Сталь имеющая максимальное относительное удлинение

Обновлено: 14.05.2024

ГОСТ Р ИСО 2566-1-2009

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕРЕВОД ЗНАЧЕНИЙ ОТНОСИТЕЛЬНОГО УДЛИНЕНИЯ

СТАЛЬ УГЛЕРОДИСТАЯ И НИЗКОЛЕГИРОВАННАЯ

Steel. Conversion of elongation values. Part 1. Carbon and low alloy steel

Дата введения 2010-06-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 ПОДГОТОВЛЕН И ВНЕСЕН Техническим комитетом по стандартизации ТК 145 "Методы контроля металлопродукции" на основе аутентичного перевода стандарта, указанного в пункте 3, выполненного ФГУП "СТАНДАРТИНФОРМ"

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 11 декабря 2009 г. N 732-ст

3 Настоящий стандарт идентичен международному стандарту ИСО 2566-1:1984 "Сталь. Перевод значений относительного удлинения. Часть 1. Сталь углеродистая и низколегированная" (ISO 2566-1:1984 "Steel - Conversion of elongation values - Part 1: Carbon and low alloy steels")

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт устанавливает способ перевода значений относительного удлинения при комнатной температуре после разрушения образца, полученных на различных пропорциональных и непропорциональных длинах баз, в другие длины баз.

Стандарт распространяется на углеродистые, марганцевоуглеродистые, молибденовые и хромомолибденовые стали с пределом прочности на растяжение от 300 до 700 Н/мм в горячекатаном и нормализованном состояниях с отпуском или без него.

Способ перевода не распространяется на стали:

a) обжатые в холодном состоянии;

b) закаленные и отпущенные;

Этот способ перевода не следует использовать, если длина базы превышает значение, равное 25 , а также если отношение ширины к толщине испытуемого образца превышает 20.

2 Обозначения

Обозначения, применяемые в настоящем стандарте, приведены в таблице 1.

Относительное удлинение на длине базы после разрушения, полученное при испытаниях, %

Относительное удлинение на другой длине базы, для которой требуется перевод, %

Диаметр испытуемого образца

Исходная длина базы

Начальная площадь поперечного сечения испытуемого образца

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 длина базы (gauge length): Любая длина параллельного участка испытуемого образца, которую используют для измерения деформации. Этот термин применяют для обозначения исходной длины базы , отмеченной на испытуемом образце, для определения относительного удлинения после разрушения.

3.2 пропорциональная длина базы (proportional gauge length): Длина базы, имеющая установленную зависимость с квадратным корнем из поперечного сечения, например 5,65 .

3.3 непропорциональная длина базы (non-proportional gauge length): Длина базы, не связанная определенным образом с площадью поперечного сечения испытуемого образца, которая имеет определенный размер, например 50 мм.

4 Основная формула

Данные настоящего стандарта основаны на формуле Оливера, которую в настоящее время широко используют для перевода относительных удлинений.

Формулу Оливера представляют следующим уравнением

где - требуемое относительное удлинение на длине базы ;

- относительное удлинение на длине базы 4.

Используя формулу (1), можно перевести относительное удлинение на длине базы 4 в эквивалентное значение относительного удлинения для испытуемого образца с площадью поперечного сечения и длиной базы . Для длины базы, равной 5,65, формула принимает следующий вид

где - относительное удлинение на длине базы, равной 5,65.

По формуле (2) рассчитаны значения показателей таблиц 2-22 и рисунков 1-5.

5 Перевод из одной пропорциональной длины базы в другую пропорциональную длину базы

Для переводов относительных удлинений используют коэффициенты умножения, определяемые по формуле (1). В таблице 2 приведены соотношения для ряда наиболее широко используемых пропорциональных длин образцов.

Подробные переводы относительных удлинений, полученных на длине базы 4, в удлинения на длине базы 5,65 приведены в таблице 6.

6 Перевод из одной непропорциональной длины базы в другую непропорциональную длину базы для испытуемых образцов с одинаковой площадью поперечного сечения

Перевод значений относительных удлинений различных фиксированных длин баз на испытуемых образцах с одинаковой площадью поперечного сечения также выполняют, используя коэффициенты. Коэффициенты перевода для длин баз 50, 80, 100 и 200 мм приведены в таблице 3.

7 Перевод из пропорциональной длины базы в непропорциональную длину базы

Коэффициенты перевода изменяются в соответствии с площадью поперечного сечения непропорционального испытуемого образца.

В таблице 4 приведены коэффициенты умножения для перевода относительного удлинения на длине базы 5,65 в эквивалентное удлинение для постоянных длин баз, равных 50, 80, 100 и 200 мм, для диапазона площадей поперечного сечения. Для переводов в обратном порядке, т.е. удлинения на постоянной длине базы в эквивалентное удлинение на базе 5,65, используют обратные значения коэффициентов.

Примеры:

a) Удлинение 20% на базе 5,65 эквивалентно удлинению, равному 20·1,139=22,78% на базе испытуемого образца шириной 25 мм, толщиной 6 мм и длиной базы 50 мм (таблица 4).

b) Удлинение 25% для образца для испытаний с поперечным сечением 40х10 мм и длиной базы 200 мм эквивалентно удлинению, равному 25·1/0,796=31,4% на базе 5,65 (таблица 4).

Из приведенных примеров видно, что переводы, включающие другие пропорциональные длины баз, могут быть получены с помощью предварительного или последующего использования коэффициентов, представленных в таблице 2.

Таблицы 7-10 можно использовать для того, чтобы получить некоторые из таких переводов, а таблицы 15-18 - для получения относительного удлинения на стандартной длине базы, соответствующей длине базы 5,65.

Таким же образом таблицы 11-14 используют для перевода для базы 4, а таблицы 19-22 - для относительных удлинений на фиксированных длинах баз в соответствующие удлинения на базе 4.

8 Перевод из непропорциональной длины базы в другую непропорциональную длину базы для испытуемых образцов с различной площадью поперечного сечения

Эти вычисления предпочтительно выполнять в два этапа с начальным переводом на базу 5,65.

Пример - Относительное удлинение, равное 24% для испытуемого образца с базой 200 мм и поперечным сечением 40х15 мм, переводят в удлинение испытуемого образца с сечением 30х10 мм и длинами баз, равными 200, 100 и 50 мм.

24·1/0,863=27,8% - для базы 5,65 (таблица 4).

27,8·0,752=20,9% - для образца с сечением 30х10 мм и длиной базы 200 мм.

27,8·0,992=27,6% - для образца с сечением 30х10 мм и длиной базы 100 мм.

27,8·1,309=36,4% - для образца с сечением 30х10 мм и длиной базы 50 мм.

Относительное удлинение для других пропорциональных длин баз могут быть получены с использованием коэффициентов, представленных в таблице 2.

9 Применение рисунков 1-5

9.1 Рисунки 1-5 могут быть использованы в качестве альтернативного метода для ускоренного выполнения перевода относительных удлинений.

9.2 Рисунки 1-4 могут быть использованы для переводов между длинами баз 5,65 и 50 мм; 5,65 и 200 мм; 4 и 50 мм и 4 и 200 мм, соответственно.

Все о пределе и классах прочности стали

Прочность металлоконструкций – та характеристика металла, от которой особенно зависит их безопасность и надежность. Долгое время вопрос прочности решался так: если ломается изделие, в следующий раз его нужно сделать толще. Но потом ученые поняли, что нужно менять качественный состав сплава.



Что это такое?

Пределом прочности называется максимальное значение напряжений, который металл испытывает до начала разрушения. С точки зрения физики это сводится к усилию растяжения, прилагаемого к стержневидному образцу конкретного сечения, чтобы его разорвать. Кстати, понятие «предел прочности» хотя и употребляется повсеместно, не самое корректное.

Правильнее говорить «временное сопротивление», но раз предыдущий вариант уже прижился, и даже в официальной технической документации, можно простить это небольшое смысловое искажение.

Прочностные испытания – это тесты, проверяющие сопротивление разрыву, и они организовываются на особых испытательных стендах. В них недвижимо крепится один конец тестируемого образца, к другому же подсоединяют крепление гидравлического либо электромеханического привода. Этот привод создает усилие, которое, в свою очередь, плавно увеличивается. Оно действует на разрыв образца, на его изгиб либо скручивание. А благодаря умной электронной системе контроля можно отметить усилие растяжения и относительное удлинение, а также иные виды деформаций.



Такие испытания крайне важны, и специально для них создаются те станки, формируются те условия, которые максимально приближены к производственным. Они дают если не самую точную, то вполне достоверную оценку того, как металл будет вести себя в контексте эксплуатации. И прочность материала оценивается очень точно, а именно нужно посмотреть, как металл выдерживает нагрузку, не разрушаясь полностью. Если материал хрупкий, например, он может разрушаться сразу в нескольких местах.

Иначе говоря, предел прочности – есть максимальная механическая сила, которая может применяться к объекту до того, как тот начнет разрушаться. Только нет речи о химическом воздействии, но вот о каких-то негативных природных условиях, об определенных показателях среды говорить можно. Именно они могут как улучшать свойства металла, так и ухудшать их. Инженер не может при проектировании применить крайние значения, ведь он должен подразумевать погрешность, связанную с окружающими факторами, с длительностью использования и так далее.

Сталь – самый применяемый конструкционный материал, хотя и уступающий сейчас пластмассам и композитным составам, если и не полностью, то по ряду важных позиций. Если расчет предела прочности сделан корректно, материал будет долговечным и безопасным. Предел прочности стали связан с тем, о какой именно марке речь. На значение этого параметра влияет химический состав сплава, а также те температурные процедуры, которые могут повысить прочность материала – это и закалка, и отпуск, и отжиг.




Отдельные примеси могут снизить показатели прочности, а потому от них лучше избавляться еще во время отливки либо проката. Другие, напротив, повышают показатели. И их вносят в состав сплава.

Примеры легирующих добавок в сплавах, меняющих их характеристики: добавляет сплаву прочности молибден, ванадий и никель.

Металлурги усложняют комбинации добавок, чтобы получить особые сочетания физических и механических характеристик стали. Но цена таких марок куда выше цены низкоуглеродистых стандартных сплавов. И для каких-то очень важных узлов и конструктивных систем использование дорогих сталей оправдано.

Виды предела прочности

Немного подробнее о том, какими они бывают.

При сжатии

Под таким термином понимается пороговая величина постоянного или переменного механического напряжения. Превышая этот предел, механическое напряжение сожмет тело из того или иного материала. Тело либо разрушится, либо деформируется. Пороговая величина постоянного напряжения соответствует статическому пределу прочности, переменного – динамическому. Механическое напряжение сжимает тело за небольшой период времени.

При растяжении

А это уже пороговая величина постоянного или переменного механического напряжения, превышение которого механическим напряжением приведет к разрыву металлического тела. И это также происходит за короткий временной эпизод. На практике же очевидно, что деталь может неприемлемо истончиться, и этого уже достаточно для понимания пороговой величины, не обязательно дожидаться именно разрывания тела.

При кручении

Под этим термином понимаются максимальные касательные напряжения, которые обычно возникают в опасном срезе вала, и они не могут превысить допустимые напряжения. Условие прочности может использоваться для расчета проверки прочности (так называемого проверочного расчета), подбора сечения и определения допускаемого крутящего момента.

При изгибе

Он пребывает в обратной зависимости от твердости и возрастает с увеличением процентного содержания цементирующего металла. То есть на прочность при изгибе будет влиять химический состав сплава, а еще величина зерен карбидов и особенности слоев цементирующего металла.

Немалое значение здесь приобретает величина прослоек цементирующей фазы. Чем эта прослойка толще, тем меньше местные напряжения и тем выше прочность. Чем меньше прослойки цементирующей фазы, тем меньше и прочность сплава. Хорошо считывается пропорциональность. Чтобы определить этот предел прочности, нужно использовать метод разрушения свободно лежащего образца одной сосредоточенной силой.

То есть образец будет лежать на двух опорах, в центре образца – статическая нагрузка.

Особенности классов

Чтобы унифицировать стали по гарантированным пределам прочности (а точнее, текучести и временному сопротивлению разрыву), стали делятся на классы. Всего их 7.

И вот эта классификация:

  • сталь класса С225 – это сталь нормальной прочности (условное название);
  • 3 последующих класса (от 285 до 390 МПа) – сталь повышенной прочности;
  • оставшиеся три класса (от 440 до 735 МПа) – сталь высокой прочности.

Первый класс обычно связывается с прокатом углеродистой обыкновенной стали в горячекатаном состоянии. Последующие классы (от второго до пятого) ассоциированы с прокатом низколегированной стали в нормализованном либо горячекатаном состоянии. Шестой и седьмой классы прочности связаны с прокатом экономно легированной стали, которая обычно поставляется в термооптимизирванном состоянии.



Правда, прокат второго и третьего класса реально получить термическим и термомеханическим упрочнением. А, возможно, и контролируемой прокаткой.

Категории прочности сталей согласно ГОСТ 977-88 условно принято обозначать индексами «К» и «КТ». А после индекса ставится число, которое и определяет требуемый предел текучести. Индекс «К» носят отожженные стали, нормализованные или отпущенные. «КТ» же присваивают сталям, которые прошли закалку и отпуск. Например, К48, К52, К60 и т. д.

Уже не раз упоминался в тексте предел текучести, стоит немного расшифровать этот показатель. Он связан с механическим определением металла, характеризующим напряжение, при котором будут расти деформации, не сопряженные с увеличением нагрузки. Этот параметр, в частности, помогает рассчитать допустимые показатели напряжения для разных материалов.

Когда в металле пройден предел текучести, в образце начнутся некорректируемые изменения: перестроится кристаллическая решетка, появятся деформации пластического типа. Металл ожидает самоупрочнение. Здесь же стоит добавить, что если углеродная добавка не превышает 1,2%, предел текучести стали растет, как следствие, повышая прочность, твердость, а еще и термоустойчивость. Если процент углерода возрастет, технические параметры однозначно будут ухудшаться – такая сталь плохо поддается сварке, не лучшим образом демонстрирует себя и в штамповке. В той же сварке куда охотнее используются сплавы, где углерода мало.

Если вернуться к классам прочности, то всегда важно рассмотреть, о каких именно изделиях идет речь. Например, винты, шпильки и болты производят обычно из углеродистых сталей с разными классами прочности. Хотя, в принципе, даже из одной и той же стали можно соорудить болты, прочность которых будет разной. Просто отличаются способы обработки металла и использование/неиспользование закалки. Из стали 35, к примеру, делаются болты разных классов прочности: 5.6 – если болты вытачиваются на токарном (либо фрезерном) станке и 6.6, 6.8 – если используется объемная штамповка и высадочный пресс. А если сталь закалить, класс прочности возрастает до 8.8.



Показатели для разных марок

Сталь, как известно, это сплав железа с углеродом и некоторыми другими включениями. Так как используется она в огромном перечне промышленных отраслей, то и марок стали существует немало. Все они различны по структуре, по химсоставу, физическим и механическим характеристикам. Предел прочности тоже будет разным, и измеряют его в МПа.

Например, у стали 20 он равен 420 МПа, у стали 40 – 580 МПа, у стали 10 – 340, у стали 30 – 500, у стали 25 – 460, а у стали 45 – возрастает до 610. Сталь 20Х имеет предел прочности 600 МПа, а сталь Ст3 – 390. Максимальный предел прочности имеет марка 60С2А (1600 МПа), повышенные показатели у марки 50ХФА (1300), 60С2 (тоже 1300).






Также в металлургии учитывается и коэффициент запаса – показатель, который определяет, как конструкция выдерживает предполагаемые нагрузки сверх расчета. Это важно для исключения повреждений, если случились промахи в проектировании, неточности. Или не в проектировании, а уже в ходе изготовления и использования.

Любой специалист скажет, что крайне важно для сплавов, которые будут работать в стандартных условиях, оценить их физико-механические особенности. Химические свойства же становятся важны, если работать сталь будет в экстремальном контексте (с точки зрения радикально низких либо, напротив, высоких температур), при высоком давлении или повышенной влажности, в агрессивных средах.

И химсвойства сплавов, и физико-механические определяются в основном их химическим составом. Чем больше процент углерода в металле, тем больше снижается его пластичность, и в параллель с этим возрастает прочность. Но данное утверждение справедливо только до достижения 1% доли углерода, после чего прочностные характеристики очевидно снижаются.

Чтобы влиять на качества металла, на его возможности, на коррекцию тех или иных свойств (даже в пределах одной марки или группы марок), металлурги пробуют добавлять в формулу стали те или иные компоненты. Например, кремний используется как раскислитель, и при производстве ферритов он серьезно поднимает их прочность. Но пластичность при этом остается прежней.

А вот если в состав добавить азот, прочностные параметры существенно снизятся, и пластичность, впрочем, тоже.

Можно сказать в итоге, что предел прочности – не рядовая характеристика стали. Современному производству, как показывает практика, необходимо все больше именно прочных стальных изделий. Это касается и строительства зданий, и сооружения сверхновых мостов, готовых к высочайшим нагрузкам. И один из ключевых вопросов сегодня в этой сфере – как рассчитать прочность металла и значение напряжения арматуры из стали.

Марки высокопрочной стали

Сталь является одним из самых важных материалов, который используется практически во всех отраслях промышленности. К высокопрочной стали (в зависимости от области применения) предъявляют различные требования. Марки сталей отличаются по структуре, химическому составу и по своим свойствам (физическим и механическим).

Сталью называют деформируемый сплав железа с углеводом (не более 2 процентов) и примесями других элементов: марганца, кремния, фосфора. К высокопрочному крепежу предъявляются особые требования. Поэтому для получения стали, которая будет идеально соответствовать всем характеристикам добавляют специальные примеси – легирующие элементы. Это – хром, вольфрам, ванадий, титан, марганец или кремний.

Именно такая сталь пользуются наибольшим спросом в строительстве. Причина такой популярности – технологичность, прочность и привлекательная цена. Еще одно преимущество этого сплава – возможность изготавливать из нее изделия, которые выдерживают большую нагрузку и обладают хорошей сопротивляемостью ударам.

Сталь 3 производят по ГОСТ 380-94, согласно ему сталь маркируются буквами «Ст» с порядковым номером от 0 до 6. Чем выше этот номер, тем большее количество углерода содержится в стали. А значит, лучше прочность, но при этом хуже пластические характеристики. Сталь 3 хорошо сваривается, нефлокеночувствительна, не склонна к отпускной хрупкости. Сталь 3 содержит: углерод – 0,14-0,22%, кремний – 0,05-0,17%, марганец – 0,4-0,65%, никель, медь, хром – не более 0,3% , мышьяк не более 0,08%, серы и фосфора – до 0,05 и 0,04%. Количество этих компонентов в сплаве Ст3 не допускается выше указанных значений.

Основа стали – феррит. Его характеристики не позволяют использовать его в чистом виде. Для улучшения показателя прочности феррита сталь насыщают углеродом, добавляют (легируют) хром, никель, кремний, марганец и проводят дополнительное термическое упрочнение.

Сталь 3 выдерживает широкий температурный диапазон при переменных нагрузках. Хорошо сваривается, штампуется в холодном и горячем состоянии, подвергается вытяжке. Применяется без термической обработки.

Без ограничений - сварка производится без подогрева и без последующей термообработки. В стали, относящейся к хорошей, содержание углерода составляет менее 0,25%. Они свариваются без образования закалочных структур и трещин в широком диапазоне режимов сварки.

Такой вид стали применяют для деталей, которые требуют высокой пластичности и сопротивления удару. Качественные углеродистые стали типа 35 изготавливают по ГОСТ 1050-88 и маркируют двухзначными цифрами, которые указывают среднее содержание углерода в сотых долях процента. Например, сталь 35 (0,35 %). Она обладает высокой прочностью (σв = 640…730 МПа, σ0,2 = 380…430 МПа) и относительно низкой пластичностью (δ = 9…14 %, ψ = 40…50 %). Кроме того, этот тип стали не восприимчив к средним напряжениям, обладает стойкостью к деформации и износостойкостью, не подвержен образованию трещин и коррозии. Поэтому именно сталь 35 используют при производстве высокопрочного крепежа и фланцевых соединений. Температурный диапазон: от -40 до +450 градусов Цельсия

Сталь 35 сваривается ограниченно. Способы сварки РДС, АДС под флюсом и газовой защитой, ЭШС. Рекомендуем подогрев и последующую термообработку. КТС без ограничений.

Сталь конструкционной марки 35 сваривается ограниченно. С увеличением углерода в стали зона термического влияния и шов закаливаются, увеличивается твердость, сварные соединения становятся более хрупкими и склонными к образованию трещин.

Удовлетворительные стали имеют содержание углерода от 0,25 до 0,35%. Они мало склонны к образованию трещин и при правильных режимах сварки получается качественный шов. Для улучшения качества сварки часто применяют подогрев.

Крепежные изделия из стали 35Х обладают высокой конструктивной прочностью, гарантируют надежность конструкции. Кроме того, сталь 35Х хорошо сопротивляется ударным нагрузкам, обладает большим запасом вязкости и высоким сопротивлением усталости. Также, сталь 35Х имеет высокое сопротивление износу, коррозии, трещинам и другим дефектам.

Главное преимущество крепежа из легированной конструкционной стали 35Х перед углеродистыми – это более высокая прочность за счет упрочнения феррита и большей прокаливаемости, меньший рост аустенитного зерна при нагреве и повышенная ударная вязкость. А уровень механических свойств повышен за счет термической обработке.

Сталь марки 40Х содержит 0,40% углерода и менее 1,5% хрома. Эта сталь довольно трудносвариваема. Поэтому, чтобы получить качественное сварное соединение, необходимы дополнительные операции. При сварке потребуется подогрев до 200-300 градусов, а потом – термообработка путем отжига.

Благодаря добавлению хрома, крепежные изделия из ст.40Х обладают твердостью, прочностью, жаропрочностью и устойчивостью к коррозии. Сталь 40Х рассчитана на значительные нагрузки. Механические свойства стали 40х: предел кратковременной прочности – 570 – 940 МПа, предел пропорциональности – 320 – 800 МПа, относительное удлинение – 13 – 17%, относительное сужение – 35 – 55%, ударная вязкость – 400 – 850 кДж/кв.м.

Плюсы этой марки стали: устойчивость к действию высоких и низких температур и их резким перепадам, могут использоваться под открытым небом и даже в агрессивных, влажных средах. Еще одно неоспоримое преимущество крепежных изделий именно из этой марки стали – это отсутствие необходимости обрабатывать и очищать поверхность.

Сталь марки 45 обладает высокой стойкостью и прочностью. Сталь 45 применяют при изготовлении деталей механизмов, используемых при повышенных нагрузках и требующих сопротивления (ударам, трению). Механические свойства этой стали позволяют ей выдерживать значительные перепады температур и другие неблагоприятные климатические воздействия. Эта сталь способна выдержать температурные испытания от 200 до 600 градусов по Цельсию.

Сталь марки 45 — среднеуглеродистая; идеально подходит для изготовления деталей, требующих высокой прочности или высокой поверхностной твердости, а также деталей средненагруженных и не подвергающихся в работе истиранию.

Высокоуглеродистую сталь марки 45 рекомендуют соединять контактной сваркой. Ограниченно свариваемые стали имеют содержание углерода от 0,36 до 0,45% и склонны к образованию трещин. Сварка требует обязательного подогрева. При их сварке требуются специальные технологические процессы.

Обозначение 09Г2С указывает, что в стали присутствует 0,09% углерода, буква «Г» означает марганец, а цифра 2 – процентное содержание до 2% марганца. Буква «С» означает кремний, содержание кремния менее 1%.

Главное преимущество этой стали – высокая механическая прочность, которая позволяет применять более тонкие детали по сравнению с деталями, изготовленными из других сталей. А значит, детали из стали 09Г2С имеют меньший вес, что экономически более выгодно. Кроме того, еще один плюс этой стали – низкая склонность к отпускной хрупкости.

Марка стали 09Г2С широко используется для сварных конструкций. Сварка может производиться как без подогрева, так и с предварительным подогревом до 100-120 градусов по Цельсию. Сварка довольно проста, причем сталь не закаливается и не перегревается в процессе сварки, благодаря чему не происходит снижение пластических свойств или увеличение ее зернистости. При температуре воздуха минус 15 °С и ниже применяют предварительный местный подогрев независимо от толщины стали.

Механические свойства стали

Несомненно, наиболее важными свойствами стали, которые способствуют ее обширному применению, являются механические. Они подразумевают сочетание очень высокой прочности со способностью значительно изменять форму до окончательного разрушения, например, из-за пластического прогиба.

Были разработаны различные методы для определения данных параметров. Существует множество разновидностей стальных сплавов. Об их механических свойствах и пойдет речь в нашей статье.



Прочность

Прочность данного материала – это то свойство, которое определяет его способность выдерживать значительную внешнюю нагрузку без разрушения. Количественно этот показатель характеризуется пределом текучести и пределом прочности.

  • Предел прочности – максимальное механическое напряжение, выше которого стальной сплав разрушается.
  • Предел текучести – этот параметр определяет уровень механического напряжения, при превышении которого материал продолжает растягиваться в условиях нулевой нагрузки.

При небольших деформациях стержень ведет себя упруго – он «возвращается» к своей исходной длине, если приложенные напряжения снимаются. Когда последние превышают предел текучести, заготовка начинает пластически деформироваться. Это означает, что она больше не возвращается к своей исходной длине, но получает необратимое удлинение.

При растяжении стержня до разрыва определяется максимальное напряжение, что представляет собой предел прочности на разрыв или предел прочности материала.

Пластичность

Благодаря этому свойству металл меняет свою форму под воздействием внешней нагрузки и сохраняет её впоследствии. Этот показатель количественно оценивается удлинением при растяжении и углом изгиба. Если металл разрушается при простом испытании на изгиб только после большого пластического прогиба, он считается пластичным. Если таковой отсутствует или незначителен, сталь считается хрупкой.

Хорошая пластичность сплава выражается в испытании на растяжение большим удлинением образца и/или его сжатием. Удлинение определяется как процент увеличения длины металла после разрушения до его первоначальной длины. Точно так же сужение в процентах определяет уменьшение площади образца по сравнению с его исходным объемом.



Вязкость

Важным механическим свойством металла является его вязкость. Данная характеристика обозначает способность материала противостоять динамическим нагрузкам. Количественно это свойство оценивается по работе, необходимой для разрушения образца, отнесенной к его площади поперечного сечения. Обычно термин «вязкость» используется для определения уровня способности металла нехрупко разрушаться.

Характер разрушения (хрупкое или пластичное) удобно рассмотреть на примере ферритных стальных сплавов. Все металлы с объемно-центрированной кубической атомной решеткой, как и ферритные стали, имеют один общий недостаток: хрупкий характер разрушения при низких температурах, а при довольно высоких – пластичный характер.

Температура перехода от одного состояния к другому называется температурой вязко-хрупкого перехода.

Другие свойства

Твердость

Сталь обладает и таким механическим свойством, как твердость. Она позволяет металлу противостоять попаданию в него твердых частиц. Его твердость измеряют при помощи индентора – это более твердый материал, который внедряют в сталь до появления отпечатка. Идеальный индентор – алмазный конус, но также применяются металлические шарики. Все методы определения твердости металлов используют механическое воздействие на исследуемый образец – вдавливание индентора. Однако это не приводит к разрушению материала.

На твердость металла влияет зависимость от температуры закалки и содержания углерода. Наиболее распространенными методами замера твердости являются:

  • метод Виккерса;
  • метод Бринелля;
  • метод Роквелла.

Усталость

Усталость стали – это свойство, описывающее постепенное накопление повреждений под действием циклических нагрузок, которое приводит к образованию трещин. Усталостное разрушение имеет ряд отличительных черт. Возникает внезапно, без заметных внешних признаков пластической деформации. При усталостном переломе обычно выделяют две характерные зоны. Первая, имеющая гладкую поверхность, создается за счет появления и постепенного развития усталостной трещины, вторая – это зона окончательного разрушения остальной части сечения изделия.

После возникновения царапины или потертости напряжение в точке концентрации превысит предел текучести. Это приведет к трещинам и другим дефектам, из-за которых металл может разрушиться. Предотвратить разрушение в связи с усталостью металла невозможно, но продлить срок его службы можно, осуществляя регулярный осмотр и профилактику.

Маркировка и свойства разных марок стали

Стальные сплавы классифицируются по нескольким параметрам:

  • химический состав (углеродистые, легированные);
  • качество (обыкновенного качества, качественные, высококачественные, особо высококачественные);
  • способ проката (конверторные, мартеновские, электростали, особых методов выплавки);
  • структура в отожженном состоянии (перлитные, аустенитные, ферритные, карбидные);
  • назначение (конструкционные, инструментальные, специального назначения, строительные).

В России по маркировке стали можно приблизительно определить состав и другие ее характеристики, так как для обозначения применяются буквы названий элементов, которые добавляют в сплав, а цифры отображают количественное содержание. Также буквы используются для обозначения уровня раскисления. Для примера, кипящие стали имеют маркировку «КП», полуспокойные – «ПС», а спокойные – «СП».

Тем сплавам, которым присущи обыкновенные свойства, присваивается индекс Ст, вслед за которым указывается условный номер марки (от 0 до 6). Затем обозначается уровень раскисления. Легированные сплавы маркируют при помощи следующих буквенных обозначений легирующих веществ: Н – никель, Ю – алюминий, Х – хром, Т – титан, М – молибден, В – вольфрам. Для быстрорежущих инструментальных сплавов указывается индекс «P» и процентное содержание вольфрама, например P16.

Стали повышенной и высокой прочности (низко- и среднелегированные) поставляются в соответствии с ГОСТами и особыми техническими условиями.



Обозначение легированных сталей в определенной степени отражает их химический состав. Первые две цифры обозначают среднее содержание углерода в сотых долях процента, следующие буквы – легирующие добавки. Число после буквы показывает содержание добавки в процентах, округленное до целых значений. Если количество легирующих компонентов составляет 0,3-1%, то цифру не ставят. Содержание добавки менее 0,3% не наблюдается.

Читайте также: