Сталь с добавлением хрома

Обновлено: 04.05.2024

Сплавам на основе Cr присущи такие специфические физико-химические свойства, как жаростойкость и жаропрочность, коррозионная стойкость в агрессивных жидкостях и газах, невысокая плотность, ряд других полезных свойств. Благодаря этому они находят широкое промышленное применение в качестве конструкционных материалов.

Общие характеристики

К конструкционным хромистым сплавам относят, в частности, композиции, содержащие, помимо Cr, также Ni, Si, Co, а также (в качестве легирующих добавок) Al, Мо, W, Mn, TiC и другие элементы Периодической таблицы. Рабочая температура таких сплавов может достигать 1500 °С.

Высокохромистые сплавы отличаются хорошей свариваемостью, не подвергаются охрупчиванию при длительной эксплуатации, практически все изделия из них являются ремонтопригодными, не нуждающимися в нанесении дополнительных защитных покрытий.

Сплавы хрома имеют высокие механические свойства: они устойчивы к воздействию термических напряжений при циклических сменах температурных режимов, технологичны по отношению к фасонному литью, штамповке горячим и холодным способами.

Хромосодержащие сплавы можно длительно эксплуатировать без нанесения защитного поверхностного слоя в температурном режиме до 1400 °С, кратковременно — до 1550 °С. Их применяют для изготовления нагревательных элементов, деталей, эксплуатируемых в потоке горячих газов и пара при циклических сменах температур (в диапазоне 600…1500 °С), КИПиА с набором особых физико-химических свойств, различных манипуляторов, узлов машин, штамповочных матриц и пуансонов, другого высокотехнологичного оборудования.

Наличие тех или иных свойств хромистых сплавов обусловлено химическим составом и процентным содержанием входящих химических элементов.

Сормайты

Сормайты — общее наименование ряда литых твёрдых высокоуглеродистых и высокохромистых сплавов на основе Fe, с высокой массовой долей Ni и Si.

Сормайты – эффективные наплавочные материалы (электроды марок Сормайт Т590, Т620, прутки ПР-С27 и др.), способные на порядок и более повышать степень износостойкости режущего инструмента и деталей различных механизмов, предназначенных для эксплуатации в условиях интенсивного абразивного износа, в т.ч. без смазки и в высокотемпературном режиме. Режущая способность сормайтов близка к стеллитам. Сормайты, таким образом, занимают промежуточную нишу между быстрорежущими сталями и категорией твёрдых металлокерамических сплавов.

Со второй половины ХХ в. по сегодняшний день одним из наиболее распространенных в отечественной и мировой металлургии является эвтектический хромистый сплав сормайт № 1, характеризуемый наивысшей степенью твердости (около 50 HRC) и близкий по структурному и химсоставу к группе белых чугунов. Содержание Cr – 25…31 %, C – 2,5…3,5 %, Si – 2,8…4,2 %, Ni – 3…5 %, Mn – до 1,5 % , S – до 0,8 %, P – до 0,08 % .

Стеллиты

Стеллиты (англ. Stellite) — группа износоустойчивых сверхтвёрдых сплавов системы Cr—Co с включением W и/или Мо. Массовая доля входящих в состав сплава элементов регламентируется сферой применения продукта той или иной конкретной марки. Ещё один важнейший компонент стеллитов всех марок – углерод, способный обеспечить особо высокую степень твёрдости благодаря образованию карбидной кристаллической структуры (по аналогии с высококачественными сталями, требуемые характеристики которых также во многом определяет процент содержания С).

Помимо высочайшей твердости, стеллиты характеризуются устойчивостью к воздействию коррозии, в т. ч. в агрессивных средах.

Основные марки стеллитов и их химический состав предствлены в таблице 1.

Различные марки стеллитов применяются в металлообрабатывающей промышленности для производства деталей, подверженных высоким нагрузкам на истирание: рабочих кромок режущего инструмента, облицовки каналов стволов и компонентов затворов автоматического огнестрельного оружия, упрочняющих армирующих покрытий деталей системы наддува и сёдел клапанов ДВС. Практикуется также использование стеллитов как элементов сварных конструкций (входные кромки) лопаток парогазовых турбин.

Кроме того, стеллиты применяются при изготовлении подшипников, оборудования для нефтегазодобычи, нефтехимической, химической, пищевой, стекольной и других промышленных отраслей.

Сплавы данной группы могут применяться как литейным способом, (отливка износоустойчивых деталей различных механизмов), так и методом наварки/наплавки/напыления защитных покрытий с использованием стеллитовых прутков, электродов/сварочной проволоки, а также порошков. Параметры стеллитовых наплавочных прутков марок Пр-С27, Пр-В3К и Пр-В3К-Р регламентированы ГОСТ 21449-75.

Одна из самых востребованных и наиболее твердых марок стеллита – сплав, именуемый «видиа» (от нем «wie Diamant»), что в переводе на русский означает «уподобляемый алмазу». Данный материал применяют, в частности, для изготовления напаиваемых пластин-наконечников для перфораторных буров по бетонам/камню.

Сплавы группа нихромов

Нихро́м (от никель-хром) — категория хромосодержащих сплавов, включающих (в зависимости от марки и функционального назначения), 50…80 % Ni и 15…25 % Cr с добавками Mn, Si, Fe, Al. Сплавы данного состава имеют вид твердых растворов системы Ni-Сг на базе кристаллической решетки Ni.

Нихромы характеризуют высокие показатели плотности, теплоемкости и удельного электросопротивления (1,045—1,45 Ом·мм²/м), а также повышенный коэффициент пластичности и способность хорошо удерживать форму в готовых изделиях. Им также присуща высокая степень жаростойкости в агрессивных окислительных средах, например, в HNO3 (до 1300 °C). Наибольшую стойкость к воздействию азотнокислой среды проявляют нихромы, легированные Si, что обуславливает их широкое применение в нефтехимической и химической промышленности.

Нихром марки Х20Н80

Самый ликвидный сортамент нихрома, особенно в виде проволоки. Что касается нихромовых полуфабрикатов в виде ленты и полосы, то на рынке они востребованы в гораздо меньшей степени, хотя и более продаваемы в сравнении с прутковой и листовой продукцией.

Допускается легирование сплава добавками редкоземельных металлов с целью повышения эксплуатационного ресурса.

Коэффициент удельного омического сопротивления составляет при 20 °C – 1,13 Ом·мм²/м, (при 1100 °C – 1,167 Ом·мм²/м). Показатель максимально допустимой рабочей температуры – 1250 °C, величина температуры плавления – 1400 °C.

Нихром марки Х15Н60 (ферронихром)

Содержит Ni – 60 %, Cr – 15 %, Fe – 25 %. Коэффициент удельного омического сопротивления составляет при 20 °C – 1,12 Ом·мм²/м, (при 1100 °C – 1,248 Ом·мм²/м). Показатель максимально допустимой рабочей температуры – 1125 °C, величина температуры плавления – 1390 °C.

Нихромы с содержанием Cr в пределах 25…30%, используют для производства лент и проволоки большого сечения. Для протяжки тонкой проволоки (Ø 0,01…0,30 мм) применяют марки нихрома более высокой пластичности, с содержанием Cr до 20 %.

Применение

Нихром – материал не дешевый, однако, с учетом присущих ему достоинств, фактор стоимости во многом нивелируется. Что, в свою очередь, обуславливает широкий спектр практического применения.

  • производства элементов высокотемпературного нагрева электрических печей, в которых осуществляется обжиг и сушка;
  • изготовления электрических приборов теплового воздействия (медицинские электроскальпели, запальные свечи, комплекты для выжигания и т.д.);
  • выпуска деталей технических устройств, предназначенных для эксплуатации в агрессивных средах при высоких температурах, в которых нихром востребован как очень прочный жаростойкий и коррозиестойкий сплав (например, резисторные элементы, реостаты, термостаты и т.д.);
  • формирования подслоя и термостойкого защитного покрытия, наносимого способами термического напыления или наплавки;
  • производства термоэлементов испарительной аппаратуры.

Благодаря высокой пластичности нихром хорошо поддается таким видам обработки, как сварка, точение, волочение, прокатка, штамповка и др.

Нимоник (разновидность продуктов нихромовой группы)

Дисперсионно-твердеющие высокожаропрочные сплавы с никель-хромовой основой. Наиболее востребованной из них является марка Нимоник 80 – в состав которого включено ~80 % Ni и ~20 % Cr. Для повышения прочностных характеристик в сплав данного типа могут быть введены такие легирующие элементы, как Ti (2.0…2,5 %) и Al (1,2…1,5 %). Нимоник-80 в деформированном виде применяют для производства особенно прочных и устойчивых к износу лопаток газовых и паровых турбин, работающих в температурном режиме 780—880 °C. Аналоги сплава Нимоник-80 – жаропрочные хромоникелевые сплавы марок ЭИ437, ЭИ437А (ХН77ТЮ), а также и ЭИ437Б (ХН77ТЮР).

Инконель

К группе нихромов причисляют также семейство аустенитных хромоникелевых жаропрочных сплавов типа Инконель (Inconel) марок 600, 625, 690, 718, 750, МА758, способных не только сохранять высокую прочность в режиме повышенных температур, но также сопротивляться ползучести и проявлять коррозионную стойкость. Химический состав наиболее востребованных марок данного сплава отображен в таблице 2.

Из инконелей изготавливают детали машин и механизмов, эксплуатируемых в экстремальных условиях (газотурбинных двигателей, компрессоров, парогенераторов, аппаратуры для химической промышленности и т.д.).

Хроме́ль

  • Cr — 8,7…10 %;
  • Ni — 89…91 %;
  • Si, Cu, Мn, Co — примеси.

Сплав применяют, главным образом, для изготовления элементов термопар. Наиболее популярны термопары типа «хромель-алюмель» (ХА, согласно международной классификационной системе – тип К). Широко применяются также изделия типа «хромель-копель» (ХК, международное — тип L). Технические условия изготовления термопарной проволоки названных разновидностей регламентируются ГОСТ 1790-77.

Алюмосодержащие хромистые сплавы

Хромаль (от хром-алюминий)

Общее наименование, которое имеет группа жаростойких сплавов на базе Fe, содержащих также Cr (17…30 %) и Al (4,5—6,0 %). Сплавы типа хромаль отличает уникальное сочетание повышенной жаростойкости (до 1450 °С) и высокого омического удельного сопротивления (1,3—1,5 мком⋅м). Температура плавления – 1500…1510 °С. Показатель удельной плотности 7,15…7,30 г/см 3 .

Хромали и нихромы, являются применяемыми в сходных технических отраслях конструкционными материалами, выпускаемыми, главным образом, как проволока и лента.

Хромали, в сравнении с нихромами, являются более жаростойкими, особенно в воздушной, водородной, а также содержащей S и C окислительной среде. Однако они более сложны в изготовлении и нуждаются в особом режиме эксплуатации, поскольку имеют относительно небольшую прочность при температурах > 1000 °С. Кроме того, хромали подвержены охрупчиванию под воздействием паров и окислов ряда распространённых химических элементов.

Отечественная промышленность производит хромали марок 0Х23Ю5А, 0Х27Ю5А и др. Наиболее популярные зарубежные хромалевые сплавы – кантал и мегапир.

Фехраль (от феррум-хром-алюминий)

  • Cr – 12…27 %;
  • Al – 3,5…5,5 %;
  • Si – 1 %;
  • Mn – 0,7 %;
  • прочее — Fe.

Фехраль устойчив к окислению в воздушной среде при высоких температурах. Характеризуясь высокой степенью твердости и хрупкости, плохо поддается обработке механическими способами. Имеет высокую степень удельного электросопротивления (1,2—1,3 Ом·мм²/м). Показатель удельной плотности – 7100…7300 кг/м³. Температура плавления ~ 1460 °C.

Как видим, сплавы хромаль и фехраль, при общей схожести химического состава, различаются по процентному содержанию Cr (соотв. 17…30 и 12…27 %) и Al (соотв. 4,5…6,0 и 3,5…5,5 % %). Это обуславливает различия в показателях удельного сопротивления (соотв. 1,3…1,5 и 1,2…1,3 Ом·мм²/м) и температуры плавления (соотв. 1500…1510 и 1450….1460 °C). Данные факторы, в свою очередь, влияют на спектр практического применения. Так, изделия из хромалей, в сравнении с фехралевыми аналогами, являются более устойчивыми к окислению в сернистой и углеродистой атмосфере и менее хрупкими.

Молибденосодержащие хромистые сплавы

Рене 41 (René 41)

Сплав на никелевой основе, жаропрочный.

  • Cr – 18…22 %;
  • Mo – 9…11 %;
  • Co – 10-14%;
  • Al – 1.35…1.85 %;
  • Ti – 3.1…3.4%;
  • Fe – 0-5.5%;
  • Прочее – Ni с незначительными добавками B, С, Mn, Si, S, Cu.

Высокая степень прочности сохраняется в температурном интервале 650…1000 °C. Используется для изготовления компонентов реактивных двигателей и космических аппаратов, а также в иных промышленных сферах, где востребованы высокие прочностные характеристики, проявляемые в режиме экстремальных температур.

Комохром (от кобальт–молибден–хром)

Сплав Ni (62%), Cr (25%) и Mo (10%) с добавкой Со. Устойчив к воздействию длительных нагрузок в температурном режиме > 750 °С.

Благодаря сочетанию высоких эксплуатационных характеристик и нейтральности по отношению к тканям человеческого организма сплав комохром широко применяются в медицине, в частности, в стоматологии и ортодонтии, сфере протезирования суставов и мягких тканей, для изготовления хирургических инструментов.

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Промышленное применение хрома для легирования сталей, чугунов и сплавов

Легированными называются стали, содержащие, помимо С и других обычных примесей, добавки определенного количества легирующих металлов (Cr, Ni, Mo и др.), а также Mn и Si в дозировках 0,83…1,22 %.

  • низколегированные (суммарное количество легирующего компонента ≤ 2,51 %);
  • легированные (2,51…10,2 %);
  • высоколегированные (> 10 %).
  • конструкционными;
  • инструментальными;
  • принадлежать к категории сталей специального назначения.

Конструкционные легированные стали

маркируют при помощи цифр и буквенных аббревиатур (напр. 15Х, 10Г2СД, 20Х2Н4А и т.д.). Двузначное цифровое сочетание в начале марки отображает среднее содержание С в сотых долях %. Большой буквой русского алфавита обозначается название легирующего элемента, в частности: Б – (Nb), Н – (Ni), Ф – (V), В – (W), М – (Mo), Х – (Cr), Г – (Mn), П – (P), Ц – (Zr), Д – (Cu), Р –(B), Ч – редкозем, Е – (Se), С – (Si), Ю – (Al), К – (Co), Т – (Ti), А – (N) только в середине обозначения.

Цифровые значения после буквенной аббревиатуры указывает на процентное содержание легирующего элемента. Если же цифры отсутствуют, то это значит, что концентрация легирующего элемента – ≤ 1,5 %.

Основной объем легированных конструкционных сталей выплавляют в категории качественных (напр. 30ХГС).

Если в конце названия марки расположена буква «А», это значит, что данная сталь причисляется к категории высококачественных легированных сталей (напр. 30ХГСА).

Наличие буквы «А» в середине марки (напр. 16Г2АФ), говорит о том, что данная сталь была также подвергнута легированию азотом.

Буква «Ш» после черточки в конце названия марки свидетельствует о ее принадлежности к категории особовысококачественных легированных сталей (напр. 30ХГС-Ш, 30ХГСА-Ш).

Если конструкционная легированная сталь является литейной, в конце обозначения марки добавляется буква «Л» (напр. 15ГЛ, 40ХНЛ и т.д.).

Конструкционные легированные хромистые стали (0,6…1,6 % Cr), характеризуются повышенными пределами прочности, твердости и пластичности в сочетании с высокой хладостойкостью. Наличие хрома способствует также снижению относительного удлинения. Так, предел прочности обычной стали 40 составляет 580 МПа, текучести – 340 МПа, показатель относительного удлинения – 19 %. В хромистой же стали марки 40Х значения аналогичных показателей изменяются, соответственно, до 1000 МПа, 800 МПа и 13 %. Такие стали незаменимы в производстве валов, зубчатых колес, толкателей, червячных передач, метизов и другой промышленной продукции.

Конструкционные стали легированные хромом

Инструментальные стали, легированные Cr

  • хромистых;
  • никелевых;
  • силицидных;
  • алюминиевых и т.д.

Чугуны легированные хромом

Каждый из легирующих элементов обогащает чугун собственными специфическими свойствами.

Cr –– основной легирующий элемент – выполняет ферритообразующую и карбидообразующую функцию, обеспечивая, к тому же, высокие показатели износо-, коррозие- и термостойкости хромистых чугунов.

Придание чугунам износостойких характеристик обеспечивается благодаря наличию в их структуре карбидной упрочняющей фазы. Критерием определения степени износостойкости является обеспечиваемый карбидной фазой уровень твердости. Наивысшая износостойкость присуща чугунам, имеющим в своем составе карбиды (Cr, Fe, Mn)7С3, в два раза более твердые, чем карбиды цементитного типа. Минимальное количество содержащегося в чугуне Cr, необходимое для образования карбидов (Cr, Fe, Mn)7С3 при 3% содержании С, может колебаться в довольно широком диапазоне (11…28%).

В экономно легированных чугунах (до 2,5 % Mn и 1,5 % Ni) при 3% С содержание Cr, необходимое для получения 100 % карбидов (Cr, Fe, Mn)7С3, должно составлять >17 %.

Для того, чтобы придать высокую коррозионную стойкость чугуну, эксплуатируемому без дополнительной термообработки, требуется введение в его состав ≥ 22 % Cr при 3% содержания С.

Ni в составе чугуна, являясь аустенитообразующим элементом, способствует повышению характеристик вязкости, пластичности и устойчивости к коррозии.

Mn в составе легирующей композиции выполняет, главным образом, функцию стабилизирующего элемента и катализатора, делая процессы карбидообразования и аустенитизации более интенсивными и ровными.

Согласно ГОСТ 7769-82 наличие тех или иных специальных свойств чугуна и процентный состав химических элементов в легирующей композиции отображает маркировка. Так, например, ИЧХ4Г7Д – марка износостойкого чугуна, легированного 4% Cr, 7% Mn и до 1% Cu; ЖЧХ2,5 – марка жаростойкого чугуна, легированного 2,5% Cu; ЧХ32 – марка хромистого чугуна с содержанием до 32% Cr; ЧН19Х3Ш – марка чугуна никелевого жаропрочного, в составе которого наличествуют 19% Ni, 3% Cr с шаровидным графитом и т.д.

Легированные чугуны со специальными свойствами, в т.ч. хромистые, являются универсальным конструкционным материалом, применяемым во многих отраслях промышленности. Их широко используют при изготовлении работающих в условиях интенсивного коррозионного, абразивного и гидроабразивного износа машин и механизмов для добычи полезных ископаемых и обогащения руд, металлургии, энергетики, производства стройматериалов и строительной спецтехники, другого оборудования сходного назначения.

Хромирование: польза, технологии, риски

Хром (Cr) - 24-й элемент периодической системы Менделеева. В чистом виде он представляет собой голубовато-белый металл, имеющий характерный металлический блеск. На воздухе хром пассивируется - на его поверхности появляется плотная плёнка, защищающая его от коррозии и потемнения. Учёные применили это свойство на практике - они разработали технологии хромирования, позволяющие покрыть предметы тонким слоем хрома, придать им эффектный блеск и сделать стойкими к негативным внешним воздействиям.

  • привлекательный внешний вид;
  • высокая твёрдость;
  • нечувствительность к коррозии;
  • износостойкость;
  • жаропрочность.

Типы покрытий из хрома

Хромовые покрытия, наносимые на изделия, по назначению делятся на функциональные и декоративные.

Функциональные покрытия из хрома повышают механическую и коррозионную стойкость форм, инструментов, элементов клапанов, частей паросилового оборудования, валов полиграфических машин и других деталей, работающих под нагрузкой. Они замедляют их износ и увеличивают срок их службы. Такие покрытия, толщина которых достигает нескольких миллиметров, наносятся на изделия из стали, титана, алюминия, иных металлов и сплавов.

Рисунок 1. Хромирование бытовых приборов.

Декоративные покрытия из хрома придают изделиям привлекательный блеск и, как и функциональные, защищают их от коррозии. Их наносят на видимые детали кузовов автомобилей, полотенцесушители, смесители и иные сантехнические изделия, статуэтки и многие другие предметы, которые должны эффектно выглядеть. Толщина декоративных хромовых покрытий невелика - как правило, она варьируется от 0,2 до 0,7 мкм. Во многих случаев хром наносится не на материал изделия, а на предварительно созданный подслой из никеля и меди.

Рисунок 2. Покрытие из хрома в сантехнике.

Электролитическое хромирование

Перед обработкой изделие тщательно очищают, полностью удаляя с него загрязнения. После этого переходят к хромированию по той или иной технологии. Большое распространение получила электролитическая обработка.

Очищенную деталь помещают в кислотоупорный резервуар с водяной рубашкой, наполненный электролитом - как правило, на основе шестивалентного хрома. В состав электролита входят серная кислота и хромовый ангидрид строго определённой плотности.

  • при температуре около 50°С на детали образуется красивое декоративное покрытие из хрома;
  • при температуре 55-60°С получают прочное, коррозионно- и износостойкое функциональное покрытие.
  • при 25 А / кв. дм выполняют обработку изделий в декоративных целях;
  • при 60 А / кв. дм получают функциональное покрытие из хрома.

Ток, протекающий через электролит, запускает процесс электролиза. В жидкой смеси серной кислоты и хромового ангидрида выделяются катионы хрома. Они осаждаются на поверхности обрабатываемого изделия, образуя покрытие с требуемыми свойствами.

Слой хрома, образующийся на деталях при электролизе, хрупок. Чтобы сделать его прочнее, изделия в некоторых случаях подвергают длительной термической обработке при температуре приблизительно 200°С.

Диффузное хромирование

Обрабатываемая деталь и смесь для металлизации, состоящая из феррохрома и шамота, помещаются в печь. В ней они нагреваются до высокой - варьирующейся от 700 до 1400 - температуры. Атомы хрома, выделяющиеся из смеси, диффундируют (проникают) в поверхностный слой изделия, формируя прочное и долговечное покрытие. Чтобы реакция шла быстрее, используют хлористый аммоний, образующий активные летучие соединения хрома.

Вакуумное хромирование

У этой технологии есть ещё одно название - PVD-процесс. Она применяется для создания покрытий на алюминиевых изделиях. Обрабатываемую деталь и металлический хром помещают в вакуумную камеру. Здесь металл нагревается до температуры, при которой начинается его испарение. Атомы хрома оседают на защищаемой поверхности. Слой, который они образуют, в большинстве случаев тонкий и непрочный, поэтому его дополнительно покрывают лаком.

Химическое хромирование

Эта технология применима для обработки как металлических изделий, так и предметов из диэлектриков. В первую очередь обрабатываемую поверхность тщательно очищают и обезжиривают. При необходимости на ней создают дополнительный слой - например, из меди. Резервуар заполняют водным раствором для хромирования, содержащим соли хрома. Жидкость нагревают до определённой - как правило, равной 80°С - температуры. Обрабатываемое изделие помещают в резервуар и выдерживают в нём несколько часов. В ходе хромирования из раствора солей восстанавливается хром, который затем оседает на поверхности детали, формируя на ней защитный слой. В последнюю очередь обработанное изделие промывают и просушивают.

Во многих случаях покрытие из хрома, получаемое химическим методом, имеет недостаточную прочность. Для её увеличения изделие подвергают термической обработке при высокой - как правило, варьирующейся от 300 до 400°С - температуре. Происходит диффузия атомов хрома, и созданное покрытие прочно соединяется с материалом детали.

Гидрофобизация

Чтобы сделать покрытие из хрома максимально стойким к коррозии, выполняют его гидрофобизацию. Хромированные поверхности обрабатывают растворами солей жирных кислот. На изделии адсорбируются молекулы используемого соединения, при этом покрытие становится гидрофобным - значительно уменьшается его смачиваемость водой и растворами на её основе. Капли, попадающие на обработанное изделие, легко стекают с него - вероятность появления очагов коррозии резко уменьшается.

Существующие риски и их устранение

  • персонал использует индивидуальные средства защиты - специальную одежду, перчатки, фартуки, респираторы, очки;
  • с сотрудниками проводят инструктаж по технике безопасности;
  • в помещениях организуют эффективную вентиляцию;
  • сточные воды подвергают тщательной очистке с целью обезвреживания токсичных соединений хрома.

Учёные разрабатывают технологии, способные стать альтернативой хромированию и уменьшить или полностью устранить перечисленные риски. Одной из них стало скоростное газоплазменное напыление, которое разработали в ответ на ограничение хромирования, введённое в Европе директивой RoHS в 2003 году.

Хромистая сталь: виды и особенности материала


Хромистая сталь служит материалом для тех деталей, которые будут эксплуатироваться в агрессивных средах, и поэтому к ним предъявляют повышенные требования коррозионной стойкости.

Однако включение хрома в состав металла имеет определенные последствия. В нашей статье мы расскажем о характеристиках хромистой стали, разберем ее популярные виды и поговорим, как изменяется ее прочность после добавления хрома.

Общая характеристика хромистой стали

Хром — основной легирующий элемент, благодаря которому сталь становится нержавеющей. Если этого металла в стали содержится более 12,5 %, то на поверхности появляется оксидная пленка Сr2О3 с защитными свойствами.

Общая характеристика хромистой стали

Хром — довольно распространенный металл, поэтому хромистые нержавеющие стали самые недорогие. Кроме того, они обладают замечательными технологическими свойствами. Желательно, чтобы углерода в таких сталях было как можно меньше, поскольку он образует в сочетании с хромом карбиды и таким образом уменьшает содержание хрома в расплаве и снижает коррозионную стойкость стали.

Отсюда следует, что коррозионная стойкость сплава напрямую зависит от количества содержащегося в нем хрома. Выпускают три вида хромистых сталей, которые содержат:

  • 13 % Сr: 08Х13 (Ф); 12Х13 (М-Ф), 20Х13 (М), 30Х13 (М), 40Х13 (М);
  • 17 % Сr: 12Х17 (Ф); 08Х17Т (Ф); 14Х17Н2 (М-Ф);
  • от 25 до 28 % Сr: 15Х25Т (Ф); 15Х28 (Ф).

Все виды хромистых сталей закаляют в масле при 1000-1100 °C с последующим отпуском: для сплавов ферритного класса — при 700-750 °C, мартенситного класса — 200-250 °C.

Основное назначение сталей 12Х13 и 20Х13 — изготовление деталей, характеризующихся высокими пластичностью и сопротивлением ударным нагрузкам (например, лопатки турбин, предметы бытового назначения). Стали 30Х13, 40Х13, имеющие мартенситную структуру, подходят для создания медицинских и измерительных инструментов, пружин и т. д.

Стали 12Х17, 15Х25Т и 15Х28 более коррозионностойкие, поэтому из них изготавливают различные элементы (трубы, теплообменники, детали аппаратов пищевой, химической промышленности и др.), выдерживающие воздействие агрессивных сред, таких как различные кислоты. Например, сталь 12Х17 является подходящим материалом для трубопроводов, баков для хранения кислот, теплообменников с горячими газами.

Основные виды хромистых сталей

Ферритные нержавеющие стали

Нержавеющие стали, содержащие минимальное количество углерода и более 12,5 % хрома, обладают структурой феррита, поэтому их называют ферритными. Такие стали отличаются очень высокой коррозионной стойкостью, выдерживая воздействие агрессивных веществ, и превосходят по этому показателю некоторые марки хромоникелевых аустенитных нержавеющих сталей. Кроме того, они не имеют тенденции к коррозионному растрескиванию под напряжением.

Основные виды хромистых сталей

Если хромистые ферритные нержавеющие стали легировать алюминием и кремнием, то из них можно изготавливать оборудование, способное работать при высоких температурах в условиях окисления.

Ферритные нержавеющие стали могли бы найти более широкое применение, но хрупкость их сварных швов слишком велика. Также они имеют большую чувствительность к надрезу при нормальной температуре, поэтому не подходят для создания оборудования, которое работает под давлением или в режиме ударных и знакопеременных нагрузок. Хромистые ферритные нержавеющие стали можно применять при изготовлении ненагруженных устройств и деталей.

Для обеспечения хорошей свариваемости нержавеющих сталей ферритного класса нужно, чтобы в их составе было мало не только углерода, но и азота. Стали, содержащие в совокупности не более 0,02 % азота и углерода, более пластичны и имеют высокую ударную вязкость, а значит, сварные соединения будут получаться менее хрупкими. Однако производство таких сталей сложное, требующее применения вакуумных печей либо продувки расплава аргоном или смесью аргона и кислорода.

При нагревании состав хромистых ферритных нержавеющих сталей не изменяется, но расплав приобретает бо?льшую однородность. Следовательно, чтобы повысить коррозионную стойкость стали, можно применять термообработку.

Мартенситные нержавеющие стали

Хромистые стали, количество углерода в которых повышено, обладают структурой мартенсита. Для того чтобы они имели коррозионные и другие свойства, в мартенситные стали добавляют легирующие компоненты, в том числе никель. Этот металл при взаимодействии с углеродом образует стабильную структуру стали, а, например, такие компоненты, как ванадий, вольфрам, ниобий, обеспечивают жаропрочность сплава.

Как правило, обычные мартенситные хромистые нержавеющие стали обладают хорошей прочностью при температурах до 500 °C, но если в них добавить присадки, которые образуют соединения с углеродом, то данный показатель увеличивается до 650 °C.

Благодаря этому легированные мартенситные стали с большой концентрацией хрома можно использовать для создания энергетического оборудования, отвечающего современным требованиям. Дополнительное введение в расплав вольфрама и молибдена делает сталь менее хрупкой при длительной эксплуатации в условиях высоких температур.

Мартенситные стали, например 20Х13, 30Х13, 40Х13, 65Х13, имеют высокую твердость и подходят для изготовления деталей агрегатов, работающих на износ, а также режущего инструмента. Такие стали сначала закаляют, а затем производят отпуск на заданную твердость.

Хромистые нержавеющие стали мартенситной группы имеют тенденцию к хрупкому разрушению в закаленном состоянии, поэтому их сложно сваривать. Углерода в этих сталях содержится более 0,10 %, поэтому после нагрева электросваркой и последующего охлаждения в металле образуются холодные трещины. Вязкость мартенсита можно повысить, снизив концентрацию углерода путем дополнительного легирования. Однако в этих случаях образуется структурно-свободный феррит, делающий сталь хрупкой.

Для профилактики появления холодных трещин мартенситные нержавеющие стали подвергают предварительному и сопутствующему подогреву до 200-450 °C (температуру подбирают в зависимости от закалочных свойств стали), а сварочные работы проводят при температуре окружающей среды не ниже 0 °C.

Мартенситно-ферритные нержавеющие стали

Мартенситно-ферритные стали — это сплавы, в которых происходит частичное γ→α превращение, их термокинетическая диаграмма включает две области превращения. При нагреве до 600 °C и медленном охлаждении может образовываться ферритная структура. При быстром охлаждении ниже 400 °C аустенит превращается в мартенсит без диффузии.

Коррозионная стойкость мартенситно-ферритных нержавеющих сталей тем выше, чем больше в них хрома. При концентрации 17 % Cr металл становится стойким в нагретой до 50 °C 65%-ной азотной кислоте. Дальнейшее увеличение содержания хрома позволяет еще более широко применять эти стали в разнообразных средах. Мартенситно-ферритные стали используют для создания энергетических установок и нефтехимического оборудования.

Как и другие хромистые стали, сплавы мартенситно-ферритной группы неудобны для сварки. При работе с этими металлами приходится проводить подкалку сварных соединений, что приводит к появлению трещин замедленного разрушения.

Влияние добавления хрома на свариваемость стали

В силу описанных свойств мартенситного превращения в хромистых сталях холодные трещины могут появляться как сразу после сварки, так и на стадии охлаждения. Чтобы предупредить их возникновение, изделие после сварки необходимо в течение определенного времени выдержать при температуре мартенситного превращения (100-150 °C). Время определяется исходя из толщины свариваемой детали и от количества углерода в стали.

Влияние добавления хрома на свариваемость стали

Эти условия более благоприятны для мартенситного превращения, мартенсит становится менее хрупким, а количество остаточного аустенита снижается. Последний фактор при таком режиме охлаждения уменьшает ударную вязкость стали в зоне термического влияния (ЗТВ) после сварки.

После сварки изделий из мартенситной стали сварочные швы необходимо подвергнуть высокому отпуску. Это приводит к распаду мартенсита, снятию напряжений и увеличению ударной вязкости. Если перед отпуском сохранен остаточный аустенит, то он может распасться при отпуске, а ударная вязкость уменьшится.

Температура отпуска сварных швов зависит от характеристик соединения и состава стали и может иметь значение от 680 до 760 °C. Более высокая температура подходит для отпуска сталей с присадками вольфрама, молибдена, ванадия, более низкая — для сталей, не легированных карбидообразующими элементами.

Обычно мартенситные жаропрочные стали сваривают с такими материалами, благодаря которым металл шва имеет характеристики, близкие к основному металлу. Это возможно при соблюдении рассмотренных выше условий сварки. При некоторых видах работ термообработка изделий затруднена, и тогда при сварке добавляют аустенитные присадки. Например, электроды УОНИ-13/нж, ОЗЛ-6 используют при ручной дуговой сварке стали 08Х13.

Эксплуатировать изделия после сварки можно при температуре не выше 350 °C. При сварке хромистой стали автоматом под флюсом применяют сварные проволоки Св-06Х25Н12ТЮ, Св-07Х25Н12Г2Т, а также флюс АН-26.

Сварка хромистой стали марки 08Х13, а также ферритных и полуферритных сталей с содержанием хрома 25 и 17 % сопровождается увеличением количества ферритного зерна в ЗТВ и повышенной хрупкостью этой зоны.

С одной стороны, эти стали обладают сниженной теплопроводностью, а значит, для уменьшения температурного градиента их нужно подогревать. С другой стороны, при работе с ферритными и полуферритными хромистыми сталями нужно ограничивать тепловложение, поэтому при сварке температура их подогрева ниже, чем мартенситных сталей (около 150 °С). Если толщина свариваемого изделия небольшая, а температура воздуха имеет положительные значения, то возможна сварка вообще без подогрева.

Предотвратить рост ферритного зерна в ЗТВ и повышение хрупкости этой зоны при сварке ферритных и полуферритных хромистых сталей невозможно. Чтобы их ограничить, необходимо снизить значение погонной энергии сварки.

Сопротивление коррозии хромистых сталей

Нержавеющие стали, концентрация хрома в которых 13 % и более, мало подвергаются питтинговой коррозии и хлоридному коррозионному растрескиванию в нейтральной и слабощелочной среде. Хром — основное вещество, которое мешает действию ионов хлора и других галогенов на сталь.

Сопротивление коррозии хромистых сталей

Чем больше этого элемента в стали, тем легче ее пассивация в условиях воздействия ионов хлора. Если добавить в хромистую сталь никель, то агрессивное воздействие ионов галогенов на ее поверхность будет повышено благодаря смещению потенциала питтингообразования в область положительных значений. По этой причине такая сталь подвержена питтинговой коррозии, а также хлоридному коррозионному растрескиванию.

Если никеля добавлено более 6 %, то изменяется фазовое состояние сплава. Аустенитная структура хромоникелевых сталей способствует меньшему трещинообразованию, чем мартенситная или ферритоперлитная. Однако чаще всего хромистые стали 08Х13, обладающие ферритоперлитной структурой, более устойчивы к хлоридному коррозионному растрескиванию, чем хромникелевые стали с аустенитной структурой, в нейтральных средах с наличием хлоридов.

При производстве ректификационных колонн на установках АВТ активно применяется биметалл с плакирующим слоем из стали 08X13. На некоторых этапах производства (пусковой период, остановки на ремонт, пропаривание) условия благоприятны для появления хлоридного коррозионного растрескивания, поэтому не рекомендуется использовать двухслойную сталь с плакирующим слоем из хромистой стали марки 12Х18H10Т.

В процессе сварки может формироваться мартенсит, заметно снижающий стойкость хромистых сталей к любому коррозионному растрескиванию. Однако независимо от структуры металла в кислых средах хромистые стали подвержены питтинговой коррозии и хлоридному коррозионному растрескиванию.

Нержавеющие стали с высоким содержанием хрома плохо сопротивляются межкристаллитной коррозии (МКК). Чтобы повысить стойкость к МКК, в эти стали добавляют присадки ниобия или титана (не более 1 %), а также уменьшают концентрацию углерода (до 0,01 %).

В нефтеперерабатывающей отрасли, где высок риск МКК или межкристаллитного коррозионного растрескивания из-за воздействия кислот, для изготовления оборудования (печных змеевиков, реакторов установок гидроочистки и риформинга) хромистые стали стараются не применять, так как их стойкость к коррозии в таких рабочих средах недостаточна.

Итак, добавление хрома в сталь обусловлено его высокой стойкостью к коррозии благодаря образованию на поверхности металла тонкой оксидной пленкой с защитными свойствами. Эта пленка не дает воде и воздуху доступ к стали, благодаря чему она становится нержавеющей.

Коррозионностойкая сталь: свойства, классификация материала


Коррозионностойкая сталь устойчива к действию кислорода, то есть не подвержена ржавчине ни на воздухе, ни в жидкой среде. Основной элемент, который придает материалу такие свойства, – хром. Невосприимчивый к действию окисления, он образует защитную пленку на поверхности и таким образом изолирует металл от кислорода.

Коррозионная сталь используется в промышленности и быту. Из нее делают важные конструктивные элементы и привычные всем столовые приборы. Подробнее о составе, свойствах и применении коррозионной стали читайте в нашем материале.

Характеристика коррозионностойкой стали

Коррозионностойкая сталь была изобретена металлургом Гарри Бреарли. Этот известный англичанин получил на нее патент в 1913 году. Его открытие вывело сталелитейную и другие промышленные отрасли на более высокий уровень развития.

Благодаря этому открытию стало возможным наделять стальные сплавы уникальными свойствами. Сталь стала коррозионностойкой потому, что в нее добавили такой компонент, как хром. Необходимо отметить, что стали и сплавы, устойчивые к образованию ржавчины, должны содержать в себе от 10,5 % и более хрома.

Характеристика коррозионностойкой стали

Добавление этого компонента позволило наделить материал следующими свойствами:

  1. повышенная устойчивость к образованию ржавчины;
  2. сверхпрочность;
  3. отличная свариваемость;
  4. легкость обработки – применяется метод холодной деформации;
  5. длительный эксплуатационный период, на протяжении которого материал не меняет свои характеристики;
  6. визуальная привлекательность изделий.

По ГОСТу коррозионностойкая сталь должна содержать в себе хром и железо. Эти вещества вместе образуют синергию, наделяя материал специфическими свойствами. Так, хром и кислород соединяются, формируя на поверхности сплава оксидную пленку, она защищает изделие от образования коррозии.

Данные параметры нержавеющей стали могут быть улучшены, если использовать легирующие добавки, к примеру никель, титан, молибден, ниобий, кобальт.

За счет легирования на производственных предприятиях получается создать разные виды стальных коррозионностойких сплавов, обладающих разнообразными свойствами и назначением.

Материал получается сверхпрочным и твердым, поскольку в нем содержится углерод. Также этот элемент встречается во многих сплавах, в результате они приобретают необходимые качества.

Легированная коррозионностойкая сталь обладает уникальными свойствами. Поэтому она используется в разных областях, где изделия либо оборудование будут работать в условиях повышенной влажности, под воздействием агрессивных сред.

Химический состав коррозионностойких сталей

Коррозионностойкие нержавеющие стали и сплавы производятся по такой технологии, когда к неустойчивому к коррозии металлу добавляют другой металл, образующий с ним соединение более высокой твердости. В результате не пропорционально, а скачкообразно увеличивается устойчивость к ржавчине.

Химический состав коррозионностойких сталей

Легированная хромом сталь, когда к металлу добавляют 12–30 % хрома, обладает повышенными защитными свойствами. В результате изделие становится максимально устойчивым к пагубному воздействию агрессивных сред:

  • Если добавлено 13 % хрома и более, на сплаве в обычных условиях, а также в слабоагрессивных средах не образуется ржавчина.
  • Когда добавлено более 17 % хрома, материал проявляет устойчивость к коррозии даже в агрессивных окислительных, щелочных и других средах.

Как объясняется коррозионная устойчивость стали с химической точки зрения? Происходит это за счет того, что на поверхности изделия из данного материала образуется пассивирующая пленка окислов за счет содержания хрома.

Такая пленка задерживает кислород, предотвращая появление окисления. То, насколько эффективной будет защита, определяется тем, в каком состоянии находится металлическая поверхность, есть ли на ней повреждения, внутренние напряжения в материале.

При изготовлении коррозионностойкой стали и нержавеющей стали добавляют сопутствующие железу элементы: С (углерод), Si (кремний), Mn (марганец), S (сера), P (фосфор).

Легирование коррозионностойкой стали любой марки позволяет улучшить ее физико-механические свойства. Данную процедуру можно выполнить не только с помощью хрома, но и используя другие химические элементы, к примеру разные группы металлов.

В нормативных документах названия элементов обозначены русскими буквами: Ni – никель (Н), Mn – марганец (Г), Ti – титан (Т), Co – кобальт (К), Mo – молибден (М), Cu – медь (Д).

Чтобы стабилизировать аустенитную структуру стали, укрепив таким образом кристаллическую решетку железа, в качестве добавки используют никель.

Для увеличения прочности добавляют углерод. Чтобы сделать материал устойчивым к температурным перепадам, потребуется присадка титана. В частности, это касается агрессивных сред (кислотных), где применяют сложнолегированные сплавы с присадками никеля, молибдена, меди и других элементов.

Маркировка нержавеющих сталей

Чтобы маркировать металлы, используют буквенно-цифровое обозначение. Так, встречается отечественная классификация марок стали, ее используют в технической и нормативной документации.

Маркировка нержавеющих сталей

Кроме того, можно столкнуться с мировой группой стандартов, которые разработали в Американском институте стали и сплавов AISI (American Iron and Steel Institute) для легированных и нержавеющих сталей.

В России стандарты классифицируются по нижеследующей схеме. Чтобы стало понятнее, разберем в качестве примера аустенитную сталь 12Х15Г9.

Элемент маркировки

Двузначное число

Буквы

Цифры

Объем углерода – С, (% × 100)

Процентное содержание легирующих металлов (округленно до целого числа)

В системе AISI материалы обозначены 3–4 цифрами. Первые из них указывают на группу сталей, две другие – на среднее содержание углерода. Буквенное обозначение расположено чаще всего после второй цифры, впереди либо за цифрами. К примеру, 410, 410S, 1045.

Основные виды коррозионностойкой стали

Коррозионностойкая сталь аустенитного класса, а также сплавы отличаются по их возможности противостоять негативному воздействию естественных и искусственных сред: атмосферных, подводной, грунтовой (подземной), щелочной, кислотной, солевой, среды блуждающих токов. Материал также устойчив к химической, электрохимической, межкристаллитной коррозии.

Классификация коррозионностойких сплавов указана в ГОСТах, в этой нормативной документации сталь описана в соответствии с производственными процессами и использованием материала.

Основные виды коррозионностойкой стали

Существует несколько разновидностей сплавов в зависимости от структуры. Также отличается процентное содержание углерода, состав легирующих компонентов.

В зависимости от данных соотношений определяют, какой тип стали можно использовать в той или иной ситуации.

Ферритная группа

Сюда можно отнести хромистые стали, маркируемые буквой F. Это стали с большим содержанием хрома — до 30 %, и небольшим углерода – до 0,15 %.

Такие стали наделены ферромагнитными характеристиками: они намагничиваются за границами магнитного поля, если температура критически низкая.

Чтобы достичь наилучших характеристик, необходимо найти и отрегулировать баланс между содержанием углерода и хрома.

Преимущества – повышенная прочность и пластичность. Оптимальная деформируемость при холодной деформации. Материал устойчив к коррозии. В качестве термической обработки подходит отжиг.

Используется при изготовлении трубопроката, листовых и профилированных промежуточных и конечных изделий.

В какой отрасли встречается сталь данной группы:

  • Химическая и нефтехимическая промышленность. Производство оборудования и конструкций для использования в кислотной и щелочной средах.
  • Тяжелое машиностроение.
  • Энергетика.
  • Приборостроение для промышленности.
  • Производство бытовой техники, специальных приборов.
  • Пищевая промышленность.
  • Медицинская промышленность.

Марки сталей по ГОСТ и их использование:

  • Сталь 08Х13 представляет собой ферритный хромистый сплав. Используется, чтобы производить столовые приборы.
  • Сталь 12Х13 – это ферритный хромистый сплав. Применяют, чтобы хранить продукты, содержащие алкоголь.
  • Сталь 12Х17 – представляет собой ферритный хромистый жаропрочный сплав. Из него производят емкости, в которых можно обрабатывать продукты питания при высокой температуре.

Мартенситная группа

Мартенсит представляет собой структуру, получаемую путем закалки заготовки либо слитка металла с последующим отпуском. Во время закалки материал нагревают до критически высокой температуры, во время отпуска быстро охлаждают металл.

После данной процедуры происходит перестройка кристаллической решетки, в результате чего материал становится сверхтвердым. Однако увеличивается и его хрупкость.

Мартенситная группа

При проведении этой процедуры получаются сплавы, объединяющие в себе следующие свойства:

  • твердые;
  • сверхпрочные;
  • упругие;
  • коррозионностойкие;
  • жаропрочные.

При увеличении процентного содержания углерода в сплаве металл становится более твердым и износоустойчивым.

Из стали производятся металлические изделия, которые можно использовать в средней и слабой интенсивности агрессивных средах.

Благодаря тому, что такая сталь достаточно упругая, из нее производят пружины, фланцы, валы.

Из мартенситной и мартенситно-ферритной комбинированной стали производят режущие элементы, к примеру ножи для конструкций в химической и пищевой промышленности.

Марки сталей по ГОСТу, а также их использование:

  • Сталь 20Х13, 30Х13, 40Х13 – представляет собой мартенситный сплав. Используется, чтобы производить оборудование для кухни.
  • Сталь 14Х17Н2 —это мартенситно-ферритный комбинированный сплав, в нем содержится никель. Применяется для создания компрессоров, оборудования для использования в агрессивных средах, при низких температурах.

Аустенитная группа

Аустенитный тип коррозионностойких сталей имеет специфическое химическое строение, а именно нестандартное внедрение атомов углерода в молекулярную решетку железа. В данной группе достаточно большое процентное содержание хрома и никеля – около 33 %.

Поэтому металлы носят название высоколегированных. Благодаря такому свойству, как немагнитность, можно использовать сплавы для решения задач во многих производственных процессах.

Аустенитная группа

За счет этого группа металлов обладает пластичностью как в горячем, так и в холодном состоянии, имеет высокую прочность, свариваемость на высоте, устойчивость к агрессивным средам (азотная кислота). Кроме того, такой металл экологичный, не боится электромагнитного излучения.

Чтобы получить стабильный аустенит, гранецентрированную кристаллическую решетку железа, сталь необходимо легировать никелем. Это приведет к повышению его содержания до 9 %. Для легирования используется титан и ниобий, чтобы сделать металл устойчивым к межкристаллитной коррозии. Подобные сплавы носят название стабилизированных.

Коррозионностойкие стали являются металлами, которые трудно обрабатывать. Чтобы облегчить труд, используется термическая обработка, а именно отжиг и двойная закалка.

Для отжига металл нагревают до 1200 градусов Цельсия в течение трех часов. Затем сталь остывает в воде, масляной жидкости либо на открытом пространстве. В результате материал становится более гибким благодаря тому, что его твердость снижается.

Двойная закалка означает, что осуществляется нормализация твердого металла при температурном режиме в 1200 градусов Цельсия. Повторная закалка – при температуре 1 000 градусов. В результате увеличивается пластичность и жаропрочность, то есть металл становится устойчивым к повышенным температурам.

Аустенитные металлы подходят для создания конструкционных материалов под холодную штамповку и сварку. Так, из них изготавливают:

  • всевозможные емкости;
  • строительные конструкции;
  • трубы, устойчивые к коррозии;
  • агрегаты для нефтехимического, а также химического производства;
  • конструкции для нефтяных вышек, станций очистки;
  • приспособления, предназначенные для работы под водой, к примеру турбины;
  • силовые агрегаты в сфере энергетики;
  • элементы и агрегаты для машин, самолетов;
  • оборудование для пищевых продуктов;
  • аппараты медицинского и фармакологического предназначения;
  • крепежные элементы;
  • сварные конструкции.

Как применяются стали разных марок по ГОСТ:

  • Сталь 12Х18Н10Т представляет собой высоколегированный хромистый сплав с добавлением присадок никеля и титана. Подходит для создания оборудования для переработки нефти, химической промышленности.
  • Сталь 12Х18Н10Т — это аустенитная хромистая сталь с добавлением никеля. Применяется для создания трубопроводов для химической и пищевой промышленности (есть температурные ограничения).
  • Сталь 12Х15Г9НД представляет собой высоколегированный сплав с содержанием хрома, марганца, никеля, меди. Используется при создании систем трубопроводов, резервуаров, которые взаимодействуют с органикой умеренной агрессивности.

Комбинированные коррозионностойкие сплавы

При сварке стали коррозионностойкой данного вида нужно учитывать, что в таких сплавах объединяются структура и свойства аустенитно-мартенситной либо аустенитно-ферритной группы.

  • Аустенитно-ферритные сплавы содержат в себе минимальное количество никеля, однако большой процент хрома – более 20 %. В качестве легирующих добавок выступают ниобий, титан, медь. Благодаря термообработке соотношение феррита и аустенита становится одинаковым. В производстве данные металлы достаточно популярны, поскольку они пластичны, устойчивы к межкристаллической коррозии, не боятся ударных нагрузок, они более прочные, чем аустениты.

Комбинированные коррозионностойкие сплавы

  • Аустенитно-мартенситная группа содержит 12–18 % хрома и 3,7–7,5 % никеля, кроме того, в составе есть присадки алюминия. Сделать данную сталь прочнее удается с помощью закалки при 975 градусов Цельсия и отпуске при 450–500 градусах. Такие сплавы обладают повышенным пределом текучести. Это значит, что при напряжении деформация увеличивается, но нагрузка не возрастает. Данные стали легко сваривать, они обладают повышенными характеристиками механической прочности.

Особенности сварки коррозионностойких сталей

Коррозионностойкая сталь является жаростойкой (до 650 градусов Цельсия). Ее жаропрочность находится в границах 480–500 градусов. Такие сплавы имеют пониженную теплопроводность, поэтому изделия из этого материала зачастую ведет и коробит. Из-за окисления хрома формируется тугоплавкий шлак, из-за него сварочный процесс усложняется.

Чтобы сварить хромистые коррозионностойкие стали, нужно использовать мягкий тепловой режим. Так вы добьетесь небольшой плотности тока, ток обратной полярности будет постоянным. Поэтому «плюс» крепится на электрод. Скорость охлаждения должна быть низкая, поэтому при работе необходимо исключить сквозняки.

Для сварки такой стали применяют электроды с фтористокальциевыми покрытиями.

Мартенситы и сплавы, являющиеся мартенситно-ферритными, необходимо закаливать в месте сварки в стандартных условиях. При совершении такой работы могут появиться трещинки, в частности, когда осуществляется сварка конструкций с толстыми стенками, с большой жесткостью.

Сварка будет более качественной, если обеспечить локальный подогрев до 200–300 градусов Цельсия изделий, толщина которых более 8–10 мм.

Но в этом случае верхний предел подогрева, а также время удержания этого температурного режима необходимо ограничить. В противном случае возникнет хрупкость и синеломкость. После сварки место соединения будет сверхтвердым. Это значит, что спустя определенный временной промежуток нужно выполнить отпуск при температуре 700–760 градусов Цельсия. В результате восстановится стойкость к межкристаллитной коррозии.

При выборе коррозионностойкой стали важно понимать, как вы будете ее использовать, какова нагрузка на металл, какими характеристиками должно обладать изделие. Если вы затрудняетесь с выбором, следует проконсультироваться у специалиста, чтобы не допустить ошибку.

Читайте также: