Сталь х12ф1 закалка и отпуск

Обновлено: 16.05.2024

Файл "Х12Ф1" внутри архива находится в следующих папках: G, Х -. Документ из архива " ", который расположен в категории " ". Всё это находится в предмете " " из раздела "", которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. .

Онлайн просмотр документа "Х12Ф1"

Текст из документа "Х12Ф1"

Задание:

Для изготовления штампованного инструмента для горячей обработки давлением используют легированные (Cr, Si, W и др.) стали.

Подберите марку стали для изготовления матрицы для штамповки болтов, объясните ваш выбор, укажите оптимальный режим термообработки на твердость 45-50 HRC, постройте график t () для этой стали. Приведите основные сведения о стали: ГОСТ, химический состав, свойства, применение, достоинства, недостатки, другие марки того же типа, влияние легирующих элементов.

Для изготовления матрицы для штамповки болтов применяют сталь Х12Ф1.

Оптимальный режим термообработки Х12Ф1 на твердость 45-50 HRC.

Закалка при 850С, масло.

Закалка – термическая обработка, в результате которой в сплаве образуется неравновесная структура. Конструкционные и инструментальные стали закаливают для упрочнения.

После закалки на мартенсит и высокого отпуска свойства легированных сталей определяются концентрацией углерода в мартенсите. Чем она выше, тем больше твердость и прочность, ниже ударная вязкость. Легированные элементы влияют на механические свойства косвенно, увеличивая или уменьшая концентрацию углерода в мартенсите. Карбидообразующие элементы (Cr, Mo, W,V) увеличивают прочность связи атомов углерода с атомами твердого раствора, снижают термодинамическую активность (подвижность) атомов углерода, способствуют увеличению его концентрации в мартенсите, т.е. упрочнению. Таким образом, задача закалки — получение структуры мартенсита с максимальным процентным содержанием углерода.

Рассмотрим закалку Х12Ф1.

Критические температуры для Х12Ф1:

Для стали критическая температура Ас3 = 860С, а закалку производят при 850С, таким образом происходит неполная закалка.

При нагреве до температуры 810С структура сплава остается постоянной – перлит. Как только пройдена точка Ас1 на границах зерен перлита начинает зарождаться аустенит. Если бы сталь нагревалась до 850С, то весь перлит переходил бы в аустенит. В нашем случае мы имеем не полную закалку => температура не доходит до Ас3 , то не весь перлит переходит в аустенит, часть его остается в виде цементита. Таким образом, нагрев до 850С мы получили двухфазную структуру = цементит + аустенит.

Выдержка при заданной температуре:

После такой закалки заэвтектоидная сталь приобретает структуру, состоящую из мартенсита и цементита. Кристаллы цементита тверже кристаллов мартенсита, поэтому при неполной закалке заэвтектоидные стали имеют более высокую твердость, чем при полной. Так как сталь предварительно подверглась сфероизидирующему отжигу, избыточные карбиды округлой формы не вызывают снижения вязкости. Х12Ф1 для повышения теплостойкости (способность легированных сталей сохранять высокую твердость при t = 500 — 600С) нагревают до очень высоких температур (Ас3 - 10-15С ) близких у эвтектической. При этом происходит распад всех вторичных карбидов, аустенит обогащается не только углеродом, но и легирующими элементами, содержащими в карбидах. Для получения мартенситной структуры необходимо переохладить аустенит до температуры мартенситного превращения, следовательно, скорость охлаждения должна превышать критическую. Такое охлаждение наиболее просто осуществляется погружением закаливаемой детали в жидкую среду (вода или масло), имеющую температуру 20-25С. Однако иногда для предотвращения появления трещин условия охлаждения усложняют. В результате такой обработки получается теплостойкий мартенсит. Таким образом получили структуру, содержащую мартенсит => хорошие прочностные свойства.

2) Отпуск при 300С 1,5 часа на воздухе

Отпуск – термическая обработка, в результате которой в предварительно закаленных сталях происходят фазовые превращения, приближающие их структуру к равновесной.

Х12Ф1 подвергается отпуску при t = 300С — средний отпуск.

При отпуске происходит несколько процессов. Основной — распад мартенсита, состоящий в выделении углерода в виде карбидов. Кроме того, распадается остаточный аустенит, совершаются карбидное превращение и коагуляция карбидов, уменьшаются несовершенства кристаллического строения и остаточные напряжения. Фазовые превращения при отпуске принято разделять на три превращения:

а) Из мартенсита выделяется часть углерода, с гексагональной решеткой и по составу, близкий к Fe2C. Обеднение твердого раствора углерод происходит неравномерно: часть участок исходное содержание углерода. Такое превращение идет с очень маленькой скоростью и без нагрева. Уменьшение количества растворенного углерода снижает тетроганальность мартенсита — длина образца уменьшается. Наличие легированных элементов мало влияет на это превращение.

б) Происходит несколько процессов: продолжение распада мартенсита, распад аустенита, карбидное превращение. Распад мартенсита перестает носить неоднородный характер — он распространяется на весь объем. Распад остаточного аустенита происходит по следующему механизму: образуется смесь кристаллов низкоуглеродистого мартенсита и дисперсных карбидов. В Х12Ф1 достаточно большое процентное содержание хрома и кремния приводит к тому, что распад мартенсита замедляется и идет при чуть больших температурах, чем у нелегированных сталей. Карбидообразующие элементы, вследствие своего химического сходства с углеродом, мешают его диффузии, а также увеличивают силы межатомной связи в твердом растворе. В результате, такие стали, в том числе и Х12Ф1, приобретаю повышенную сопротивляемость отпуску. Структура, полученная в результате этих превращений, называется отпущенным мартенситом.

При таком отпуске твердость немного понижается, но сильно повышается пластичность. Так как структура отпущенной стали формируется в период выдержки при температуре отпуска, интенсивность последующего охлаждения не влияет на структурное состояние стали. Обычно от температуры отпуска образцы охлаждают на спокойном воздухе.

Назначение легирования

Легирующие элементы вводят с целью повышения конструкционной прочности стали, что достигается при их использовании в термически упрощенном состоянии — после закалки и отпуска. В отожженном состоянии легированные стали практически не отличаются от углеродистых. В связи с этим обеспечение необходимой прокаливаемости — первостепенная задача легирования. Легирующие элементы повышают устойчивость переохлажденного аустенита, снижают критическую скорость закалки и увеличивают прокаливаемость. Возможность менее резкого охлаждения при закалке уменьшает в них напряжения и опасность образования трещин.

Химический состав

С (углерод) — 1,25–1,4 5%

Si (кремний) — 0,15-0,35 %

Mn (марганец) — 0,15-0,40 %

Cr (хром) — 11,0-12,50 %

V (ванадий) — 0,70-0,90 %

S (сера) — (не более) 0,030 %

P (фосфор) — (не более) 0,030 %

Ni (никель) — (не более) 0,35 %

Cu (медь) — (не более) 0,30 %

Сведения о стали

 Температура ковки — начала: 1160С

 Сечения до 200 мм подвергаются низкотемпературному отпуску с одним переохлаждением.

 Свариваемость — не применяют для сварных конструкций.

 Обрабатываемость резанием — в горячекатаном состоянии при НВ 217 – 223.

 Склонность к опускной хрупкости — не склона.

 Флокеночувствительность — не чувствительна.

 Твердость — 50-60 HCR (в зависимости от температуры отпуска)

 Вязкость — 25-35 Дж/см 3 (в зависимости от температуры отпуска)

 0,2 = 540-590 Мпа (в зависимости от сечения)

Применение

Профилировочные ролики сложной формы, эталонные шестерни, накатные плашки, волоки, секции кузовных штампов сложной формы, сложные дыропрошивные матрицы при формовке листового металла, матрицы и пуассоны вырубных и просечных штампов, матрицы и пуассоны холодного продавливания, работающие при давлении до 1400 — 1600 МПа.

Режимы термической обработки для сталей Х12Ф1 (Х12М)

Примечание: I – обычный режим; II – применяют, если обработка по режиму I не обеспечивает необходимой вязкости; III – для режущих инструментов, когда требуется износостойкость; IV – используют тогда, когда требуется неизменность размеров.

Поскольку в стали типа X12 количество остаточного аустенита колеблется в широких пределах (почти от 0 до 100 %), то изменение объёма, которое наблюдается при закалке, также значительно. При закалке на мартенсит сталь приобретает объём больший, чем исходный, а при закалке на аустенит – меньший
(см. кривую Δl на рис. 3.5). При некоторой температуре соотношение получающегося аустенита и мартенсита таково, что объём закалённой стали точно равен исходному. Как следует из графика, приведённого на рис. 3.5, это будет происходить при закалке от 1120 °С, когда фиксируется около 40 % остаточного аустенита при твёрдости около HRС 58 (в этом случае Δl = 0). Однако возможные колебания в температуре закалки, условиях охлаждения и других деталях термического режима, как правило, приводят к тому, что размеры штампа не окажутся точно равными исходным.

Если размеры штампа уменьшились, то дается отпуск при 520 °С. В ре­зультате такого отпуска остаточный аустенит превратится частично в мартен­сит, и размеры штампа увеличатся. Если размеры штампа при закалке увели­чились (штамп «вырос»), то проводят отпуск при 350 °С. Аустенит при этих температурах отпуска остаётся, а тетрагональный мартенсит превращается в отпущенный, и размеры штампа уменьшаются.

Эта операция носит название термической доводки. В результате терми­ческой доводки можно довести размеры крупных штампов до требуемого зна­чения с точностью ±0,1 мм.

Стали Х12Ф1, Х12М и им подобные мало деформируются при закалке, а при применении термической доводки деформацию можно свести практически к нулю. Поэтому эти стали следует рекомендовать для инструмента сложной формы, для которого деформация при закалке недопустима. Существенным недостатком стали Х12 является пониженная механическая прочность, обусловленная наличием в этой стали большого количества карбид­ной фазы. Поскольку карбидов будет тем больше, чем больше углерода в ста­ли, то сталь Х12 (с 2,0–2,3 % С) применяют лишь для неответственных по назначению и для простого по конструкции инструмента.

Для сталей типа Х12, как и для быстрорежущих сталей, большое значение имеет распределение карбидной фазы. Строчечное распределение карбидов, скопление карбидов, т. е. все то, что называется «карбидной ликвацией», силь­но ухудшает прочность стали. Чем больше уков, а следовательно, чем меньше сечение металла (заготовки, прутка), тем сильнее раздробляются скопления карбидов, тем лучше качество стали (рис. 3.6, а, б). Поэтому основательную проковку следует рекомендовать в тех случаях, когда штамп имеет крупные размеры. Уковка в этом случае достигается попеременной осадкой и вытяж­кой. Однако не всегда удается устранить в необходимой сте­пени «карбидную ликвацию».

Сталь рассматриваемого класса, но с меньшим содержанием углерода и хрома и менее склонная к карбидной ликвации, обозначается мар­кой Х6ВФ. Она содержит меньше карбидов, чем сталь типа XI2 (12–14 % карбида Cr7С3 в отожженной стали Х6ВФ против 15–17 % в стали Х12Ф1 и 25–30 % в стали Х12), и при прочих равных условиях карбидная ликвация у неё меньше (рис. 3.6, б).


Рис. 3.6. Микроструктура стали, ´ 100:

Поведение стали Х6ВФ при термической обработке такое же, как и сталей типа Х12, однако повышение температуры закалки не приводит к тако­му резкому растворению карбидной фазы, как у сталей типа X12. Поэтому эта сталь обычно закаливается от 1000±10 °С (для получения максимальной твёрдости). При этом около 8 % карбидов из 12 % перейдёт в раствор, и мартенсит будет содержать около 5 % Сг.

Такой мартенсит достаточно устойчив против отпуска. Отпуск при
200 °С снижает твёрдость до HRС 58, а дальнейшее повышение температуры (до 500–525 °С) снижает твёрдость в незначительной степени – от 58 до
55–56 HRС. Поскольку прочность и вязкость также мало изменяются в этом же интервале температур отпуска (такое изменение свойств характерно и для сталей типа Х12), то сталь Х6ВФ отпускают или при 150 °С (дл сохранения высокой твёрдости), или при 200 °С (для некоторого повыше вязкости). Из этого следует, что области применения и режимы термической обработки сталей Х6ВФ и Х12Ф1 в общем похожи, только сталь Х6ВФ отличается более высокой прочностью, но меньшей износоустойчивостью, что является следствием меньшего количества в ней карбидной фазы.







Сталь х12 - расшифровка, характеристики, химический состав

Изделия из стали Х12 имеют высокую режущую способность. А кромка (режущая часть) сохраняет эту способность в течение длительного времени. Важно для эксплуатации – режущую кромку очень легко заточить, используя алмазный брусок, или специальный ремень с применением пасты.

Из недостатков – основной, это возможность возникновения питтинговой коррозии.

Химический состав Х12

Массовая доля элементов стали Х12 по ГОСТ 5950-2000

C
(Углерод)
Si
(Кремний)
Mn
(Марганец)
Cr
(Хром)
Fe
(Железо)
2 - 2,2 0,1 - 0,4 0,15 - 0,45 11,5 - 13,0 остальное

Буква «Х» в обозначении марки обозначает наличие в составе сплава хрома, а цифра – 12 % его содержания. Основной легирующий элемент в сплаве, оказывающий влияние на свойства – хром - 11 -13 %.

Влияние химического состава на свойства стали

2,0-2,2 % углерода и 11-13 % хрома в сплаве, влияют на стойкость изделий из него к повышенной влажности, а наличие карбидов железа, и особенно, правильно выполненная термическая обработка дают возможность закалки до 61-63 HRC.

Кроме того, данные основные легирующие добавки отвечают за повышенную твёрдость сплава. Они же придают сплаву высокую износостойкость.

Технологические свойства марки Х12

Свойства по стандарту ГОСТ 5950-2000

Термообработка: Закалка при температурах 940-970 °С, отпуск - 180-250 °С, отжиг - 800-830 °С.

Температура ковки: от 1100 до 850 °С, охлаждение выполняют медленно в колодцах.

Без ограничений Ограниченная Трудно свариваемая
Подогрев нет до 100-120°С 200-300°С
Термообработка нет есть отжиг

Дополнительные характеристики Х12

Ближайшие эквиваленты (аналоги) стали Х12.

США Германия Япония Англия Испания Китай Польша Чехия
ASTM,AISI DIN,WNr JIS BS UNE GB PN CSN
D3 1.2080 SKD1 BD3 F-5212 Cr12 NC11 19436
D4 1.2436 - - - - -
T30403 X210Cr12 - - - - - -
T30404 X210CrW12 - - - - - -

Дополнительные характеристики по стандарту ГОСТ 5950-2000

Сплав Х12 относят к инструментальным штамповым сталям, которые не подлежат сварке. Исходя из наличия в составе сплава высокого процента хрома, она считается высокохромистой. Незаменима при изготовлении деталей и элементов с высокой износостойкостью.

При этом изделия из стали Х12 не обладают устойчивостью к сильным ударам и стойкостью к высоким температурам и их перепадам. Хорошо подходит для изготовления инструментария для обработки пр. металлов в холодном состоянии.

Применение стали с учётом характеристик и свойств

Несмотря на то, что изначально сталь была создана для производства штампованного холодным методом инструмента (пилы, ножи для деревообработки, фрезы), сфера её применения сегодня существенно расширена.

Отличные характеристики стали Х2 обеспечивают её востребованность в различных сферах промышленности. Незаменима она при производстве холодных штампов (включая гибочные, просечные и формовочные), к которым предъявляются большие требования к высокой стойкости к истиранию (но не подверженные при эксплуатации сильным ударам и толчкам.

Сталь подходит для изготовления волочильных досок, фильеров для калибрования прутков под накатку резьбы, сложных по конфигурации секций кузовных штампов, штамповки рабочих элементов электрических машин, аппаратов и пр.

Сталь Х12МФ: характеристики, расшифровка, химический состав

Плотность, г/см 3 : 7,71*
* Типичное значение свойства для низкоуглеродистой и низколегированной стали. Эта величина не предусмотрена стандартами, она носит ориентировочный характер и не может быть использована с целью проектирования

Технологические свойства марки Х12МФ

Твердость материала HB 10 -1 = 255 МПа
Температура ковки Начала 1140 °С, конца 850 °С. Охлаждение в колодцах или термостатах
Температура критических точек Ac1 = 810 , Ac3(Acm) = 860 , Ar3(Arcm) = 780 , Ar1 = 760 , Mn = 225
Свариваемость материала Не применяется для сварных конструкций
Склонность к отпускной хрупкости Склонна
Обрабатываемость резанием В горячекатанном состоянии при HB 217-228 и σв=710 МПа, К υ тв. спл=0,8 и Кυ б.ст=0,3

Сталь марки Х12МФ характеризуются высокой степенью технологичности. Её можно обрабатывать по различным технологиям (см. табл.). Резанием сталь можно обрабатывать при определённых условиях (см. табл.). Ковку выполняют при температурных режимах – от 1140 °С до 850 °С. Охлаждать необходимо в в термостатах, либо в колодцах. Удовлетворительная степень шлифовки.

Дополнительные характеристики Х12МФ

Сварка стали Х12МФ

Основная сфера использования — машиностроительное производство, конкретно тяжёлое машиностроительное производство. По своему назначению, это штамповая сталь, предназначенная для обработки под давлением: прокат, вырубка, штамповка, вырубка и пр. – в основном производство изделий сложных форм и конфигураций.

Форма поставки стали Х12МФ

Поставляется: любой прокат, прутки - калиброванные и шлифованные, круги, серебрянка, полосы, листы и пластины, болванки, слябы, кованые заготовки и поковки.

Применение стали Х12МФ с учётом характеристик и свойств

Сталь марки х12мф используют, когда для изделия необходима высокая степень вязкости - для производства штампов с высоким уровнем стойкости к истиранию, которые при эксплуатации не подвергаются механическому воздействию - ударам, волочильных досок, глазков для изготовления прутковых заготовок под резьбу.

За счёт того, что сталь не подвержена короблению, и изменению формы при нагревании, она подходит для изготовления штампов, кузовных секций, пуансонов и матриц для вырубных и просечных штампов, штампованных элементов электромашин и электроаппаратов.

Особенно востребована данная сталь для изготовления охотничьих ножей. С этой сталью привыкли работать все производители этой продукции. Ножи из стали марки х12мф популярны, благодаря таким качествам стали, как упругость, стойкость к коррозии, долговечность, сопротивление ударам и сжатию.

Читайте также: