Сталь конструкционная низколегированная это

Обновлено: 17.05.2024

Низколегированная сталь приобрела популярность в послевоенные годы: если верить статистике, то ее производство в период с 1955 и по 1970 год увеличилось в 17 раз! Сегодня доля ее в общем объеме производимых сталей составляет 13%.

Характеризует сырье данной разновидности содержание легирующих добавок, благодаря которым сталь обретает повышенные (улучшенные) механические свойства.

Конструкционные низколегированные стали насыщают никелем, хромом, молибденом, чтобы увеличить их прокаливаемость. Процесс активно способствует оптимизации свойств вязкости, пластичности. В некоторых случаях сырье легируют для повышения характеристик сопротивления.

Доля легирующих элементов в низколегированных сталях составляет не более 2,5%. Каждый элемент оказывает «свое» влияние на свойства сырья и, следовательно, на изготавливаемые из него изделия.

Классификация

Стоит отметить широкий сортамент низколегированных сплавов. При разнообразии химического состава и вариантах обработки их достаточно широко классифицируют:

  • и по химическому составу;
  • и по варианту термической обработки;
  • и по степени свариваемости.

Покупателям удобно ориентироваться, исходя из формирования сплавов по 4 достаточно большим группам. Это:

  • так называемые низколегированные мартенситные стали;
  • среднеуглеродистые высокопрочные;
  • теплостойкие (хромомолибденовые);
  • шарикоподшипниковые.

Наиболее популярны сегодня низколегированные стали таких марок, как: 09Г2, 09Г2С, 17Г1С, 0ХСНД, 16Г2АФ. Стали 10ХНДП, 15ХНДП, 15ХСНД, 0ХСНД известны как атмосферно-коррозионно-стойкие (АКС). Существуют и заменители. Например, вместо 09Г2С используют 09Г2, 09Г2Т или 09Г2ДТ, вместо 10Г2С, 10ХСНД – 16ГАФ).

Наименование и маркировка

В наименовании сталей легирующие компоненты указывают в порядке убывания их содержания (к примеру, хромомолибденовая, хромокремнемарганцовая, хромоникелевая).

Маркировка содержит и буквы, и цифры. Буквы соотносимы с химическими легирующими элементами, цифры, соответственно, – с их «%-ным присутствием». Наиболее известны такие добавки, как:

Начальные цифры повествуют о содержании углерода (десятые или сотые доли). Если марка начинается с буквенного обозначения, то доля его в составе сплава – от 1% и выше. Так, к примеру, сталь 18ХГТ состоит из 0,18% углерода и хрома, марганца, титана (доля каждого не превышает 1%).

Иногда в начале маркировки есть вспомогательные обозначения, характеризующие назначение сырья: А – сталь автоматная, Р – быстрорежущая, Ш – шарикоподшипниковая и др.

Особенности сварки

Стали данного вида отличаются хорошей свариваемостью. Для изготовления изделий, металлоконструкций, используют различные технологии и варианты сварки, включая:

  • электро-;
  • газовую;
  • электрошлаковую.

Как и любая работа, сварка низколегированных сталей, каждый ее способ, имеет свои особенности. Существует целый ряд рекомендаций по оптимизации режимов, выбора технических условий, необходимых инструментов (электродов).

Сортамент и применение

Низколегированную сталь сегодня широко применяют во многих отраслях хозяйства. Это и строительство, и производство транспорта, и с/х.

В строительстве изделия из низколегированных углеродистых и низкоуглеродистых сталей позволяют экономить металл и существенно сокращать расходы. При этом эксперты отмечают высокую надежность, конструкционную прочность, устойчивость к деформациям и временному износу возводимых объектов.

Так, сталь низколегированная хромокремненикелемедистая 15ХСНД (ГОСТ 5058—65) и сталь 10ХСНД ввиду хорошей свариваемости и устойчивости к коррозии незаменимы при монтаже надежных сварных металлоконструкций, что крайне востребовано в судостроении.

Для прокладки газопроводов, возведения мостов, иных ответственных сооружений применяют кремнемарганцевую сталь 10Г2С1 (МК) (ГОСТ 5058—65). Она так же хорошо противостоит коррозии, отличается пониженной хладноломкостью, удовлетворительной свариваемостью.

Паровые турбины, трубопроводы, котлы возводят с помощью теплоустойчивых молибденовых, хромомолибденовые и хромомолибденованадиевых сплавов, устойчивых также к серьезным пневмонагрузкам.

Хромокремнемарганцевые стали обладают высокой прочностью, упругостью, хорошо сопротивляются ударным деформациям. Их применение оправдано при монтаже многих ответственных конструкций. Используют обычно листовой и трубный прокат.

Сталь конструкционная низколегированная

К низколегированным относятся стали, в которых содержание легирующих компонентов в сумме составляет менее 2,5% (кроме углерода). При содержании легирующих элементов в сумме от 2,5 до 10% сталь называется среднелегированной, при содержании свыше 10% легирующих элементов— высоколегированной. В наименовании стали легирующие компоненты указываются в порядке убывания их содержания (например, хромомолибденовая, хромокремнемарганцовая, хромоникелевая и т. п.).

Влияние того или иного элемента на свойства стали зависит от содержания в ней как данного, так и других элементов и особенно углерода.

В обозначении марок легированных сталей по ГОСТ входят буквы и цифры. Буква показывает, какой легирующий элемент входит в сталь, а стоящие за ней цифры — среднее содержание элемента в процентах. Если данного элемента содержится в стали менее 1%, то цифры за буквой не ставятся. В обозначении марок конструкционных низколегированных сталей впереди всегда стоят две цифры, обозначающие содержание в стали углерода в сотых долях процента. Буква А означает, что сталь содержит пониженное количество серы и фосфора и является высококачественной. Буква Т в конце обозначения марки указывает, что сталь содержит титан, а буква Б — ниобий. Например, высоколегированная сталь 0Х18Н9Т содержит: углерода менее 0,1%, хрома в среднем 18%, никеля в среднем 9% и титана до 1%.

Низколегированная хромокремненикелемедистая сталь 15ХСНД по ГОСТ 5058—65 (прежние марки НЛ2 или СХЛ2) содержит 0,12—0,18% углерода; 0,4—0,7% марганца; 0,4—0,7% кремния; 0,2—0,4% меди; 0,6—0,9% хрома; 0,3—0,6% никеля; до 0,04% фосфора и не более 0,04% серы. Временное сопротивление этой стали 50 кгс/мм 2 , относительное удлинение 21%, ударная вязкость 6 кгс-м/см 2 . Сталь 10ХСНД (НЛ1 или СХЛЗ) отличается от стали 15ХСНД содержанием углерода, которого в ней до 0,12%. У этой стали временное сопротивление 54 кгс/мм 2 , относительное удлинение 19% и ударная вязкость 8 кгс-м/см 2 . Стали 10 ХСНД и 15ХСНД хорошо свариваются и в незначительной степени подвержены коррозии; их используют для сварных строительных конструкций высокой надежности, а также в судостроении.

Для сварных мостов, газопроводов и других ответственных сооружений применяют низколегированную конструкционную крем-немарганцевую сталь 10Г2С1 (МК) по ГОСТ 5058—65. Эта сталь содержит до 0,12% углерода; 1,3—1,65% марганца; 0,9— 1,2% кремния; не более 0,035% фосфора и 0,04 серы; по 0,30% хрома и никеля; 0,30% меди. Сталь 10Г2С1 имеет временное сопротивление 46—52 кгс/мм 2 , относительное удлинение — 21%, повышенную коррозионную стойкость, пониженную хладноломкость и удовлетворительно сваривается.

Молибденовые, хромомолибденовые и хромо-молибденованадиевые низколегированные теплоустойчивые стали применяют для изготовления паровых котлов, турбин и трубопроводов, подверженных в процессе работы действию высоких температур и давлений. Для температур 450— 500° С предназначаются молибденовые стали 15М и 25М-Л, содержащие 0,4—0,6% молибдена; для 540°С — хромомолибденовые 15ХМ, 20ХМ-Л, содержащие 0,4—0,6% молибдена и 0,8—1,1% хрома; для 585° С — хромомолибденованадиевые 12Х1МФ и 15Х1М1Ф. Для труб, предназначенных для поверхностного нагрева котлов, применяют хромомолибденованадиевую сталь 12Х2МФСР, дополнительно легированную кремнием и бором, а для крупных отливок паровых турбин — сталь 15Х2М2ФБС-Л, легированную кремнием и ниобием. Для более высоких температур используются трубы из высоколегированных хромистых и хромоникелевых сталей.

Хромокремнемарганцевые стали (хромансиль) обладают большой прочностью, упругостью и хорошо сопротивляются ударным нагрузкам. Содержат углерода (%): сталь 20ХГСА — 0,15—0,25; сталь 25ХГСА —0,22—0,30 и сталь 3ОХГСА — 0,25—0,35. Стали этих марок, кроме углерода, содержат также (%): марганца 0,8—1,1; кремнияТ),9—1,2 и хрома 0,8— 1,1. Содержание серы и фосфора не должно превышать 0,03% Для каждого из этих элементов. В термически обработанном состоянии имеют временное сопротивление 80 кгс/мм 2 , относительное удлинение 10%, ударную вязкость 6 кгс-м/см 2 .

Сварка низколегированных сталей: при выполнении вертикальных и потолочных швов ток уменьшают на 10—20% и применяют электроды диаметром не более 4 мм.

Для уменьшения скорости охлаждения металла шва следует применять стыковые и бортовые соединения, так как при тавровых и нахлесточных соединениях скорость охлаждения выше. Рекомендуется избегать соединений, имеющих швы замкнутого (жесткого контура), если же необходимы такие соединения, то их сваривают короткими участками, обеспечивая подогрев и замедленное охлаждение.

Сварку стыковых соединений металла толщиной до 6 мм и валиковых швов с катетом до 7 мм выполняют в один слой (однопроходную), что уменьшает скорость охлаждения. Более толстый металл сваривают в несколько слоев длинными участками. Каждый слой должен иметь толщину 0,8—1,2 диаметра электрода. Сверху шва накладывают отжигающий валик, края которого должны располагаться на расстоянии 2—3 мм от границы проплавления основного металла. Отжигающий валик накладывают при температуре предыдущего слоя около 200° С. Для металла толщиной до 40—45 мм применяют многослойную сварку способом «горки» или «каскада». Длину участков (300—350 мм) выбирают с таким расчетом, чтобы предыдущий слой не успевал охладиться ниже 200° С при наложении следующего слоя.

Если сталь склонна к закалке или при сварке на морозе, перед выполнением первого шва применяют местный подогрев горелкой или индуктором до 200—250° С. Предварительный подогрев и последующий отпуск необходимы, если твердость в зоне влияния после сварки составляет 250 единиц по Бринеллю и выше.

При выполнении подварочных швов и заварке прихваток необходимо выполнять условия, для сварки низкоуглеродистых сталей.

Сварку конструкционных низкоуглеродистых сталей производят электродами с фтористокальциевыми покрытиями марок УОНИ-13/45; УОНИ-13/55; УОНИ-13/85; ОЗС-2; ЦУ-1; ДСК-50, ЦЛ-18; НИАТ-5 и другими, дающими более плотный и вязкий наплавленный металл, менее склонный к старению. Электроды с руднокислыми покрытиями (ОММ-5, ЦМ-7 и др.) применять при сварке ответственных конструкций из низколегированных сталей не рекомендуется.

Низколегированные конструкционные стали лучше сваривать электродами типа Э42А, так как металл шва получает дополнительное легирование за счет элементов расплавляемого основного металла и временное сопротивление его повышается до 50 кгс/мм 2 ; при этом металл шва сохраняет высокую пластичность. Сварка электродами типа Э60А дает более прочный, но менее пластичный металл шва вследствие более высокого содержания в нем углерода.

Газовая сварка низколегированных сталей производится нормальным пламенем мощностью 75—100 дм 3 /н при левой и 100— 130 дм г /ч ацетилена при правой сварке на 1 мм толщины металла. В качестве присадки используют проволоку Св-08, Св-08А или Св-10Г2 по ГОСТ 2246—60. Целесообразно проковывать шов при светло-красном калении (800—850°С) с последующей нормализацией нагревом горелкой.

Электрошлаковая сварка низколегированных сталей. Низколегированные стали применяют для изготовления сварных конструкций ответственного назначения, работающих под давлением, при ударных или знакопеременных нагрузках, в условиях низких температур - до 203 К (-70° С) или высоких - до 853К (580° С), в различных агрессивных средах и т. д. Конструкции из этих сталей используют в тяжелом, химическом и нефтяном машиностроении, судостроении, гидротехническом строительстве и т. д.

Низколегированные низкоуглеродистые конструкционные стали содержат, как правило, менее 0,18% С и подразделяются на стали повышенной и высокой прочности.

Низколегированные низкоуглеродистые стали повышенной прочности (09Г2С, 16ГС, 10ХСНД и др.) поставляют по ГОСТ 19282-73 и специальным техническим условиям в горячекатаном или нормализованном состоянии. Они легированы обычно до 1,70% Мn, - 1,20% Si, ~ 0,90% Сr или - 1,30% № и имеют ферритно-перлитную структуру.

Низколегированные высокопрочные стали подразделяют на стали с нитридным упрочнением (14Г2АФ, 16Г2АФ и др.) и термически улучшенные (14Х2ГМР и др.).

Низколегированные ферритноперлитные стали, упрочненные дисперсными нитридами (наиболее часто нитридами алюминия, ванадия или ниобия), поставляют в нормализованном состоянии со следующими характеристиками: oт 450 МН/м 2 (45 кгс/мм 2 ) и ов > 600 МН/м 2 (60 кгс/мм 2 ). Еще более высокие механические свойства высокопрочных низколегированных сталей (σт = 600-800 МН/м 2 , σв = 650-850 МН/м 2 , aн выше 0,35 МДж/м 2 при 233 К) достигаются путем получения структур отпущенного мартенсита или бейнита. В этих целях сталь легируют обычно молибденом (0,15-0,55%) в сочетании с бором, марганцем, хромом или никелем и термически улучшают закалкой и отпуском.

Низколегированные теплоустойчивые стали 12ХМ, 12МХ, 16ГНМ и др., применяемые в котло-турбостроении, а также в химическом и нефтяном машиностроении, легированы до 0,55% Мо и до 1,1% Сг для повышения жаропрочности и жаростойкости. Их поставляют в нормализованном состоянии.

Низколегированные среднеуглеродистые конструкционные стали 20ГСЛ, 35XMЛ и др., поставляемые в термообработанном состоянии (нормализованном или закаленном), наряду с легированием до 1,6% Мn, Cr, Ni и 0,6% Мо содержат повышенное количество углерода (0,15-0,45%). Требования по ударной вязкости для них (ан = 0,3 - 0,45 МДж/м 2 ) оговорены обычно только при комнатной температуре. Наиболее широко низколегированные среднеуглеродистые стали применяют в тяжелом и энергетическом машиностроении для изготовления фасонных отливок.

Автор: Администрация

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сталь конструкционная

Сталь конструкционная легированная
10Г2 10Х2М 12Г2 12Х2Н4А 12ХН
12ХН2 12ХН2А 12ХН3А 14Х2ГМР 14Х2Н3МА
14ХГН 15Г 15Н2М 15Х 15ХА
15ХГН2ТА 15ХФ 16Г2 16ХСН 18Х2Н4ВА
18Х2Н4МА 18ХГ 18ХГТ 19ХГН 20Г
20Г2 20Н2М 20Х 20Х2Н4А 20ХГНМ
20ХГНР 20ХГНТР 20ХГР 20ХГСА 20ХМ
20ХН 20ХН2М 20ХН3А 20ХН4ФА 20ХНР
20ХФ 25Г 25Х2ГНТА 25Х2Н4МА 25ХГМ
25ХГНМТ 25ХГСА 25ХГТ 27ХГР 30Г
30Г2 30Х 30Х3МФ 30ХГС 30ХГСА
30ХГСН2А 30ХГТ 30ХН2МА 30ХН2МФА 30ХН3А
30ХН3М2ФА 30ХРА 33ХС 34ХН1М 34ХН1МА
34ХН3М 34ХН3МА 35Г 35Г2 35Х
35ХГ2 35ХГН2 35ХГСА 35ХГФ 35ХН1М2ФА
36Х2Н2МФА 38Х2Н2МА 38Х2Н3М 38Х2НМ 38Х2НМФ
38Х2Ю 38ХА 38ХГМ 38ХГН 38ХГНМ
38ХМ 38ХМА 38ХН3МА 38ХН3МФА 38ХС
40Г 40Г2 40ГР 40Х 40Х2Н2МА
40ХГНМ 40ХГТР 40ХМФА 40ХН 40ХН2МА
40ХС 40ХСН2МА 40ХФА 45Г 45Г2
45Х 45ХН 45ХН2МФА 47ГТ 50Г
50Г2 50Х 50ХН

Сталь конструкционная криогенная
03Х13Н9Д2ТМ 03Х17Н14М3 03Х19Г10Н7М2 03Х20Н16АГ6 07Х21Г7АН5
0Н6 0Н6А 0Н9 0Н9А 10Х14Г14Н4Т
12Х18Н10Т *

Сталь конструкционная подшипниковая
11Х18М-ШД 8Х4В9Ф2-Ш ШХ15 ШХ15СГ ШХ20СГ
ШХ4

Сталь конструкционная рессорно-пружинная
50ХГ 50ХГА 50ХГФА 50ХСА 50ХФА
51ХФА 55С2 55С2А 55С2ГФ 55ХГР
60Г 60С2 60С2А 60С2Г 60С2Н2А
60С2ХА 60С2ХФА 65 65Г 65ГА
65С2ВА 68А 68ГА 70 70Г
70С2ХА 70С3А 75 80 85

Сталь конструкционная повышенной обрабатываемости
А11 А12 А20 А30 А35
А35Е А40Г А40ХЕ А45Е АС11
АС12ХН АС14 АС14ХГН АС19ХГН АС20ХГНМ
АС30ХМ АС35Г2 АС38ХГМ АС40 АС40ХГНМ
АС45Г2 АСЦ30ХМ АЦ20ХГНМ

В общем объеме производства проката наибольшее количество металла приходится на долю конструкционных сталей.

Различные сооружения и конструкции во время своей службы воспринимают сложные внешние нагрузки (растягивающие, сжимающие, изгибающие, ударные, знакопеременные или их сочетания), подвергаются действию атмосферы и агрессивных сред (морская и речная вода, водные растворы солей, щелочей, кислот и пр.), испытывают колебания температуры окружающей среды в летние и зимние месяцы года.

В клепаных и особенно сварных конструкциях большого объема (цельносварные корпуса судов, резервуары, газопроводы и др.) при резких понижениях температуры в условиях конструктивно стесненной деформации возникают большие внутренние напряжения, которые, складываясь по знаку с напряжениями от внешних усилий, усложняют условия работы материала и при неудовлетворительном его качестве могут приводить к авариям.

Сложные и нередко весьма тяжелые условия службы механизмов и конструкций, особенно в северных районах, уменьшение расчетных сечений при создании современных сооружений, узлов машин и механизмов для снижения их массы и расхода металла и, одновременно необходимость обеспечения надежности, долговечности и безопасности их работы предъявляют высокие требования к стали как конструкционному материалу. В зависимости от условий применения и эксплуатации требования к конструкционной стали могут изменяться в том или ином направлении, но в целом можно выделить наиболее важные из них.

Конструкционная сталь должна обладать сочетанием высоких прочностных и пластических свойств. Из прочностных свойств основной конструкционной характеристикой является предел текучести (условный или физический) — величина, непосредственно входящая в расчетные формулы. Выбор этой характеристики в качестве основы при расчетах на прочность объясняется тем, что при более высоких напряжениях в конструкции возникают необратимые линейные изменения, что может привести к выходу ее из строя. Повышение предела текучести позволяет снижать расчетные сечения, а следовательно, и массу стальных конструкций или—при той же массе — выдерживать более высокие рабочие напряжения.

Важной служебной характеристикой является предел прочности; эта характеристика отражает способность стали сопротивляться разрушению. При изготовлении конструкций из высокопрочной стали предел прочности может быть также использован в качестве расчетной характеристики.

Распространено мнение, что чем меньше величина этого отношения, т. е. чем больше разница между пределом текучести и пределом прочности, тем выше надежность работы конструкции. Так, как показывает опыт эксплуатации конструкций, металл должен обладать способностью к местным, локальным пластическим деформациям для релаксаций пиков напряжений в районе различных концентраторов (отверстия, выточки, подрезы, вмятины, непровары, сварочные трещины и прочее), создающих объемно-напряженное состояние. Чем выше эта способность, тем в большей мере реализуется сопротивление металла возникновению и распространению трещин при местных перенапряжениях, т. е. в конечном итоге увеличивается надежность работы металла в конструкциях.

Наряду с характеристиками прочности и пластичности весьма важную роль для обеспечения надежности и работоспособности конструкций придают показателям, определяющим переход металла в хрупкое состояние под воздействием по крайней мере четырех факторов: температуры, наличия надреза (концентратора), скорости приложения нагрузки, степени объемности напряженного состояния.

В настоящее время проблема повышения сопротивления металла хрупким разрушениям становится одной из важнейших. Это обусловлено необходимостью обеспечить надежную работу конструкций и машин в суровых климатических условиях, например Сибири и Крайнего Севера. Кроме того, увеличение масштаба инженерных cооружений, применение крупных сварных узлов и конструкций, обладающих большой жесткостью и меньшей податливостью, чем клепаные конструкции, а также работа материала в условиях сочетания высоких напряжений и коррозионных сред создают условия, способствующие развитию хрупких разрушений.

Для оценки склонности стали к хрупкому разрушению широко используют метод ударных испытаний стандартных образцов с определением ударной вязкости и температуры перехода в хрупкое состояние. Распространенность этого вида испытаний обусловлена не только простотой изготовления образцов и простой методикой сериальных испытаний, но и тем, что применительно к целому ряду случаев наблюдаются статистически надежные связи между характеристиками ударной вязкости и поведением стали при эксплуатации.

Однако в большинстве случаев испытание стандартных образцов на ударный изгиб не дает полного представления о работе материалов в конструкции.

Поэтому пытаются найти более совершенные методы определения склонности стали к переходу в хрупкое состояние, которые более полно соответствовали бы реальным условиям работы металла в конструкциях.

При изготовлении металлоконструкций и специфичных видов прокатных изделий (например, железнодорожных рельсов), воспринимающих в процессе эксплуатации воздействие знакопеременных нагружений, важную роль придают повышению предела выносливости (усталости) как одному из факторов, определяющих продолжительность их службы. Предел выносливости увеличивается с возрастанием прочности, повышением чистоты металла по неметаллическим включениям, улучшением качества его поверхности. Особенно важным представляется повышение предела выносливости при наличии концентраторов напряжений.

Необходимым условием долговечности и надежности работы конструкций и сооружений является достаточно высокая коррозионная стойкость. Особенно важно повышение коррозионой стойкости для высокопрочных сталей вследствие уменьшения расчетных сечений элементов конструкции при использовании этих сталей. При меньших конструктивных сечениях коррозионные повреждения оказываются относительно более опасными, чем в более толстых сечениях из стали с пониженной прочностью.

Для борьбы с коррозией стали подвергают специальному легированию (хромом, никелем, медью, фосфором), тщательной и своевременной окраске, оцинкованию, фосфатированию. В последнее время предложено нанесение на поверхность металла хлорвиниловой пленки.

Наконец, конструкционная сталь должна обладать удовлетворительными технологическими свойствами. В первую очередь она должна соответствовать требованиям свариваемости с обеспечением одинаковой прочности основного металла и сварного соединения, иметь минимальную склонность к деформационному старению, без особых затруднений обрабатываться в горячем и холодном состоянии (прокатка, ковка, гибка, обработка на металлорежущих станках), а также должна быть относительно недорогой в производстве.

* марка относится к нескольким разделам сразу

Низколегированная сталь: состав, марки, свойства, процесс сварки

Физические свойства, такие как прочность, пластичность, хрупкость, могут быть увеличены или уменьшены в несколько раз. Изменение кристаллической решетки материалов активно применяют в металлургии, а также при производстве многочисленных деталей и корпусов для автомобильного, машинного, станочного и прочего производства, а также для создания строительных конструкций и инструментов. Сфера применения настолько велика, что сплав начали изготавливать большими партиями, он постепенно вытесняет долю изготавливаемого железа и обычных стальных веществ.

что такое легированная сталь

Исходя из приведенной информации, легирование стали – это металлургический процесс выплавки, в ходе которого в состав добавляются материалы примесей. При этом есть два вида операции:

  • Объемный – когда компоненты попадают в глубинную структуру. В расплав или шихту внедряются хром, никель и пр.
  • Поверхностный – в ходе него происходит диффузионное или иное напыление, то есть покрывается только верхний слой.

Процесс начал использоваться относительно недавно. Впервые эксперименты начали проводить в 1882 году. И с первого же образца исследователи обнаружили, что вместе с улучшением физических свойств значительно снижается степень обрабатываемости. Простыми словами, с материалом просто стало сложно работать. Безусловно, к настоящему времени все дополнительные эффекты легирования изучены, поэтому составлены специальные ГОСТы для разных способов металлообработки.

Состав

В низколегированной стали содержится от 0,2% углерода и легирующих элементов не более 5% (в некоторых научных источниках допускается применение добавок не более 2,5%). Чаще всего легирование осуществляют путем внесения:

  • ванадия — для обеспечения равномерной структуры;
  • молибдена — делает металл устойчивым к воздействию высоких температур;
  • ниобия — отвечает за повышение прочности;
  • вольфрама, азота — обеспечивает повышение теплостойкости;
  • титана — для повышения износоустойчивости;
  • никеля, кремния — придает стали удароустойчивости, сопротивляемости току;
  • марганца — делает металл тверже, не нарушая его пластичность;
  • кобальта — для повышения пластичности, прочности, магнитных характеристик.


Назначение

Высокие эксплуатационные характеристики сталей с легирующими добавками обеспечивают их использование в следующих областях:

  • Устройство трубопроводных систем различного назначения. Применение стальных сплавов с добавками хрома, кремния и марганца обеспечивает высокую прочность конструкций и изделий, упругость, эффективное сопротивление упругим деформациям.
  • Изготовление сварных конструкций в вагоно-, станко-, автомобилестроении, тяжелом машиностроении. Из этих сплавов производят корпусы железнодорожных и трамвайных вагонов, сельскохозяйственных машин.
  • Нефтяное аппаратостроение. Применение низколегированной стали в этой области позволяет сэкономить металл, снизить массу конструкций, трудозатраты на изготовление и монтаж, а следовательно, себестоимость.
  • Строительство инженерных сооружений, которые эксплуатируются при переменных динамических нагрузках, в условиях суточных и сезонных значительных температурных перепадов.
  • Производство паровых турбин. Для этих целей используют теплоустойчивые марки, легированные молибденом, хромом+молибденом, хромом+молибденом+ванадием. Такие изделия также устойчивы к значительным пневмонагрузкам.

Наиболее распространенная марка – 09Г2С – и ее аналоги используются при производстве проката, способного работать в широком температурном интервале – от -70°C до +450°C. Из такого металлопроката изготавливают паровые котлы, емкости и аппараты, эксплуатируемые при высоком давлении, сварные конструкции ответственного назначения, используемые в химической, нефтяной индустрии, судостроении. Марку 09Г2С применяют при производстве горячекатаных бесшовных труб, электросварных труб значительных диаметров, контейнеров значительной грузоподъемности.

Свойства и особенности

Категория низколегированных сталей представлена черными металлами. В зависимости от используемых легирующих элементов и их количества, такой материал может обладать:

  • повышенным сопротивлением механическому старению;
  • достаточно высоким пределом текучести;
  • низким порогом хладноломкости;
  • хорошей пластичностью.

В сравнении с высокоуглеродистыми металлами, марки низколегированных сталей содержат минимум неметаллических соединений. Они также обладают антикоррозийной устойчивостью и способностью противостоять истиранию. Такой материал поддается легкой обработке, сохраняет свои рабочие характеристики при минусовых температурах. Благодаря закалке, низколегированные стали становятся слабо чувствительными к надрезу.


Классификация легированных сталей

С развитием новых технологий, появлением разных легированных сталей, их нужно было классифицировать.

Разделение по количеству углерода, содержащегося в сплаве:

  1. Высокоуглеродистые — более 0.65%.
  2. Среднеуглеродистые — от 0.25% до 0.65%.
  3. Низкоуглеродистые — менее 0.25%.

Разделение по процентному содержанию легирующих добавок:

  1. Низколегированные — до 5% (по некоторым источникам до 2.5%).
  2. Среднелегированные — до 10%.
  3. Высоколегированные — 10–50%.

По внутренней структуре легированные стали бывают:

  1. Эвтектоидные — перлитная структура.
  2. Ледебуритные — наличие первичных карбидов в структуре.
  3. Доэвтектоидные — присутствие избыточных ферритов, насыщающих состав.
  4. Заэвтектоидные — наличие вторичных карбидов в сплаве.

По назначения эти материалы можно разделить на две больших группы:

  1. Строительные — для изготовления металлоконструкций, которые во время последующей эксплуатации не будут подвергаться критическим температурам.
  2. Машиностроительные — используются при изготовлении деталей для разных механизмов, корпусов.

Машиностроительные стали бывают:

  1. Цементуемые — при изготовлении проходят процесс цементации, а затем закалки.
  2. Жаропрочные — среднеуглеродистые стали. Применяются при изготовлении изделий, использующихся в сфере энергетики.
  3. Улучшаемые — материалы, проходящие дополнительную закалку. Из них изготавливаются детали, подвергающиеся большим нагрузкам.

Маркировка содержит и буквы, и цифры. Буквы соотносимы с химическими легирующими элементами, цифры, соответственно, – с их «%-ным присутствием». Наиболее известны такие добавки, как:

Маркировка Элемент

Начальные цифры повествуют о содержании углерода (десятые или сотые доли). Если марка начинается с буквенного обозначения, то доля его в составе сплава – от 1% и выше. Так, к примеру, сталь 18ХГТ состоит из 0,18% углерода и хрома, марганца, титана (доля каждого не превышает 1%).

Низколегированные стали: классификация и применение

Легированными сталями называют такие стали, которые получают свои улучшенные свойства за счет: — одного или нескольких специальных легирующих элементов; — более высокого содержания, чем в обычных углеродистых сталях таких элементов как магний и кремний.

Легированные стали содержат марганец, кремний и медь в более высоких концентрациях, чем это допускается для обычных углеродистых сталей (1,65 % по марганцу; 0,60 % по кремнию и 0,60 % по меди).

Легирующие элементы повышают механические и технологические свойства сталей. Обычно легированные стали делят на три группы по суммарному содержанию легирующих элементов (не считая углерода): — низколегированные стали – менее 5 %; — среднелегированные стали – от 5 до 10 %; — высоколегированные стали – более 10 %.

Низколегированные стали

Низколегированные стали образуют группу сталей, которые проявляют более высокие механические свойства по сравнению с обычными углеродистыми сталями. Это является результатом добавок таких легирующих элементов как никель, хром и молибден. Для многих низколегированных сталей главная функция легирующих элементов заключается в увеличении прокаливаемости стали, чтобы оптимизировать затем прочностные и вязкие свойства средствами термической обработки. В некоторых случаях, однако, легирующие элементы применяют для того, чтобы повысить сопротивление стали каким-либо специфическим воздействиям.

Низколегированные стали , в свою очередь, разделяют:

  • по химическому составу на базе основных легирующих элементов: никелевые, хромоникелевые, молибденовые, хромомолибденовые и тому подобные стали;
  • по термической обработке: закаленные и отпущенные (мартенситные), нормализованные и отпущенные, отожженные и так далее;
  • по свариваемости.

Стали могут иметь огромное разнообразие химических составов и, кроме того, одни и те же стали могут получать различные термические обработки. Поэтому существуют определенные «нахлесты» в той классификации низколегированных сталей, которая представлена выше.

По этой причине низколегированные стали чаще делят на четыре больших группы, такие как:

  • низколегированные мартенситные (улучшаемые) стали;
  • среднеуглеродистые высокопрочные стали;
  • шарикоподшипниковые стали;
  • теплостойкие хромомолибденовые стали.

Низколегированные мартенситные стали

Низколегированные мартенситные стали характеризуются относительно высокой прочностью с минимальным пределом текучести 690 МПа и хорошей ударной вязкостью и пластичностью, коррозионной стойкостью и свариваемостью. Их также называют низколегированными улучшаемыми сталями, имея в виду улучшение термической обработкой. Из этих сталей изготавливают плиты, листы, прутки, профили и кованые изделия. Они широко применяются для изготовления сосудов под давлением, землеройного и шахтного оборудования, а также ответственных элементов больших стальных конструкций.

Среднеуглеродистые высокопрочные стали

Среднеуглеродистые высокопрочные стали являются конструкционными и имеют очень высокую прочность. Минимальный предел текучести сталей этого класса достигает 1380 МПа.

ГОСТ 4543-71 разбивает эти сплавы на пять групп – по возрастанию степени легирования. По мере увеличения степени легирования возрастает размер сечения изделия, на котором может быть достигнута сквозная прокаливаемость. Самые прочные стали из пятой группы легируются 1,2-1,5 % хрома; 3,0-3,4 % никеля; 0,35-0,45 % молибдена и 0,1-0,2 % ванадия.

Примером такой стали может служить хромомолибденовая сталь 30ХМ из третьей группы по ГОСТ 4543-71 (аналог знаменитой стали 4130, из которой за рубежом делают велосипедные рамы). Минимальные предел текучести стали 30ХМ составляет 735 МПа, минимальный предел прочности – 930 МПа, а минимальная ударная вязкость KCU – 78 Дж/см2.

Шарикоподшипниковые стали

Шарикоподшипниковые стали должны обладать высокой твердостью. Поэтому они обычно имеют содержание углерода около 1 %. Для хорошей прокаливаемости при закалке в масле эти стали имеют от 0,4 дл 1,65 % хрома. Иногда применяют низколегированную подшипниковую сталь (0,10-0,20 % углерода). В этом случае высокой твердости поверхности добиваются цементованием.

Хромомолибденовые теплостойкие стали

Хромомолибденовые теплостойкие стали содержат 0,5-9 % хрома, 0,5-1,0 % молибдена и обычно менее 0,20 % углерода. Их подвергают различным термическим обработкам: нормализации с отпуском, закалке с отпуском или отжигу. Эти стали применяют в нефтегазовом оборудовании, химической промышленности, оборудовании обычных и атомных электростанций для изготовления труб, теплообменников и сосудов высокого давления.

Сварка сплавов

Мы отмечали, что после добавления компонентов металлообработка, в том числе с помощью сварочного аппарата, затрудняется. Посмотрим, в чем особенности.

Низколегированных

  • Нельзя допускать быстрого остывания шва – тогда могут появиться микротрещины.
  • Аппарат должен быть с обратной полярностью и постоянным напряжением.
  • Нужно использовать электроды с фтористо-кальциевым покрытием.
  • Процесс – без перерыва, плавно со средней скоростью в 20 м/ч.
  • Напряжение – 40 В и сила тока – 80 А.

Среднелегированных

  • В электродах должно быть меньше легирующих веществ, чем в сплаве.
  • Если лист шире, чем 5 мм, применяйте аргоновую сварку.
  • При газовом аппарате используйте смесь из ацетилена и кислорода.

Высоколегированных

  • Тепловой захват материала – минимальный.
  • Электроды с фтористо-кальциевым покрытием.
  • Не стоит применять газовую сварку.

легированная сталь что это значит

В статье мы рассказали все про легированную сталь: что это значит, особенности получения, свойства и состав. Надеемся, что информация была для вас познавательной.

Применение металла

Применяются низколегированные стали в разных направлениях промышленности. Область применения:

  1. Изготовление облегченных конструкций из металла.
  2. Корпуса для бытовой техники.
  3. Детали для промышленного оборудования.
  4. Режущие инструменты.

Изготовление облегченной конструкции

Конструкция из металла

Разница между низколегированной сталью и высоколегированной сталью

Основное различие между низколегированной сталью и высоколегированной сталью состоит в том, что низколегированные стали содержат менее 0,25% легирующего элемента, тогда как высоколегированные стали имеют более 10% легирующего элемента.

Кроме разделения на низколегированную и высоколегированную сталь, она ещё подразделяется по степени легирования на среднелегированную. В этой стали количество легирующих элементов составляет от 2,5 до 10 %)

Сплав представляет собой смесь двух или более элементов. Он производится путем смешивания металла с некоторыми другими элементами (металлами или неметаллами или обоими), чтобы получить материал, который обладает улучшенными свойствами по сравнению с исходным металлом. Низколегированная и высоколегированная сталь — это два типа сплавов железа с легирующими элементами.

Наиболее популярные легирующие элементы в этих сталях применяются такие: никель (Ni) , медь (Cu) , титан (Ti) и ванадий (V), азот (N) и др.

Что такое низколегированная сталь?

Низколегированная сталь — это тип легированной стали, свойства которой улучшены по сравнению с углеродистой сталью. Например, этот сплав обладает лучшими механическими свойствами и большей коррозионной стойкостью, чем углеродистая сталь. Содержание углерода в низколегированной стали составляет менее 0,2%. Наиболее распростраённые л егирующие элементы в этой стали такие: Никель (Ni), Хром (Cr), Молибден (Мо), Вольфрам (V), Бор (B), Вольфрам (W) и Медь (Cu).

В большинстве случаев процесс изготовления этих легированных сталей включает термическую обработку и отпуск (для нормализации). Но теперь, появилась тенденция производить закалку и отпуск. Кроме того, почти все материалы из низколегированной стали являются свариваемыми. Однако материал иногда требует обработки до или после сварки (чтобы избежать растрескивания).

Некоторые преимущества низколегированной стали:

  1. Предел текучести выше
  2. Высокий предел прочности
  3. Более высокая стойкость к окислению и коррозии
  4. Низкий порог хладноломкости

Что такое высоколегированная сталь?

Высоколегированная сталь — это тип легированной стали, в котором более 10% легирующих элементов. В отличие от низколегированной стали, легирующими элементами для высоколегированной стали являются хром (Cr) и никель (Ni). Н аиболее известным примером этой стали — является нержавеющая сталь.

Хром обеспечивает сталь тонким оксидным слоем на поверхности стали. Это называется скрытым слоем, потому что этот слой задерживает коррозию металла. Кроме того, производители обычно добавляют большое количество углерода и марганца, чтобы придать стали аустенитный характер. Кроме того, этот материал дороже, чем низколегированная сталь.

В чем разница между низколегированной сталью и высоколегированной сталью?

Как низколегированная, так и высоколегированная сталь обладают улучшенными свойствами, чем углеродистая сталь. Однако ключевое различие между низколегированной сталью и высоколегированной сталью состоит в том, что низколегированные стали содержат менее 0,25% легирующих элементов, тогда как высоколегированные стали содержат более 10% легирующих элементов. В химическом составе низколегированная сталь содержит железо, углерод (менее 0,2%) и другие легирующие элементы, такие как Никель (Ni), Хром (Cr), Молибден (Мо), Вольфрам (V), Бор (B), Вольфрам (W) и Медь (Cu), в то время как высоколегированная сталь содержит железо, хром, никель, углерод, марганец и др.

Сварка

Чтобы соединить детали из низколегированной стали с помощью сварки, нужно учитывать несколько нюансов:

  1. Изготавливать вертикальные, потолочные швы.
  2. Сварочный стержень должен быть не менее 4 мм по сечению.
  3. Чтобы снизить скорость охлаждение металла, требуется выполнять стыковые или бортовые швы.
  4. Сваривая заготовки толщиной, не превышающей 6 мм, требуется выполнять только один проход.
  5. Чтобы придать соединению высокую пластичность, нужно использовать электроды Э42А.
  6. Если металл содержит малое количество углерода, требуется применять электроды с покрытием из фтора, кальция.

Для проведения сварочных работ, требуется использовать специальную присадку Св-10Г2.

Низколегированные стали имеют повышенные технические параметры, благодаря добавлению дополнительных компонентов в состав. Их используют в тех направлениях промышленности, где нужно применять детали, металлоконструкции высокой прочности, износоустойчивости. Для соединения отдельных деталей, нужно учитывать ряд нюансов использования сварочного оборудования.

Все о низколегированных сталях

Чтобы сделать металлы более прочными, твёрдыми, способными переносить значительные растяжения, не деформируясь при этом, распространена практика введения на производстве в них легирующих присадок. По этой части железо является самым универсальным металлом – известен не один десяток сортов стали на его основе.

Что это такое?

Процентное содержание добавок позволяет отнести тот или иной сорт стали к высоко-, средне- и низколегированному виду. Низколегированная сталь – сплав с низким содержанием углерода и других включений, улучшающих и дополняющих исходные свойства простой углеродистой стали.

Легирование производится недорогими металлами и неметаллами – чаще всего это никель, хром, марганец, кремний, ванадий и медь.



Наибольшую прочность сталь получает в результате введения марганца или кремния, хотя основной добавкой здесь является всё-таки уголь. Попытка выплавить сталь с этими добавками, но без угля, не даст желаемого эффекта – это уже легированное железо, а не полноценный стальной сплав. Низколегированные стали обладают преимущества перед высоколегированными – устойчивость к состариванию изделий, повышенная текучесть, низкая ломкость при низких температурах, удовлетворительная пластичность. Простые углеродистые стали содержат большее количество неметаллических включений. Так, кремний, фосфор, сера в них присутствуют, при этом содержание серы уменьшается до предела, так как она портит железо, делает его хрупким. Легированные сосредоточены на включение в их состав и металлов. Например, кобальтовое сверло, применяемое в качестве ступенчато-конусного при профилированной рассверловке усложнённых конструкционных заготовок, изготовлено как раз из такой стали, в которую добавлен и кобальт, соседний по таблице Менделеева с железом металл.

Низколегированные сплавы отличаются повышенной износоустойчивостью и более медленным образованием ржавчины. Например, фарширующая перемалываемое крестовым осевым ножиком мясо в мясорубке сетка с круглыми отверстиями изготовлена как раз из такой стали. Ржавеет она не настолько быстро, как простая чёрная сталь, чтобы через месяц покрыться толстым слоем ржавчины, как это происходит, например, с гвоздями. Низколегированные стали подвергаются удовлетворительной обработке, не растрескиваясь при этом, и не теряют своих свойств в условиях морозной погоды (кроме условий «полюсов холода» на Земле, где температура зимой достигает -60 и ниже). После закаливания низколегированные стальные сплавы почти нечувствительны к надрезанию, обладают высокой прочностью и вязким ответом на значительные удары: для сравнения, чёрная сталь быстро бы сломалась от ударов кувалдой. Выпускаются НЛС в виде спокойных сплавов.




Разобравшись с основной характеристикой НЛС, эти сплавы выделяют в особую классификацию, расходящуюся со свойствами сталей других степеней легирования. Исходя из химического состава, выделяют более и менее качественные сплавы.

По химическому составу

НЛС включает в себя не менее 2 промилле углерода. Легирующие (не) металлы присутствуют уже в общем количестве не более 5%. Остальные 94,8% – чистое железо. Именно низколегированный состав должен обладать процентным содержанием дополнительных (не) металлических включений не более 1/40 части от общей массы заготовки, сработанной из НЛС. Определённые металлы придают легированным сплавам следующие свойства.

  • Ванадий позволяет стали обрести равномерную структуру, не допуская её расслаивания при литье и ковке.
  • Молибден добавляет жаростойкости и жаропрочности, не позволяя размягчаться изделию при некоторых температурах.
  • Ниобий даёт возможность стальному сплаву обрести дополнительную прочность.
  • Вольфрам в сочетании с азотом увеличивает устойчивость стали к лучшему отводу тепла.
  • Титан не даёт изделию из низколегированной стали быстро износиться.
  • Никель и кремний повышают упругость и вязкость, не давая этому изделию внезапно сломаться при ударах.
  • Марганец повышает прочность стали, не приводя к потере ею пластичности.
  • Кобальт, помимо пластичности и прочности, обусловливает повышенную способность железа к намагничиванию.

К слову, свёрла на основе кобальтсодержащей стали реже ломаются при перегрузках, вызванных неперпендикулярностью сверления. Кобальтсодержащие фрезы проявляют те же свойства, позволяя станку проработать на одних и тех же резаках дольше.

Не случайно сверло или фреза с кобальтом стоят заметно дороже, чем обычное такое же изделие, изготовленное из быстрорежущей стали стандартных характеристик.




По качеству

Критерий качества низколегированной стали оценивается по количественному содержанию серы и фосфора в данном сплаве. Чем больше серы в НЛС, тем более ломким окажется изделие. Ни одному мастеру не понравится то, что быстро ломающиеся в процессе работы свёрла и фрезы не только ведут к чрезмерно завышенному расходу денег на расходники, но и периодически останавливают, тормозят технологический процесс, когда, к примеру, за короткое время необходимо прорезать этими же свёрлами сотни отверстий. Раритетное сверло времён СССР, способное не затупиться существенно даже при сверлении толстостенного профуголка, сохраняющее долго свои эксплуатационные характеристики, обязано как раз сплавам с крайне низким содержанием серы. В идеале следовало бы полностью удалить всю серу из НЛС, но такое возможно лишь в лабораторных условиях.

Высококачественная сталь не должна обладать количеством серы, большим по массе, чем четверть промилле. Сталь обычного уроня качества содержит до 0,35 промилле серы и фосфора. Низкокачественная НЛС превышает содержание серы и фосфора значения в полпромилле от общей массы заготовки. В XXI веке количество низкокачественной НЛС значительно уменьшилось благодаря улучшению технологии её производства. Наконец, с учётом способа поставки и конкретного применения производится фасонная и сортовая сталь. Нормативы взяты из ДСТУ 8541 и ГОСТ 19281. Сталь в толстых листах, широкополосная универсальная, а также в рулонах производятся на основании ДСТУ 8804 и ГОСТ 19282. Судостроительная (судоремонтная) НЛС – по ГОСТ 5521: выпускается такая сталь в тонких и толстых листах, широких отрезах и в фасонных заготовках; корпуса для судов и иных плавучих средств изготавливаются из неё – с помощью сварки. Стержни для строительных конструкций типа А3 и А500, обладающие периодичным профилем, производится по нормативам ДСТУ 3760, ГОСТ 5781/10884.




Маркировка

НЛС перлитного и ферритного классов, выпускаемую в основном по ГОСТ №4543-1971, подписывают так, чтобы свойства материала оказались очевидными, но придерживаться определённого порядка всё же надо. При подписывании учитывают:

  • свойства металлов – их обозначает первая буква;
  • процент углерода – цифра после этой буквы;
  • другие буквы и цифры – наименование и количество легирующих добавок.

К примеру, 18ХГТ – это 0,18% угля, 1% хрома, столько же – марганца, 0,1 титана.

Дополнительные обозначения вносят пояснения: Р — быстрорежущая НЛС, Ш — для шарикоподшипников (промподшипники для механизмов), А — для огнестрельного оружия, Э – электротехническая, Л — литьевой сорт. Особое место занимают некоторые марки, например, стальной сплав 12х18н10т обладает следующим химсоставом:

  • хром — 17-19%;
  • никель — 10%;
  • титан — 0,8;
  • уголь – 0,12%;
  • кремний — до 0,8%;
  • марганец — 2%;
  • медь — до 0,03%.

Чем сложнее маркировка, тем более особенным является состав – за счёт поясняемых свойств.



Применение

НЛС различных марок относят к сырью для трубопроводов в составе строительных конструкций. Так, невозможно без низколегированных сплавов возвести нефтепровод в составе буровой, а также построить паровую турбину. НЛС – основной компонент в системах с постоянно меняющейся нагрузкой, например, одно- и малоэтажное строительство. Большинство сталей могут использоваться как конструкционные, и лишь некоторые из них, устойчивые к коррозии, например, хромованадиевые сплавы – как инструментальные, например, для изготовления рожковых ключей.




Обработка

Особенность НЛС в том, что она не подлежит улучшению. Такие заготовки обрабатывают путём отжига или нормализации, или сразу же после горячекатаной сработки. Для повышения прочности, вязкости, снижения чувствительности к надрезанию используется закалка с последующим отпусканием. Отпускание НЛС производится при температуре порядка 645°С – это позволяет снять сварочные остаточные напряжения, несколько снизить твёрдость сварных соединений комплектующих. Способ термодоработки выбирается по марке стали, схемы изделия и его предназначения.

Повышенный запас прочности позволяет использовать с большинством марок НЛС практически любую обработку, включая воздействие при повышенном давлении. Сюда относят гибку, штампование, развальцовывание, резке. Резак, осуществляющий пиление, пропил, просверливание, выбирается с учётом параметров конкретного сорта НЛС. Так, сталь марок Р9, Р18, Р14Ф4, ВК3М, ВК15, Т15К6, Т5К10 – и нескольких других из весьма обширного списка – хорошо пилится и фрезеруется, сверлится и штампуется. Эти марки достаточно теплоустойчивые, каждая из них – хладостойкая, свариваемая из неё конструкция выдержит годовые и сезонные температурные колебания на протяжении ряда лет.

Благодаря содержанию 0,2% углерода и – в среднем – 2,5% присадок, механические свойства НЛС достаточны для сварки удовлетворительного качества. Кремний, содержащийся в количестве 1,05%, даёт стальной заготовке необходимую прочность и упругость, однако повышение его количества в конкретной марке затрудняет сварку из-за большего количества образующегося шлакового нагара. Марганец в количестве порядка 1,7% улучшает закалку, однако из-за него сварка осложнена. Завышенное количество молибдена, хрома и ванадия также ухудшает прочность сварных швов. Поскольку НЛС хорошо закаляется, её сваривают в условиях печного нагрева или в нежёстком режиме термообработке. Использование жёсткого режима даёт возможность вести только точечную сварку. Ток на сварочном инверторе ставится приближённо на 12,5% ниже, чем значение при сварке простой малоуглеродистой стали. Но надавливание на электроды – выше в среднем на 30%. Сваривают НЛС – как и малоуглеродистую сталь – дуговой, контактной и газосваркой. Ручное сваривание деталей на инверторе осуществляется электродами марки Э-50А без предварительной подготовки деталей, либо с применением сварочной проволоки во время газового сваривания.

Сталь марок 09Г2С, 10Г2С1, 10Г2С1Д трудно перегреть даже газовой сваркой, закалённые области образуются не так активно, чем в деталях, сработанных из прочих марок НЛС. Термообработка не привязана к конкретному алгоритму. Сварка производится электродами марки Э50А, Э46А, участки возле шва не отличаются по своим характеристикам от основной части детали. Марка 10Г2С1Д варится при подогревании до 110°C. При труднодоступности накладываемых швов производится нагрев примерно до 250°C – с последующим отжигом после сваривания. Лучше всего НЛС варить вручную дуговым методом. Толщина заготовок и температура окружающей среды значения не имеет. Сварные соединения по своим свойствам универсальны и просты в эксплуатации выполненных конструкций, допускают сваривание с любой стороны, включая потолочные и вертикальные швы. Сварка НЛС в целом производится на основании ГОСТ №9467-1975. Применение электродов Э50, Э46, Э42, Э38 создаёт рабочее давление на разрыв до 5000 атмосфер (50 кг/мм2). Электроды Э50А, Э46А, Э42А используются при ударной стойкости конструкций. Использование же электродов в сочетании с соответствующими марками НЛС – Э60, Э55 – увеличивает показатель допустимого давления до 6000 атмосфер.

При соблюдении указанных требований сварные швы прочны и надёжны.

Читайте также: