Сталь х12 твердость до термообработки

Обновлено: 28.04.2024

Плотность, г/см 3 : 7,71*
* Типичное значение свойства для низкоуглеродистой и низколегированной стали. Эта величина не предусмотрена стандартами, она носит ориентировочный характер и не может быть использована с целью проектирования

Технологические свойства марки Х12МФ

Твердость материала HB 10 -1 = 255 МПа
Температура ковки Начала 1140 °С, конца 850 °С. Охлаждение в колодцах или термостатах
Температура критических точек Ac1 = 810 , Ac3(Acm) = 860 , Ar3(Arcm) = 780 , Ar1 = 760 , Mn = 225
Свариваемость материала Не применяется для сварных конструкций
Склонность к отпускной хрупкости Склонна
Обрабатываемость резанием В горячекатанном состоянии при HB 217-228 и σв=710 МПа, К υ тв. спл=0,8 и Кυ б.ст=0,3

Сталь марки Х12МФ характеризуются высокой степенью технологичности. Её можно обрабатывать по различным технологиям (см. табл.). Резанием сталь можно обрабатывать при определённых условиях (см. табл.). Ковку выполняют при температурных режимах – от 1140 °С до 850 °С. Охлаждать необходимо в в термостатах, либо в колодцах. Удовлетворительная степень шлифовки.

Дополнительные характеристики Х12МФ

Сварка стали Х12МФ

Основная сфера использования — машиностроительное производство, конкретно тяжёлое машиностроительное производство. По своему назначению, это штамповая сталь, предназначенная для обработки под давлением: прокат, вырубка, штамповка, вырубка и пр. – в основном производство изделий сложных форм и конфигураций.

Форма поставки стали Х12МФ

Поставляется: любой прокат, прутки - калиброванные и шлифованные, круги, серебрянка, полосы, листы и пластины, болванки, слябы, кованые заготовки и поковки.

Применение стали Х12МФ с учётом характеристик и свойств

Сталь марки х12мф используют, когда для изделия необходима высокая степень вязкости - для производства штампов с высоким уровнем стойкости к истиранию, которые при эксплуатации не подвергаются механическому воздействию - ударам, волочильных досок, глазков для изготовления прутковых заготовок под резьбу.

За счёт того, что сталь не подвержена короблению, и изменению формы при нагревании, она подходит для изготовления штампов, кузовных секций, пуансонов и матриц для вырубных и просечных штампов, штампованных элементов электромашин и электроаппаратов.

Особенно востребована данная сталь для изготовления охотничьих ножей. С этой сталью привыкли работать все производители этой продукции. Ножи из стали марки х12мф популярны, благодаря таким качествам стали, как упругость, стойкость к коррозии, долговечность, сопротивление ударам и сжатию.

Сталь Х12МФ инструментальная штамповая

Сталь Х12МФ является высоколегированной (высокохромистой) инструментальной полутеплостойкой сталью высокой твердости с повышенной износостойкостью. Данная сталь широко применяется для изготовления холодных штампов и других инструментов, деформирующих металл в холодном или относительно невысоко нагретом состоянии. Большинство высокохромистых штампованных сталей содержат в среднем 12% хрома (Cr) и высокий процент углерода. Это приводит к образованию большого количества хромистых карбидов (Cr7C3).

Именно большое количество карбидной фазы (при всех режимах термической обработки) и делает сталь высокоизносоустойчивой.

Сталь Х12МФ также обладает хорошей ковкостью и шлифуемостью [1].

Необходимую высокую твердость стали типа Х12 можно получить, закаливая
ее от высоких температур (1150 °C) в масле и получая, следовательно, большое количество остаточного аустенита, а затем путем обработки холодом и отпуска
добиваться разложения остаточного аустенита и получать высокую твердость (>60 HRC).

Но чаще сталь типа X12 закаливают с температур, дающих наибольшую твердость
после закалки (от 1050-1075 °C) и последующего низкого отпуска (при 150-180 °C).

Твердость в обоих случаях одинаковая (61-63 HRC), но в первом случае сталь
обладает более высокой красностойкостью, а во втором — большей прочностью.

Твердость стали Х12МФ достигает максимального значения (61-63 HRC) после закалки с 980-1020 °C; сталь сохраняет при этом зерно балла 10 и 15-20 % аустенита (что больше, чем у многих нетеплостойких сталей) [1].

При еще большем увеличении температуры закалки твердость снижается с 50-55 HRC и ниже из-за резкого повышения количества аустенита. С повышением температуры нагрева >1000-1020 °C прочность также снижается, вследствие роста зерен и влияния аустенита [1].

Предел упругости стали Х12МФ (для твердости 56-57 HRC) ~1300 МПа.

Сталь Х12МФ мало деформируются при закалке, а при применении термической доводки деформацию можно свести практически к нулю. Поэтому эту сталь следует рекомендовать для инструмента сложной формы, для которого деформация при закалке недопустима.

Молибден и ванадий в стали Х12МФ — необходимые добавки; они способствуют сохранению мелкого зерна и повышают прочность и вязкость [1].

Примерное назначение инструментальной легированной стали Х12МФ (ГОСТ 5950-2000)

  • Для холодных штампов высокой устойчивости против истирания (преимущественно с рабочей частью округлой формы), не подвергающихся сильным ударам и толчкам;
  • для волочильных досок и волок;
  • глазки для калибрования пруткового металла под накатку резьбы;
  • гибочные и формовочные штампы;
  • сложные секций кузовных штампов, которые при закалке не должны подвергаться значительным объемным изменениям и короблению;
  • матрицы и пуансоны вырубных и просечных штампов;
  • штамповки активной части электрических машин и электромагнитных систем электрических аппаратов;
  • для профилировочных роликов сложных форм;
  • сложные дыропрошивочные матрицы при формовке листового металла;
  • эталонные шестерени;
  • накатные плашеки;
  • волоки;
  • матрицы и пуансоны вырубных, просечных штампов (в том числе совмещенных и последовательных) со сложной конфигурацией рабочих частей.

Температура критических точек, °C [4]

Химический состав, % (ГОСТ 5950-2000)

Марка
стали
Массовая доля элемента, %
углерода кремния марганца хрома вольфрама наладим молибдена никеля
Х12МФ 1,45-1,65 0,10-0,40 0,15-0,45 11,00-12,50 0,15-0,30 0,40-0,60

Температура закалки стали Х12МФ [1]

Закалка на первичную твердость Закалка на вторичную твердость
t, °C твердость,
HRC
t, °C твердость,
HRC
990-1010 * 62-63 1080-1100 54-56
* 1050-1070 °C для повышения теплостойкости и сохранения твердости при значительном шлифовании и 1020-1040 °C для получения минимальной деформации.

Режимы термической обработки стали Х12МФ [4]

  1. I — обычный режим;
  2. II — применяют, если обработка по режиму I не обеспечивает необходимой вязкости:
  3. III -для режущих инструментов, когда требуется износостойкость;
  4. IV — используют тогда, когда требуется неизменность размеров.

Режимы окончательной термической обработки [4]

Обработка холодом [1]

Такая обработка с охлаждением до -70 °C повышает твердость на 1-3 HRC и сопротивление пластической деформации, но снижает вязкость. Возрастание износостойкости при этом незначительно. Обработка холодом используется сравнительно редко для повышения предела выносливости, но при условии выполнения длительного отпуска, в большей степени снимающего создающиеся дополнительные напряжения.

Сталь 12ХН3А конструкционная легированная хромо-никелевая

Согласно ГОСТ 4543-2016 цифра 12 перед буквенным обозначением указывает среднюю массовую долю углерода (C) в стали в сотых долях процента, т.е. среднее содержание углерода в стали 12ХН3А составляет 0,12%.
Буква Х означает, что сталь легирована хромом, отсутствие цифры за буквой означает, что содержание хрома до 1,5%.
Буква Н означает, что сталь легирована никелем, цифра 3 указывает примерную массовую долю никеля в целых единицах, т.е. содержание никеля в стали 12ХН3А примерно 3%.
Буква А означает, что сталь высококачественная, т.е. с повышенными требованиями к химическому составу и макроструктуре стали по сравнению с качественной сталью.

Вид поставки

  • Cортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88, ГОСТ 10702-78.
  • Калиброванный пругок ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73, ГОСТ 10702-78.
  • Шлифованный пруток и серебрянка ГОСТ 14955-77. Полоса ГОСТ 103-76.
  • Поковка и кованая заготовка ГОСТ 1133-71. Труба ГОСТ 21729-76, ГОСТ 8734-75, ГОСТ 9567-75.

Характеристики

Сталь 12ХНЗА является конструкционной легированной (хромо-никелевой) цементуемой сталью и предназначена для изготовления деталей, к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок или при отрицательных температурах, например:

  • шестерни,
  • валы,
  • цапфы,
  • шарниры,
  • червяки,
  • кулачковые муфты,
  • поршневые пальцы,
  • цементуемые детали,
  • детали автомашин и самолетов

Сталь 12ХН3А сочетает в себе высокую прочность с хорошей пластичностью и имеет хорошую ударную вязкость при низких температурах.

Сталь этой марки относится к лучшим образцам конструкционной стали. Сочетание никеля и хрома обеспечивают этой стали характеристики позволяющие изготавливать из нее ответственные детали.

Так как никель целиком растворяется в твердом растворе, он способствует более значительному увеличению твердости и прочности феррита, чем хром. При одновременном присутствии в стали никеля и хрома достигается хорошее сочетание механических свойства (прочности и вязкости), а также большая прокаливаемость.

Применения стали 12ХН3А для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок)(ГОСТ 33260-2015)

Материал НД на поставку Температура
рабочей среды
(стенки), °С
Дополнительные
указания по
применению
12ХН3А
ГОСТ 4543
Сортовой прокат
ГОСТ 4543
От -70 до 180 Для деталей
узла затвора
(пята, подпятник).
Используется с
цементированием

Рекомендации по выбору и применению стали 12ХН3А для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур

Марка
стали
Закалка + отпуск
при температуре, °С
Примерный
уровень
прочности,
Н/мм 2
(кгс/мм 2 )
Температура
применения
не ниже, °С
Использование
в толщине
не более, мм
12ХН3А 200 1000 (100) -80 40

Температура критических точек, °С

Химический состав, % (ГОСТ 4543-71)

C Mn Si Cr Ni Р S Cu
не более
0,09-0,16 0,30-0,60 0,17-0,37 0,60-0,90 2,75-3,15 0,025 0,025 0,30

Химический состав, % (ГОСТ 4543-2016)

Марка стали Массовая доля элементов, %
C Si Mn Cr Ni Mo Al Ti V B
0,09-0,16 0,17-0,37 0,30-0,60 0,60-0,90 2,75-3,15
  1. В стали всех марок, за исключением легированных вольфрамом, молибденом, ванадием и титаном, допускается массовая доля остаточных элементов, не более: вольфрама — 0,20 %, молибдена — 0,11 %, ванадия — 0,05 % и остаточного или преднамеренно введенного титана (за исключением стали марок, перечисленных в примечании 1 настоящей таблицы) — не более 0,03 %.
  2. Знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если иное не указано в 7.1.2.3 ГОСТ 4543-2016.

Твердость по Бринеллю (ГОСТ 4543-2016)

ПРИМЕЧАНИЕ:
Твердость по Бринеллю указана для металлопродукции в отожженном (ОТ) или высокоотпущенном (ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим высоким отпуском (Н+ВО), для диаметров или толщин свыше 5 мм.

Термическая обработка

ВНИМАНИЕ. Описание термообработки и цементации для стали 12ХН3А дано на основе описания термообработки для чехославацкой стали-аналога 16420. В тексте ниже сталь 16420 заменена на сталь 12ХН3А (Источник «Цементация стали» Корецкий Я., 1962 г.)

При отжиге для смягчения сталь 12ХН3А нагревают до 610-630°С в течение 4 час., после чего следует медленное охлаждение в печи. Нормализацию производят при температуре 830-870°С с постепенным охлаждением иа воздухе.

  • в твердом карбюризаторе при 860-880°С,
  • в соли и газах при 900-920°С.

Науглероживание происходит достаточно плавно; в соответствующей среде и при указанной температуре цементации сталь 12ХН3А не склонна к образованию цементита. Кроме того, она не образует большого количества остаточного аустенита при соответствующей толщине слоя. Сталь не рекомендуется закаливать непосредственно с температуры цементации: достаточной является
после постепенного охлаждения одинарная закалка при температуре 790-810°С в масле. Двойная закалка для этой стали не приносит пользы, а ведет, наоборот, к большой деформации. В воде закаливают только большие по размеру детали без надрезов и выступов. Сталь 12ХН3А получает после цементации на поверхности надежную твердость 60-62 HRC.

Благодаря высокому содержанию легирующих примесей сталь 12ХН3А удовлетворяет требованиям, предъявляемым к ее высоким механическим свойствам. В этом случае закалку производят при 810-850° С в масле, а отпуск при 500-650°С, что обеспечивает получение прочности 75-85 кг/мм 2 .

Поскольку аналогом-заменителем стали 12ХН3А является сталь 12ХН2, то ниже приведено описание процесса цементации для стали 12ХН2.
Цементация стали 12ХН2 производится при 900-920°С с последующей закалкой в масле с температуры 790-810°С и отпуском при 170-180°С.

Влияние хрома (Cr) и никеля (Ni) на цементацию стали 12ХН3А

Хром в цементуемых сталях способствует насыщению слоя углеродом. Он препятствует образованию остаточного аустенита, вследствие чего цементованный слой в хромистых сталях имеет надежную твердость.
Сердцевина хромистых сталей обладает хорошими твердостью и ударной вязкостью. Хром улучшает прокаливаемость стали и уменьшает ее склонность к возникновению мягких пятен.

Никель не оказывает существенного влияния на диффузию углерода в сталь, но снижает предел наибольшего содержания углерода в слое. Никель придает слою способность к сохранению остаточного аустенита, снижающего
твердость слоя. Оказывая благотворное влияние на прокаливаемость, никель придает сердцевине хорошую ударную вязкость при плавном повышении прочности. Он снижает температуры, необходимые для нагрева слоя и сердцевины при закалке,
и способствует тому, что при обычной закалке сталь остается мелкозернистой. Никель способствует сохранению хорошей ударной вязкости закаленных цементованных сталей, используемых при низкой температуре.

Механические свойства (ГОСТ 4543-2016)

Марка стали 12ХН3А
Режим термической обработки Закалка Температура, °С 1-й закалки
или нормализации
860
2-й закалки 760-810
Среда
охлаждения
Вода или
масло
Отпуск Температура, °С 180
Среда
охлаждения
Воздух или масло
Механические
свойства,
не менее
Предел
текучести,
σт, МПа
685
Временное
сопротивление,
σв, МПа
930
Относительное удлинение
δ5, %
11
сужение
Ψ, %
55
Ударная
вязкость
KCU, Дж/см 2
88
Размер сечения
заготовок для
термической
обработки (диаметр
круга или сторона
квадрата), мм
15

Механические свойства заготовки диаметром 70 мм в зависимости от температуры отпуска

tотп, °С σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см 2 Твердость HB
200 1270 1370 12 60 98 400
300 1130 1270 13 68 78 380
400 1080 1200 14 68 83 375
500 930 1030 19 70 118 280
600 670 730 24 75 167 230

ПРИМЕЧАНИЕ: Закалка с 800 °С в масле.

Механические свойства в зависимости от сечения

Сечение, мм σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см 2 Твердость HRCэ поверхности
10 1080 1220 13 60 157 35
15 780 980 16 65 152 32
20 730 880 16 70 165 30
25 640 830 20 70 192 28

ПРИМЕЧАНИЕ. Ложная цементация при 910 °С, 9 ч; закалка с 810 °С в масле; отпуск при 200 °С, охл. на воздухе.

tисп, °С σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см 2
20 540 670 21 75 274
200 520 630 20 74 216
300 500 630 12 70 211
400 430 530 20 75 181
500 390 410 19 86 142
550 240 260 21 82

ПРИМЕЧАНИЕ. Отжиг при 880-900 °С; закалка с 860 °С в масле; отпуск при 600 °С, 3 ч.

Механические свойства прутка

Источник Термообработка Сечение, мм σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см 2 Твердость не более
не менее
ГОСТ 4543-71 Закалка с 860 °С в воде или масле; закалка с 760-810 °С в воде или масле; отпуск при 180 °С, охл. на воздухе или в масле 15 685 930 11 55 88
Цементация при 920-950 °С; закалка с 800-820 °С масле; отпуск при 160-200 °С, охл. на воздухе 60
100
830
690
980
830
12
10
55
50
118
78
HRCэ (59-64) *1 , HB 303 *2
HRCэ (57-63) *1 , HB 250 *2

Ударная вязкость прутков сечением 10 мм, KCU

Термообработка KCU, Дж/см 2 при температуре, °С
+20 -40
Закалка с 850 °С в масле; отпуск при 200 °С, 1 ч; HRCэ 37

Механические свойства при повышенных температурах

tисп, °С σ0,2, МПа σв, МПа δ5, % ψ, %
700 70 140 41 78
800 29 89 61 97
900 27 68 58 100
1000 23 44 63 100
1100 23 43 73 100
1200 12 25 70 100
1250 10 18 67 100

ПРИМЕЧАНИЕ: Образец диаметром 10 мм и длиной 50 мм, кованый и отожженый.
Скорость деформирования 5 мм/мин; скорость деформации 0,002 1/с.

Предел выносливости

Характеристики прочности σ-1, МПа τ-1, МПа
σ-1 = 680 МПа; σв = 960 МПа; HB 322 382
σ-1 = 610 МПа; σв = 730 МПа; HB 238 338 230
σв = 690 МПа; n = 10 δ 382-461 216-255
σв = 910 МПа 441 245

Технологические свойства

Температура ковки, °С: начала 1220, конца 800. Сечения до 100 мм охлаждаются на воздухе, сечения 101-300 мм — в яме.

Свариваемость — ограниченная. Способы сварки: РДС, АДС под флюсом.

Обрабатываемость резанием — Kv тв.спл. = 1,26 и Kv б.ст. = 0,95 в горячекатаном состоянии при НВ 183-187.

Склонность к отпускной хрупкости — склонна.

Прокаливаемость (ГОСТ 4543-71)

Твердость HRCэ на расстоянии от торца, мм (закалка 849 °С)
1,5 3,0 4,5 6,0 7,5 9,0 12 15 21,0 27,0
88,5-43 37-43 35-42 31,5-41 25-40,5 22-38,5 35 32 28,5 26,5

ППолоса прокаливаемости стали 12ХНЗА после нормализации при 850С и закалки с 840С

Полоса прокаливаемости стали 12ХНЗА после нормализации при 850 °С и закалки с 840 °С приведена на рисунке ниже.

Сталь марки Х12

Электрошлаковая наплавка стали Х12: электрошлаковую наплавку применяют, если площадь поверхности детали, подлежащей наплавке, достаточно велика. Ее выполняют как в нижнем, так и в вертикальном положении. Для высокохромистых ледебуритных сталей типа Х12 основными легирующими элементами являются углерод (1,2-2,3%) и хром (11,5-13,5%). Некоторые из сталей этого типа легируют незначительными добавками вольфрама, молибдена, азота, никеля, ванадия и титана. Основные легирующие элементы сообщают сталям высокую твердость, износостойкость, глубокую прокаливаемость и малую деформируемость при закалке. После отжига они удовлетворительно обрабатываются резцом.


Заготовки массой более 25 кг следует подогревать перед наплавкой, а после наплавки отжигать при температуре 700° С в течение 1-2 ч с медленным остыванием. Это позволит избежать, появления холодных трещин после наплавки.

Для последующей механической обработки наплавленное изделие отжигают по режиму: нагрев до 800-870° С, выдержка 1 - 4 ч, медленное охлаждение до 700° С, охлаждение на воздухе; суммарное время охлаждения должно составлять не менее 10 ч. После механической обработки изделие подвергают закалке с отпуском. Режимы закалки выбирают в зависимости от характера эксплуатации.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сталь х12 - расшифровка, характеристики, химический состав

Изделия из стали Х12 имеют высокую режущую способность. А кромка (режущая часть) сохраняет эту способность в течение длительного времени. Важно для эксплуатации – режущую кромку очень легко заточить, используя алмазный брусок, или специальный ремень с применением пасты.

Из недостатков – основной, это возможность возникновения питтинговой коррозии.

Химический состав Х12

Массовая доля элементов стали Х12 по ГОСТ 5950-2000

C
(Углерод)
Si
(Кремний)
Mn
(Марганец)
Cr
(Хром)
Fe
(Железо)
2 - 2,2 0,1 - 0,4 0,15 - 0,45 11,5 - 13,0 остальное

Буква «Х» в обозначении марки обозначает наличие в составе сплава хрома, а цифра – 12 % его содержания. Основной легирующий элемент в сплаве, оказывающий влияние на свойства – хром - 11 -13 %.

Влияние химического состава на свойства стали

2,0-2,2 % углерода и 11-13 % хрома в сплаве, влияют на стойкость изделий из него к повышенной влажности, а наличие карбидов железа, и особенно, правильно выполненная термическая обработка дают возможность закалки до 61-63 HRC.

Кроме того, данные основные легирующие добавки отвечают за повышенную твёрдость сплава. Они же придают сплаву высокую износостойкость.

Технологические свойства марки Х12

Свойства по стандарту ГОСТ 5950-2000

Термообработка: Закалка при температурах 940-970 °С, отпуск - 180-250 °С, отжиг - 800-830 °С.

Температура ковки: от 1100 до 850 °С, охлаждение выполняют медленно в колодцах.

Без ограничений Ограниченная Трудно свариваемая
Подогрев нет до 100-120°С 200-300°С
Термообработка нет есть отжиг

Дополнительные характеристики Х12

Ближайшие эквиваленты (аналоги) стали Х12.

США Германия Япония Англия Испания Китай Польша Чехия
ASTM,AISI DIN,WNr JIS BS UNE GB PN CSN
D3 1.2080 SKD1 BD3 F-5212 Cr12 NC11 19436
D4 1.2436 - - - - -
T30403 X210Cr12 - - - - - -
T30404 X210CrW12 - - - - - -

Дополнительные характеристики по стандарту ГОСТ 5950-2000

Сплав Х12 относят к инструментальным штамповым сталям, которые не подлежат сварке. Исходя из наличия в составе сплава высокого процента хрома, она считается высокохромистой. Незаменима при изготовлении деталей и элементов с высокой износостойкостью.

При этом изделия из стали Х12 не обладают устойчивостью к сильным ударам и стойкостью к высоким температурам и их перепадам. Хорошо подходит для изготовления инструментария для обработки пр. металлов в холодном состоянии.

Применение стали с учётом характеристик и свойств

Несмотря на то, что изначально сталь была создана для производства штампованного холодным методом инструмента (пилы, ножи для деревообработки, фрезы), сфера её применения сегодня существенно расширена.

Отличные характеристики стали Х2 обеспечивают её востребованность в различных сферах промышленности. Незаменима она при производстве холодных штампов (включая гибочные, просечные и формовочные), к которым предъявляются большие требования к высокой стойкости к истиранию (но не подверженные при эксплуатации сильным ударам и толчкам.

Сталь подходит для изготовления волочильных досок, фильеров для калибрования прутков под накатку резьбы, сложных по конфигурации секций кузовных штампов, штамповки рабочих элементов электрических машин, аппаратов и пр.

Читайте также: