных ствольных трубок

Ложа обеспечивает удобство наведения оружия на цель, естественность прицеливания и смягчает действие силы отдачи за счёт её частичного превращения во вращательный момент.

Прежде чем рассказать о сегодняшней технологии изготовления оружейных стволов, хочется познакомить читателей с частью оружейной истории, касающейся совершенствования изготовления этой важнейшей части оружия. Ведь изготовить хороший ствол - задача довольно трудная даже при сегодняшнем уровне развития машиностроения. Однако настойчивость, усердие и изобретательность наших далёких предков находила различные варианты решения этой задачи. Причём уровень качества лучших изделий XVIII века сегодняшним специалистам представляется почти загадочным. Нам хочется рассказать, каким путём мастера прошлого создавали замечательное оружие, показать некоторые его образцы и вместе подумать о величии их духа с надеждой, что это укрепит и наш собственный.

В 1811 году Генрих Аншютц (из хорошо известной оружейной династии) издал книгу об оружейной фабрике в г. Зуль. Он пишет о четырёх типах технологий получения ствольных трубок: обычной, скрученной, навитой и стволах из «Дамаска».

Принцип получения навитых стволов

Обычный (простой) ствол получали из полосовой заготовки длиной 32 дюйма (812,8 мм), шириной 4 дюйма (101,6 мм), толщиной 3/8 дюйма (9,525 мм). После разогрева эту полосу кузнечным способом загибали на оправке таким образом, что её продольные кромки прилегали друг к другу встык, параллельно оси канала ствола. Этот стык сваривался кузнечным методом и тщательно проковывался. Есть несомненные указания, что обе длинные стороны прямоугольной заготовки иногда сгонялись «на ус» и сваривались не встык, а внахлёст. После сварки и охлаждения стволы проходили четырёхгранной развёрткой, обтачивали на токарном станке внешнюю поверхность, которую потом шлифовали вручную на большом круге из мягкого песчаника диаметром 1,75 м. С казённой стороны в ствол вкручивалась винтовая заглушка, которая иногда тоже проваривалась. Конечно, «заглушались» стволы всех дульнозарядных ружей, независимо от технологии их получения.

Скрученный ствол. Сварной шов в обычном стволе, располагавшийся параллельно оси ствола, часто был местом разрушения при стрельбе. Чтобы избежать этого, простой сваренный ствол начинали повторно нагревать в центральной части и скручивали вдоль оси по всей длине так, чтобы сварной шов имел форму винтовой линии. Этот приём делал шов значительно менее нагруженным при выстреле.

Навитой ствол получали путём постепенного навивания стальной полосы на оправку в виде стержня или трубы. Винтообразный сварной шов последовательно проковывали кузнечным молотом.

Схема получения полосы дамасской стали

Дамасские стволы. Ещё в средние века в Дамаске (сегодня это Сирия) изготовляли мечи, обладающие исключительно высоким качеством. Как только технология их получения стала понятна европейцам, её попытались применить и для изготовления стволов. Основа секрета состояла в том, что заготовки для клинкового оружия получали кузнечной сваркой полос из тонких элементов, состоящих из сталей различавшихся содержанием углерода. Первоначально сваренную и прокованную полосу многократно складывали и проковывали. По сравнению с обычной однородной заготовкой дамасская обладала тремя принципиальными преимуществами. По сути, она представляла конструкцию, объединяющую свойства отдельных материалов. Кроме того, композиция не только исключала внутренние дефекты, которые бывают в однородной заготовке, но и создавала оптимальную структурную ориентацию. Принципиально дамасские стволы получали методом навивки. Однако для получения исходной полосы приходилось проделать просто титаническую работу. Сначала сваривали брусок из ста прутков сталей разного состава квадратного сечения со стороной 0,7 мм, уложенных в определённом порядке. Брусок получался сечением около 7 мм х 7 мм. Эта процедура требовала невероятно тонкого кузнечного чутья, поскольку пережечь тонкие проволочки было проще простого. Сваренный брусок снова разогревали и скручивали вдоль. Затем брали несколько таких скрученных брусков (чаще три или шесть) сваривали их между собой и расковывали в полосу. В некоторых случаях из этих скруток плели что-то вроде косичек, которые могли состоять из разного числа прядей и иметь разную схему плетения. Косички сваривали и проковывали в полосу. Эту полосу и навивали на оправку. Затем заготовку торцевали, канал проходили развёрткой, наружную поверхность сначала обтачивали на токарном станке, потом шлифовали. Процесс воронения в те времена состоял в обработке довольно сильными кислотами. В результате, малоуглеродистые прутики протравливались значительно сильнее по сравнению с высокоуглеродистыми, и на поверхности ствола появлялся оригинальный мелкий рисунок, отражавший всю предшествующую схему получения полос. Обычно на дамасских стволах ширина полосы видна невооружённым глазом.

Стремительное развитие металлургии в конце XIX века привело к появлению углеродистых сталей с высокими механическими свойствами. Перспективность их использования для изготовления стволов казалась очевидной. Однако ещё в первой четверти XX века многие оружейники Европы продолжали делать стволы по «дамасским технологиям». Сегодня необходимо понимать, что такие стволы, хотя и являются памятниками фантастическому усердию оружейников предыдущих поколений, но всё же уступают по всем важнейшим показателям современным легированным ствольным сталям. Напомним нашим соотечественникам, что сталь 50А и даже 50РА, из которой и в Туле, и в Ижевске делают сегодня стволы, к легированным ствольным сталям не относятся. И ещё о дамасских стволах. Спустя сто и более лет после изготовления весьма вероятно, что кузнечная сварка элементов может значительно разрушиться и прочность стволов может оказаться недостаточной для обеспечения безопасности стрельбы. Будьте очень осторожны при желании пострелять из старого ружья с дамасскими стволами.

Введение в состав углеродистой стали хрома, ванадия, никеля, кремния, марганца и других элементов привело к значительному повышению важнейших свойств ствольных сталей - упругости, прочности при растяжении, поверхностной твердости, коррозионной стойкости. Более того, эти технологии позволяют получать стали с заранее заданными свойствами. Всё это позволило перейти к изготовлению однородных заготовок для ружейных стволов. Этот процесс начался ещё в последней трети XIX века и около полувека сосуществовал с «дамасской» технологией.

Развитие технологии изготовления ружейных стволов.

Рихтовка ствольной заготовки

Оружейное сверло: а - режущая пластина, b и с - направляющие, d - канал для подвода охлаждающей жидкости, е - полость для удаления стружки


Оружейное сверло:
а - режущая пластина,
b и с - направляющие,
d - канал для подвода
охлаждающей жидкости,
е - полость для
удаления стружки

Для снятия внутренних напряжений в откованных заготовках их нагревают до (примерно) 850-860 градусов и выдерживают около получаса. Точные параметры нагрева зависят от марки ствольной стали и толщины заготовки. Задача снятия внутренних напряжений очень важна для всех стадий производства стволов. Особенно важно, чтобы не было напряжений в готовой ствольной трубке, предназначенной для образования ствольных блоков из двух или более стволов. Дело в том, что пайка мягкими и особенно твёрдыми припоями требует значительного и асимметричного нагревания стволов. Неоднородно происходит и охлаждение спаянного блока. Наличие внутренних напряжений приводит к заметной деформации стволов после пайки. Более того, высокий разогрев внутренней поверхности стволов при стрельбе, особенно интенсивной, может вызвать необратимую деформацию ствола, если в нём оставались напряжения. После нормализации проводят закалку. Суть её заключается в получении оптимальных свойств за счёт формирования тонкой структуры металла. Любая сталь является сложной в фазовом отношении системой, содержащей как минимум две кристаллические модификации чистого железа, карбид железа, карбиды металлов-примесей и твёрдые растворы некоторых из этих компонентов друг в друге. Температурная обработка меняет фазовое состояние этой сложной системы и размеры отдельных фаз, что очень существенно влияет на эксплуатационные свойства. Закалка заключается в равномерном разогреве детали до температуры, зависящей от рецептуры стали, из которой она изготовлена. Заготовки из стали Ск 65, которую в Германии часто используют для стволов, нагревают до 840 градусов. После этого её опускают в масло, имеющее комнатную температуру. Затем заготовку «отпускают», для чего её прогревают в муфельной печи около 4 часов при температуре 580-600 градусов. Такой сложной термообработкой можно значительно влиять на твёрдость, вязкость, упругость и предел прочности при растяжении.

Термически обработанную заготовку тщательно рихтуют. Это делают, чтобы при сверлении, которое происходит при вращении заготовки, она не вибрировала. Рихтуют заготовку в горизонтальном положении при вращении, корректируя её форму прижимными роликами. После рихтования заготовку снова подвергают нагреву для снятия внутренних напряжений, затем торцуют с обеих сторон и снимают фаски.

Рихтовка ствола по теневым кольцам с помощью винтового пресса

После этого приступают к самому тонкому процессу в изготовлении ствола - сверлению. Глубокое сверление, особенно в длинной заготовке с низкой продольной устойчивостью - особая песня. В оружейном деле для этого используют специальные станки, похожие на токарные. В них закреплённая заготовка вращается, а специальное сверло движется поступательно. В этом процессе две главные проблемы: увод сверла от оси заготовки и удаление стружки. Первую проблему можно решить за счёт однородности структуры заготовки и относительно невысокой скорости подачи сверла и скорости резания, чтобы исключить вибрацию заготовки. Разумеется, эти ограничения увеличивают продолжительность сверления. Проблема удаления стружки, которая иногда не только портит поверхность канала, но и заклинивает сверло, решается специальными приёмами. В XIX веке применялись «ружейные свёрла», по конструкции они были близки к развёрткам, то есть в их основе имелась штанга, на всей рабочей длине которой был выбран цилиндрический сектор с углом около 100 градусов. Конструкция сверла достаточно проста и хорошо понятна из чертежа. Через небольшое отверстие в теле сверла в зону резания подаётся охлаждающая эмульсия, которая по желобку, параллельному оси сверла, уносит с собой образующуюся стружку. Такие станки давно стали многошпиндельными и достаточно автоматизированными. Это позволяет одному рабочему контролировать сверление на нескольких станках. Этот процесс всё-таки не гарантировал высокую степень чистоты обработки поверхности канала ствола. Стружка часто была основной причиной этого. Кроме того, производительность сверления была невысокая.

Сверло Байснера - рабочая и тыльная части

В 1937 году Бургсмюллер качественно изменил схему сверления. Он предложил вертикальное расположение заготовок и направле¬ние сверления снизу вверх для лучшего удаления стружки. В качестве основы сверла он применил трубу, на рабочей головке которой были прикреплены три направляющие пластины и приварена одна режущая. Процесс резания происходит при охлаждении сжатым воздухом, который подаётся в зазор между поверхностью сверла и стенками образующегося отверстия. Стружка же совсем не контактировала со стенками отверстия и вместе с воздухом уносилась вниз. Значительно больший момент сопротивления скручиванию, которым обладала «труба» по сравнению с профилированной штангой, позволяет, кроме получения хороших поверхностей, использовать при сверлении более высокие скорости резания и подачи.

В 1942 году Байснер усовершенствовал этот метод. Он вернул сверлильному станку горизонтальное положение, предложил использовать масло в качестве охлаждающей жидкости и усовершенствовал сверлильную головку. Масло подавалось под давлением в зазор между сверлом и образующейся цилиндрической поверхностью и выносило стружку через центральный канал в специальный сборник. Поверхность получалась очень гладкой в некоторой мере благодаря полированию направляющими. Тем не менее, после сверления канал ствола обрабатывается развёрткой.

Перед тем как приступить к обработке наружной поверхности ствола его рихтуют: проверяют прямолинейность оси канала и при необходимости выправляют её с помощью винтового пресса. Проверку правильности канала осуществляют по теневым кольцам, что каждый охотник может сделать и сам. А вот процесс правки требует не только хорошего зрения, но и большого чувства металла, приходящего только с опытом. Дело в том, что ствол имеет упругость. Поэтому если под нагрузкой он выпрямился, то после её снятия частично вернётся в исходное состояние. Опытный мастер чувствует, насколько ствол нужно «перегнуть», чтобы после снятия нагрузки он стал безукоризненно правильным.

Проточка шеек для люнетов: 1 - центр, 2 - скользящая муфта, 3 - стойка, 4 - шейка для люнета

После формирования канала ствола встаёт очередная непростая задача: токарно обработать ствол снаружи. При этом главная трудность, чтобы центр наружной поверхности точно совпал с центром канала ствола. Если этого не сделать, то ствольная трубка получится разностенной. Кроме того, из-за большой величины отношения длины ствола к его диаметру при токарной обработке поверхности ствола его необходимо фиксировать двумя люнетами, для каждого из которых нужно предварительно проточить шейки. Для корректного выполнения этой операции на середине длины ствола устанавливают специальную муфту, позволяющую правильно удерживать ствол за его необработанную поверхность при проточке шеек для люнетов. Когда шейки проточены, муфту можно снять и выполнить наружное обтачивание ствола по копиру. Эти токарные обработки могут привести к некоторой деформации ствола. Поэтому ствол в очередной раз контролируют по теневым кольцам и при необходимости рихтуют. Чистовое обтачивание и шлифование производится после того, как отдельно прошлифовываются шейки для люнетов. Заключительная стадия изготовления ствольных трубок - тонкое шлифование, называемое в оружейном деле хонингованием.

Схема ротационной ковки: 1 - разогрев токами высокой частоты, 2 - начало ковки, 3 - процесс ковки, 4 - окончание ковки


Схема ротационной ковки:
1 - разогрев токами высокой частоты,
2 - начало ковки, 3 - процесс ковки,
4 - окончание ковки

Существенным прогрессом в изготовлении ружейных стволов является их ковка на оправке. Конечно, оборудование для этого процесса стоит недёшево. Поэтому формование стволов ковкой рентабельно только при больших объёмах производства. Однако экономия средств и времени получается тоже значительная. При изготовлении стволов методом ротационной горячей ковки используют заготовки длиной 260-280 мм и диаметром около 35 мм. В ней сверлом Байснера делают сквозное отверстие диаметром 20,5 мм. Заготовку закрепляют на закалённой, тщательно отполированной оправке, имеющей форму внутренней поверхности готового ствола. После электроиндукционного прогрева заготовки до необходимой температуры её подают в зону ковки, где она, вращаясь вдоль своей оси, проходит под ударами крестообразно расположенных молотов. За полторы минуты заготовка принимает внешнюю и внутреннюю форму ствола с патронником. Закалка после такой проковки не проводится. Внешнюю форму ствола доводят токарным обтачиванием и шлифованием. Канал ствола начерно проходится развёрткой. Окончательную обработку канала ствола, включая патронник и дульное сужение, проводят после сборки ствольного блока.

Ещё более прогрессивным методом изготовления стволов является холодная ковка на оправке. Одно из её преимуществ в том, что она экономит около 15% дорогой ствольной стали, уходящей в окалину при горячей ковке. Кроме того, внутренняя поверхность ствола получается точной копией оправки, так что можно получать полностью готовые стволы (с патронником, дульным сужением и нарезами). Поверхность канала ствола требует только полировки. К тому же структура холоднокованого ствола обеспечивает ему высокие механические свойства. Правда, холодная ковка требует более мощных молотов и большей продолжительности. Она длится чуть более трёх минут. Внешнюю форму доводят обтачиванием и полированием. Проверку правильности оси канала проводят и после этой технологии и, если есть необходимость, рихтуют. Завершающей стадией изготовления отдельных ствольных заготовок является отстрел и клеймение.

Читайте также: