Сталь с высокой ударной вязкостью

Обновлено: 01.05.2024

Основными показателями свойств арматурной стали являются:

  1. Предел текучести (физический) σу, МПа.
  2. Для сталей, не имеющих физического предела текучести, определяется предел текучести (условный) σ0,2, МПа — напряже­ние, при котором остаточное удлинение достигает 0,2% от длины участка образца. Определяют его тогда, когда при растяжении об­разца не обнаруживается ярко выраженного предела текучести (твердые стали).
  3. Временное сопротивление (предел прочности) σи, МПа.
  4. Относительное удлинение после разрыва ε — процентное отношение длины образца после разрыва к его первоначальной длине.

Проводя испытание образца, нагрузку на него увеличивают по­степенно, ступенями. Начальную ступень нагружения следует при­нимать 5-10% от ожидаемой максимальной нагрузки. Каждая сту­пень должна составлять не более 20% от нормативной нагрузки. В конце каждой ступени увеличение нагрузки на образец приостанавливают. Под действием этой нагрузки образец находится не ме­нее 10 мин. Доведя нагрузку до нормативного значения, образец вы­держивается 30 мин. Эти выдержки необходимы для выяснения закономерности приращения перемещений и деформаций.

После достижения нагрузкой полуторной величины норматив­ного значения, дальнейшее увеличение ведут ступенями вдвое мень­шими, давая после каждой ступени выдержку не менее 15 мин. Та­кой порядок дает возможность более точно установить величину предельной (разрушающей) нагрузки.

Деформации рекомендуется замерять приборами до достиже­ния нагрузкой величины не более чем 1,25 от нормативной величи­ны. После этого приборы снимаются. Это делается с целью избежа­ния порчи приборов.

Начальная расчетная длина цилиндрических образцов из не­обработанной арматурной стали назначается равной десяти началь­ным (до испытания) диаметрам арматурного стержня.

Измерение начальной и конечной (длина расчетной части пос­ле разрыва образца) расчетных длин, а также диаметра необрабо­танного образца производится с точностью 0,1 мм. До появления деформации образца перемещение подвижного захвата происходит без нарастания или с небольшим увеличением нагрузки, которая необходима для устранения зазора как в механизме машины, так и между образцами и захватами. Поэтому на диаграмме в самом на­чале испытания появляется сначала горизонтальный, а затем кри­волинейный участок. При начальной нагрузке, составляющей 10% от разрывного усилия, на образец наносят две риски. Расстояние между рисками является начальной расчетной длиной образца.

В продолжение всего испытания ведется наблюдение за пове­дением образца по диаграмме, вычерчиваемой записывающим при­бором разрывной машины.

По оси ординат диаграммы откладываются напряжения σ, а по оси абсцисс относительные деформации образца ε, представ­ляющие отношение удлинения образца к его первоначальной дли­не (рис. ниже). Криволинейный участок в начале диаграммы рас­сматривать не следует, поэтому продолжаем прямолинейный от­резок диаграммы до оси абсцисс и получаем точку О — начало диаграммы.

На диаграмме (рис. ниже) можно выделить три участка работы стали: 1 — участок упругой работы; 2 — участок пластической ра­боты; 3 — участок упруго-пластической работы. В большинстве простейших расчетов считается, что сталь работает в пределах пер­вого участка упруго, т. е. напряжения в элементах ограничиваются пределом текучести — σу. Соответственно, нормативные и расчет­ные сопротивления, необходимые для расчета конструкций, прини­маются по пределу текучести.

Что такое ударопрочность и как её измеряют

Представим ситуацию. По дороге с быстрой скоростью едет автомобиль. Он постоянно на протяжении всего пути испытывает вибрации и осевую нагрузку на ряд деталей, подвеску. При этом все хорошо, все узлы работают правильно. Затем водитель не справляется с управлением и попадает в яму. Запчасти выходят из строя, так как внутренние напряжения и силы, во-первых, увеличиваются, во-вторых, получаются разнонаправленными.

Прочность в данной ситуации оказалась низкой, так как она деформировалась, вышла из строя. Так как разные сплавы неодинаково переносят механические и химические влияния, то для различных целей (автомобилестроение, станкостроение, обыкновенные штамповочные детали, гвозди и пр.) необходимо применять различные металлы.

ударная вязкость металлов

Структура стали и явление текучести

Малоуглеродистая сталь представляет собой однородное кристаллическое тело, состоящее из мелких кристаллов феррита, образующих зерна (Fe — чистое железо), и перлита (смесь цементита Fe3C с ферритом), расположенного главным образом по стыкам ферритных зерен и образующего как бы «сетку» или вкрапления между зернами.

Структура стали Ст. 3 (микрошлиф Х 80)

Перлит значительно тверже феррита и более хрупок. В процессе упругой деформации под действием приложенных извне нагрузок изменяются силы взаимодействия между атомами кристаллов, в результате чего форма кристаллов искажается; после снятия нагрузки форма восстанавливается.

При пластических деформациях малоуглеродистых сталей на растянутых образцах заметно появление характерных линий, называемых линиями текучести (линиями Чернова-Людерса), направленных под углом 45° к линии действия растягивающих сил. Эти линии, заметные на глаз, представляют собой след пластических смещений слоев металла; направление их в основном совпадает с направлением наибольших касательных напряжений.

Линии текучести в растянутой полосе с отверстиями

Пластические смещения представляются как следствие массового накопления пластической деформации кристаллов феррита.

Обозначение ударной вязкости – какую способность материала характеризует: что так называют

Определимся с терминологией. это способность воспринимать и поглощать кинетическую энергию. Часто такая приложенная сила ведем к разрушениям, но по отношению к этому веществу – только к пластичным или непластичным деформациям.

Обычно испытания проводятся в лаборатории опытным путем. Заготовки одинаковых размеров в нейтральных условиях (чтобы больше не оказывалось ни температурного, ни иного влияния) подвергают нагрузкам, увеличивая их. Затем наблюдают за поведением металла. Проверяют подверженность противодействию, поэтому последней проверкой является та, от которой на опытном образце появились трещины, отломалась часть.

Второй вариант – математические вычисления. Это более точный процесс, то при этом необходимо руководствоваться многочисленными нюансами – от размеров, угла приложения силы, до воздействий извне.

В чем измеряется и как обозначается

Физическое обозначение КС. Этими буквами подписывается параметр на схемах и чертежах, а также подставляется в формулы. Единица измерения в системе интернациональных единиц – кДж/м2, но чаще используется значение, выраженное в Дж/см2.

Сейчас будет уместно привести формулу, по которой производится математический расчет.

  • А – это сила, работа, приложенная для воздействия, измеряется в джоулях.
  • F – это площадь поперечного сечения образца, в квадратных метрах.

Это упрощенный алгоритм вычисления, в то время как в лабораторных условиях учитываются толщину и массу, степень термической обработки, а также экспериментируют с другими показателями.

Временное сопротивление на разрыв

Давайте рассмотрим, каким образом определяется данная характеристика механических свойств. Прочностью называют способность материала при определенных пределах и условиях воспринимать различные воздействия, не разрушаясь. Механические свойства принято определять при помощи условных диаграмм растяжений. Для испытаний следует использовать стандартные образцы. Приборы для испытаний оснащаются устройством, которое записывает диаграмму. Повышение нагрузок сверх нормы вызывает существенную пластическую деформацию в изделии. Предел текучести и временное сопротивление на разрыв соответствуют наибольшей нагрузке, предшествующей полному разрушению образца. У пластичных материалов деформация сосредотачивается на одном участке, где появляется местное сужение поперечного сечения. Его еще называют шейкой. В результате развития множественных скольжений в материале образуется большая плотность дислокаций, а также возникают так называемые зародышевые несплошности. Вследствие их укрупнений в образце возникают поры. Сливаясь между собой, они образуют трещины, которые распространяются в поперечном направлении к оси растяжения. И в критический момент образец полностью разрушается.

От чего зависит ударная вязкость и испытание материалов на удельное значение

Первый параметр, который сильно меняет результаты исследований, это температура. Еще раньше было известно, что при нагреве сплавы становятся более мягкими, податливыми к деформированию, именно по этой причине при ковке используют термообработку. А вот при очень низких температурах или при большом перепаде повышается хрупкость.

В связи с этим обычно определяется оптимальный температурный режим – те максимальные и минимальные значения эксплуатации, во время которых можно достичь лучших показателей. Затем постепенно исследователи снижают градусы вплоть до минуса 80 или 100. В каждый из этапов остывания заготовки подвергают проверке.

Получается диаграмма, согласно которой можно определить хладноломкость, ломкость, прочность, температуру пластичных деформаций. Второе значение – это химический состав компонентов – наличие легирующих веществ и величина углерода. согласно этому всю сталь разделяют на марки.

Если деталь подвергалась сварочному присоединению, то велика вероятность образования мартенсита. Такая металлическая микроструктура игольчатого типа может привести к снижению прочности. И последний показатель, который исследователи меняют, – это скорость проведения деформаций. От быстроты напряжений и их последовательности также зависит результат.

Образцы для испытаний материалов на ударную вязкость

Не все предметы можно подвергать тестированию. Так как есть идеально выверенный до тысячной эталон килограмма, так и в лабораторию поставляются только одинаковые, созданные по ГОСТ подопытные экземпляры. Они могут быть трех типов:

  • Бруски Шарпи. Это металлопрокат, имеющий квадратное сечение со стороной в 10 мм. В длину он должен составлять ровно 55 мм. Внутри нет полого отверстия, но есть разрез в виде литеры U.Он изображен на чертеже ниже:
  • Брусок Менаже. Предыдущие параметры такие же, отличается только разрез, который выполнен в форме буквы V. Такой острый конец выреза приводит к тому, что деформации или разрушения появятся скорее, чем у предыдущего. поэтому проверки необходимы для определения эксплуатационных характеристик систем, подверженных постоянным высоким нагрузкам, например, элементам станка или автомобиля.
  • Т-образный разрез применяется в случаях, когда необходима еще большая сложность и точность, поэтому распил производится в форме литеры Т.

Есть несколько разновидностей процедур. Ее выбор зависит от того, с какой целью определяют ударную вязкость материала. От этого будет выбрано тестирование:

  • способ закрепления на стенде;
  • использование гири или молота в качестве инструмента;
  • тип разреза.

Маятниковый копер

Это один из наиболее регулярных экспериментов, поэтому мы опишем его начиная с подготовительного этапа, заканчивая оценкой. Первое и важное правило – все экспериментальные бруски должны быть полностью идентичны по размерам, а также следует их изготавливать одновременно, при одинаковых условиях – как с точки зрения химического состава сплава, так и со стороны металлообработки. Результативность может быть оценена по одной из характеристик:

  • разлом, трещины – эта реакция свойственна либо хрупким сталям, например, чугуну (он очень прочный, но имеет внутренние напряжения);
  • вмятины, царапины – их можно увидеть на пластичном материале, который хорошо подвергается деформациям в ходе динамических или статических воздействий.

Отбор образцов

Вся технология изготовления заготовок для опытов прописана в соответствующем нормативном документе – ГОСТ 7565. Следует полностью ориентироваться на нормативы в нем, но иногда поступает особый технический заказ, например, когда предопределены особые условия эксплуатации детали. Тогда можно проделать процедуру по требованиям, однако, важно, чтобы температурный режим оставался в границах неизменности кристаллической решетки.

Условный предел текучести

Условный предел текучести

(он же технический предел текучести). Для материалов, не имеющих на диаграмме
площадки текучести
, принимают
условный предел текучести
— напряжение, при котором остаточная деформация образца достигает определённого значения, установленного техническими условиями (большего, чем это установлено для предела упругости). [2] Под условным пределом текучести обычно подразумевают такое напряжение, при котором остаточная деформация составляет 0,2%. Таким образом обычно условный предел текучести при растяжении обозначается σ0,2.

Выделяют также условный предел текучести при изгибе

и
условный предел текучести при кручении
.

Определение: в чем измеряется ударная вязкость

Первые испытания с маятником были предложены Жоржем Шарпи, именно по этой причине его метод используется до сих пор и назван его именем. Его мысль заключалась в следующем: надрез увеличивает чувствительность. Проверка сопровождается охлаждением окружающих условий, а вместе с тем переходом металла от пластичного состояния в хрупкое.

Метод Шарпи

Он заключается в двух последовательных действиях:

  • надрез бруска;
  • влияние с различной скоростью и массой.

Соответственно приведем формулу по Шарпи КС = К / F, где:

  • К – это работа, то есть сила, которая обычно складывается из веса гири и скорости его движения.
  • F – это площадь воздействия.

Алгоритм проведения (схема) испытания на ударную вязкость

  • Заготовка крепится двумя концами на двух копрах так, чтобы надрез был напротив того места, куда будет направлена сила.
  • Маятник поднимается на верхнюю часть – максимальный размах.
  • При падении с этой высоты происходит разрушение образца с последующим поднятием на меньшее расстояние.

Другие испытания

Вместо маятника может использоваться молот. Помимо ударопрочности заготовки из металла требуется проверить на растяжку и кручение, на излом. Все это дает полную комплексную картину о том или ином материале для строительства.

Таблица с показателями

Каждый раз проводить эксперименты не требуется, так как большинство из них уже произведено. Достаточно только пользоваться предложенными ГОСТами. Вот показатели различных наиболее распространенных марок стали:

Марка сталиТолщина прокатаУдарная вязкость, Дж/см2, не менее
KCUKCV
Ст3пс3,0 — 5,0499,8
Ст3сп5,1 — 10,010834
Ст3Гпс10,1 — 26,09829
Ст3Гсп26,1 — 40,088
Для Ст3кс — не нормируется

Предел текучести стали

Предел текучести сталей

в ГОСТах указывается с пометкой «не менее», единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.

Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:

  • Предел текучести стали 20
    (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм2 или 25 кгс/мм2.
  • Предел текучести стали 30
    (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45
    (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм2 или 36 кгс/мм2.

Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:

  • Предел текучести стали 30
    (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм2 или 41 кгс/мм2; прокат размером от 16 до 40 мм — не менее 355 Н/мм2 или 36 кгс/мм2; прокат размером от 40 до 100 мм — не менее295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45
    (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм2 или 50 кгс/мм2; прокат размером от 16 до 40 мм — не менее 430 Н/мм2 или 44 кгс/мм2; прокат размером от 40 до 100 мм — не менее 375 Н/мм2 или 38 кгс/мм2.

*Механические свойства стали 30 распространяются на прокат размером до 63 мм.

Предел текучести стали 40Х

(Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм2 или 80 кгс/мм2.

Предел текучести стали 09Г2С

(ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая). Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм2 (27 кгс/мм2) до 345 Н/мм2 (35 кгс/мм2). Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).

Предел текучести стали 3

. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм2 (не менее).

Обработка полученных результатов

После тестирования будут получены либо разрушение, либо деформация. В первом случае это требуется зафиксировать, а затем продолжить тесты, но с использованием небольших усилий. А во втором следует подвергнуть итоги математическим вычислениям по указанной выше формуле.

В статье мы рассказали, как обозначается ударная вязкость и как ее узнать. В качестве завершения темы посмотрим видео:

На сайте вы сможете узнать о других свойствах металлов, а также найти широкий перечень оборудования для ленточного пиления. Переходите в наш каталог, чтобы узнать больше.

Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам;; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

Ударная вязкость стали и металлов: что это такое, в чем измеряется и как обозначается

При создании высокопрочных деталей необходимо знать, как их ключевые свойства будут проявляться и изменяться на практике многолетней эксплуатации. Поэтому в фокусе нашего сегодняшнего внимания ударная вязкость материала, то есть его способность деформироваться пластически под воздействием динамических нагрузок.

Другими словами, это также эффективность сопротивления хрупкому типу разрушения – одному из самых опасных видов, при котором трещина очень быстро становится магистральной: мгновенно возникает, а разрастается за доли секунды. Если взять в качестве примера коммуникационную линию, то в ней при появлении такого повреждения меньше чем за минуту порвет сразу несколько труб.

Поэтому просто необходимо учитывать рассматриваемый параметр при проектировании каких-либо объектов из металлоконструкций, особенно сложных, предназначенных для использования в жестких климатических условиях: при низких температурах, при постоянно меняющемся микроклимате, при высоком механическом давлении, физических воздействиях и так далее.

Что называют ударной вязкостью – это

ударная вязкость

Начнем с определения: это показатель количества работы (энергии), необходимой для хрупкого разрушения материала. Вычисляется опытным путем, по результатам комплексных тестов, проводимых методом маятникового копра.

Все проверки выполняются на стандартизованных образцах – стержнях квадратного сечения с нанесенным на какой-то из его граней искусственным концентратором напряжения. Последний может быть выполнен:

  • в виде литеры V или U;
  • а также в форме усталостной трещины.

В итоге выявляют не только интересный нам параметр, но также качество и характер деформации поверхности, а затем и соотношение составляющих повреждения. Это может быть или исключительно визуальный анализ, или более глубокий, с оценкой текстуры и слоев при помощи цифровых и компьютерных технологий.

Естественно, данный показатель отличается в зависимости от материала. Потому помните, когда мы рассматриваем, что такое ударная вязкость стали, это эффективность сопротивления именно конкретно взятого металла или сплава и только его, а не всех вообще.

Критическая температура хрупкости

Окружающая среда напрямую влияет на сопротивление детали разрушению. Данная зависимость настолько очевидная, что была выделена в явление – под названием хладноломкость – и объясняется неизбежными деформациями при переходе в хрупкое состояние под воздействием мороза.

Температура, при которой наблюдается изменение и появляется повреждение, и считается критической. В технической литературе ее зачастую сокращают до аббревиатуры Тхр, а также записывают как «порог хладноломкости», который, помимо всего прочего, показывает, что составляющие в заготовке находятся в равных долях.

Данную величину находят опытным путем, проводя испытание материала на ударную вязкость – серию тестов с постепенным понижением терморежима, начиная от +20 градусов по Цельсию и заканчивая на -70 0С. По результатам выстраивают график, отражающий зависимость и показывающий точку перегиба – искомую Тхр. И чем этот показатель больше по своему значению, тем вероятнее, что под воздействием морозов в детали появится трещина (или другой сходный дефект).

Естественно, при прочих равных заготовки или целые функциональные узлы лучше делать из того сырья, порог хладноломкости которого сравнительно ниже, ведь тогда изделия можно будет эксплуатировать и в более жесткой климатической среде.


Почему у металлов различная хрупкость

При значительных нагрузках в условиях действия стабильно низких температур свое влияние оказывают следующие факторы:

  • Микроструктура – она может быть крупно- или мелкозернистой, высокой чистоты или достаточно сильнозагрязненной посторонними включениями, с твердыми фазами по границам или без них, с нежелательными примесями или без них.
  • Концентраторы критических воздействий – несплошные участки, трещины и разрывы, газовые пузыри и тому подобные дефекты. В одном сырье их больше, в другом – меньше.
  • Остаточные напряжения и тому подобные состояния, сохранившиеся после проведения всех необходимых операций на предыдущих стадиях технического процесса производства.

Вот от чего зависит ударная вязкость на практике, и следует помнить, что большинство из перечисленных выше факторов также меняются. Те же повреждения со временем развиваются, становясь серьезнее и нарушая структуру.

Относительная нестабильность свойств – именно та причина, по которой при выпуске деталей требуется выполнять проверки. По результатам тестов можно с высокой степенью точности установить, при какой температуре допустимо стабильно эксплуатировать заготовку. Поэтому необходимо подробно рассмотреть, как их проводить, какие образцы при этом использовать, что за предварительную подготовку осуществить и так далее.

Методы испытаний металлов на ударную вязкость

Сначала – немного классификации, чтобы вы понимали, по каким причинам стоит делать выбор в ту или иную пользу. Существующие сегодня варианты лабораторных изысканий разделяют на несколько групп по следующим критериям:

  • наличие/отсутствие концентратора напряжений, то есть надреза определенной формы на одной из граней в зоне нанесения удара;
  • вид закрепления – установка на опоры, погружение в холодильную емкость и тому подобное;
  • характер воздействия – нагрузка может передаваться за счет молота, гири, маятника или иного твердого тела.

ударная вязкость это

Также есть способы проверки, названные в честь тех, кто их ввел:

  • по Гарднеру;
  • по Шарпи;
  • по Изоду.

При этом любая из вышеперечисленных разновидностей испытаний стали на ударную вязкость (и каких-либо других металлов тоже) сводится к попытке разрушения стандартного образца падающим предметом. Отличие только в специфике тестов, проводимых без надреза или с ним. Первый случай актуален только для листовых прокатных изделий, толщина которых одинакова по всей их площади, и его итоговые значения в несколько раз (до 10) превышают результаты в обычной среде, это нужно учитывать и соответствующим путем коррелировать дальнейшие расчеты.

Поскольку разница в нюансах, а не в принципе, рассмотрим один популярнейший метод, чтобы вы получили понимание о том, как проверки осуществляются в лабораторных условиях и насколько они точны.

Это прибор, созданный специально для проведения испытаний, и его разновидности классифицируют по следующим показателям:

  • характер деформации – на кручение, растяжение, изгиб, срез, сжатие;
  • число ударов – один-единственный или несколько, совершаемых с определенным интервалом;
  • величина нагрузки – обычный (стандартный) поддерживает до 7 м/с, скоростной – уже значительно больше, 100-300 м/с, а в категорию сверхскоростных относят модели, выходящие за пределы 300 м/с;
  • условия выполнения тестов – рабочая температура, уровень влажности и так далее.

При этом практически любой копер состоит из опорных стоек, на которых закрепляется проверяемый стержень, и неподвижной оси – на ней на определенной высоте размещается боек с маятниковым эффектом. Простота конструкции делает ее достаточно надежной, а также уменьшает погрешность результатов.

В списке основных рабочих характеристик каждого такого прибора: диапазон измерений, максимальная мощность и скорость движения в момент контакта, наибольший потенциал фиксируемой энергии, габариты (в частности, масса) и расстояние между опорами.

ударная вязкость стали

Отбор образцов

Межгосударственный стандарт, говорящий, что такое ударная вязкость металла, это ГОСТ 9454, и в соответствии с ним подходящими для проведения испытаний считаются следующие варианты:

  • по Шарпи – заготовки длиной 55 мм, квадратного сечения (10 на 10 мм), с U-образным вырезом посередине, радиус которого 1 мм, а глубина пропила – 2 мм;
  • по Менаже – геометрия и габариты аналогичны предыдущему, только канавка (концентратор напряжения) уже в форме перевернутого треугольника (буквы V);
  • Т-образные – их ДхШхВ составляет 55 на 10 на 11 мм, и у каждого есть искусственно сделанная усталостная трещина, то есть специальный надрез.

Второй вид является наиболее часто используемым: он применим при отбраковке металлопродукции, эксплуатируемой в составе важных конструкциях, то есть в высокоточных приборах, медицинском или промышленном оборудовании, воздушных и наземных транспортных средствах. Третий ориентирован на еще более ответственные случаи, которых сравнительно немного, поэтому в количественном отношении он не получает такого распространения. Первый предназначен для всех остальных ситуаций.

Подготовка к проверке и ее проведение

испытание на ударную вязкость

В общем случае схема испытания на ударную вязкость выглядит следующим образом:

  1. Стержень закрепляется на опорных стойках – так, чтобы место контакта было строго напротив концентратора напряжения (с другой его стороны).
  2. Маятник (масса которого G, а сила L) приводится в исходное положение (верхнее, 1), то есть поднимается на высоту H.
  3. Провоцируется падение, в результате которого боек слетает, ударяет по образцу и совершает возвратное движение на расстояние h, то есть в позицию 2.
  4. Для окончательной остановки используется тормоз.

Все занятые положения фиксируются, после чего по разности потенциалов и вычисляется работа, необходимая для хрупкого разрушения. Сейчас посмотрим, как это происходит.

Стандартное обозначение ударной вязкости в расчетах – КС, запаса энергии маятника – GH.

Базовая формула выглядит так:

  • К – работа, приведшая к деформации образца;
  • F – площадь поперечного сечения стержня на участке с концентратором напряжений (известная величина).

Энергия затрачивается при перемещении маятника из первой позиции во вторую в результате удара, поэтому:

K = G x H – G x h,

или, если преобразовать это соотношение:

также высоту бойка в двух положениях можно выразить через силу и углы, после чего наше уравнение будет выглядеть так:

K = G x L x (cos β – cos α), где:

Все показания и позиции в ходе теста фиксируются в обязательном порядке. Но прежде чем переходить к подстановке значений в формулу и к анализу полученных цифр, еще несколько слов о том, как обозначается ударная вязкость. Дело в том, что записывать ее можно еще и с третьим индексом, обозначающим тип использованного концентратора напряжений, – для большей информативности. В таком случае рассматриваемый нами показатель будет выглядеть в формулах как KCV (по Менаже), KCT или KCU (по Шарпи) соответственно.

Обработка результатов

Взглянем на итоговое уравнение. Какие величины известны? Это масса бойка (G) и длина маятника (L). Также постоянное значение у начального угла α, а конечный – β – находится в ходе теста.

Так что для подсчетов нет препятствий – есть (или появляются) все данные для определения энергии, затрачиваемой на хрупкое разрушение.

Теперь о том, в чем измеряется ударная вязкость, – в Дж/м2 – так как, по сути, она представляет собой работу, проведенную на определенной площади формы.

Также есть интересная особенность: начиная с определенной температуры, КС неуклонно снижается, поэтому, для точности и полноты оценки, ударные тесты необходимо осуществлять не только в нормальных условиях, но и со значительным охлаждением опытного образца – до -40…-80 градусов Цельсия.

С этой целью стержни помещаются в специальные морозильные камеры со спиртом или жидким азотом. Хотя можно отдать предпочтение более простому варианту – емкости, заполненной сухим льдом или керосином, она также позволяет добиться нужного терморежима.

Полезным будет и определение порога хладноломкости, то есть температуры, при которой наблюдается резкое падение КС. Для этого необходимо взять серию опытных образцов (обязательно из одной плавки), провести испытания, тщательно записывая результаты с малым шагом градусов, а потом сравнить цифры и выстроить на их основе диаграмму. По ней будет отчетливо видно, как на каком-то участке сравняется доля вязких и хрупких составляющий – эта точка и станет искомым показателем.

Другое распространенное название порога – «температура полухрупкости», которая, для сокращения, также часто записывается как Т50 – исходя из пропорции в 50 на 50%. Если вычесть ее из реальной эксплуатационной, получите запас вязкости. Чем он больше, тем надежнее считается материал (с оговоркой, что условия его использования останутся неизменными).

Наиболее наглядные результаты дадут литые сплавы магния и алюминия, а также чугун. Почему именно они? Потому что у них сопротивление отрыву характерно видно даже при статических нагрузках, не говоря уже о повышенных – есть на что ориентироваться.

Для достижения нужного уровня охлаждения можно использовать:

  • сухую углекислоту – обеспечит -70 0С;
  • жидкие газы – азот (даст -195 градусов по Цельсию), воздух (-183) или водород (-252).

Естественно, это довольно опасные вещества, поэтому работы с ними должны проходить только в лабораторных условиях и с соблюдением соответствующих положений техники безопасности.

Сравнение материалов по ударной вязкости

Можно проводить его опытным путем, самостоятельно выполняя тесты, записывая полученные результаты и так далее. Но гораздо быстрее и проще воспользоваться уже найденными в ходе проверок по методу Изода значениями, сведенными в специальную таблицу. Преимущественное место в ней занимают пластики, но и другие виды сырья тоже представлены.

В любом случае, вы сэкономите свое время, ведь останется только вычислить КС и порог хладноломкости для используемого сплава, а потом сравнить их с аналогичными и уже известными цифрами.

Мы постарались дать максимальное представление о способах испытаний, подсчетах, определении, особенностях. Подробно остановились даже на том, в каких единицах измеряется ударная вязкость (размерность ее – Дж/м2, напоминаем). Столько информации – чтобы вы точно понимали важность этого показателя и могли грамотно его учитывать при выборе материала для исполнения деталей.

сталь конструкционная с высокой ударной вязкостью при криогенных температурах

Изобретение относится к области металлургии, к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа. Сталь содержит углерод, марганец, кремний, никель, ниобий, титан, кальций, кобальт, медь, серу, фосфор, олово, сурьму, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,05-0,10, марганец 0,30-0,60, кремний 0,15-0,35, никель 5,50-6,50, ниобий 0,02-0,06, титан 0,01-0,03, кальций 0,001-0,005, кобальт 0,01-0,5, медь не более 0,30, сера не более 0,005, фосфор не более 0,010, олово не более 0,005, сурьма не более 0,005, железо и неизбежные примеси остальное. Отношение суммарного содержания ниобия и титана к углероду составляет 0,6-0,9, отношение кальция к сере составляет не менее 1,0, а суммарное содержание олова, сурьмы и фосфора составляет не более 0,018. Повышается хладостойкость стали (Т50 - порог хладоломкости, %B.C. - процент вязкой составляющей в изломе ударного образца) при сохранении прочности и экономном легировании никелем. 4 табл.

Формула изобретения

Сталь конструкционная с высокой ударной вязкостью при криогенных температурах, содержащая углерод, марганец, кремний, никель, ниобий, кобальт, медь, серу, фосфор, олово, сурьму, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит титан и кальций при следующем соотношении компонентов, мас.%:

углерод0,05-0,10
марганец 0,30-0,60
кремний 0,15-0,35
никель5,50-6,50
ниобий 0,02-0,06
титан0,01-0,03
кальций 0,001-0,005
кобальт0,01-0,5
медь не более 0,30
серане более 0,005
фосфор не более 0,010
оловоне более 0,005
сурьма не более 0,005
железо и неизбежные примеси остальное,

при выполнении следующих зависимостей:
(Nb+Ti)/С=(0,6-0,9),
Ca/S 1,0,
(Sn+Sb+P) 0,018 мас.%,
где Nb, Ti, C, Ca, S, Sn, Sb, P - содержание ниобия, титана, углерода, кальция, серы, олова, сурьмы и фосфора соответственно, мас.%.

Описание изобретения к патенту

Изобретение относится к области металлургии, к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа.

Известна хладостойкая сталь, предназначенная для изготовления резервуаров хранения сжиженного природного газа, содержащая, мас.%:

Железо и неизбежные примеси остальное.

(Авторское свидетельство СССР № 840183, МПК С22С 38/84, 23.06.1980 г.)

Сталь после двойной нормализации и высокого отпуска имеет следующий комплекс свойств при криогенных температурах:

При температуре - 170°С:

Предел прочности в =800 Н/мм 2

Предел текучести 0,2 =690 Н/мм 2

Относительное удлинение 5 =27%

Ударная вязкость KCV=42 Дж/см 2

При температуре - 196°С:

Предел прочности в =900 Н/мм 2

Предел текучести 0,2 =650 Н/мм 2

Относительное удлинение 5 =25%

Ударная вязкость KCV=30 Дж/см 2

Температура вязкохрупкого перехода этой стали (Т 50 ) составляет - 62°С, что является ее главным недостатком, ограничивающим ее применение при температуре не ниже -120°С.

Наиболее близким аналогом изобретения является сталь, взятая за прототип, с высокой вязкостью при криогенных температурах, содержащая следующие элементы, мас.%:

(Авторское свидетельство СССР № 789625, МПК С22С 38/16, 23.12.1980 г.)

После двойной нормализации и высокого отпуска сталь имеет следующий комплекс механических свойств:

При температуре +20°С:

Предел прочности в =790-860 Н/мм 2

Предел текучести 0,2 =670-790 Н/мм 2

Относительное сужение =60-80%

Ударная вязкость KCV=250-300 Дж/см 2

Предел прочности в =820-960 Н/мм 2

Предел текучести 0,2 =770-890 Н/мм 2

Относительное удлинение 5 =21-32%

Относительное сужение =55-75%

Ударная вязкость KCV=110-150 Дж/см 2

Предел прочности в =900-1040 Н/мм 2

Предел текучести 0,2 =820-960 Н/мм 2

Относительное удлинение 5 =22-34%

Относительное сужение =50-65%

Ударная вязкость KCV-80-120 Дж/см 2

Ввиду отсутствия данных о температуре вязкохрупкого перехода (Т 50 ) и процента вязкой составляющей в изломе ударного образца, которые наиболее полно характеризуют хладостойкость стали, в ЦНИИЧМ была выплавлена сталь в пределах указанного химического состава (углерод 0,10%, кремний 0,25%, марганец 0,8%, никель 5,5%, молибден 0,3%, медь 2,5%, ванадий 0,09%, ниобий 0,04%, азот 0,010%, алюминий 0,05%, РЗМ 0,09%, кобальт 0,03%), показавшая следующий комплекс механических свойств:

Предел прочности в =700 Н/мм 2

Относительное удлинение 5 =20-25%

Относительное сужение =68%

Ударная вязкость KCV=250 Дж/см 2

Порог хладоломкости Т 50 =-120°С

Процент вязкой составляющей в изломе ударного образца, %В.С.=35%

Предел прочности в =835 Н/мм 2

Предел текучести 0,2 =750 Н/мм 2

Относительное удлинение 5 =21%

Относительное сужение =55%

Ударная вязкость KCV=115 Дж/см 2

Порог хладоломкости Т 50 =-90°С

Процент вязкой составляющей в изломе ударного образца, % B.C.=28%

Предел прочности в =920 Н/мм 2

Предел текучести 0,2 =800 Н/мм 2

Относительное сужение =50%

Ударная вязкость KCV=85 Дж/см 2

Порог хладоломкости Т 50 =-70°С

Процент вязкой составляющей в изломе ударного образца, %В.С.=20%

Недостатком известной стали также является относительно высокое значение Т 50 и низкий процент вязкой составляющей в изломе ударного образца при испытании в интервале криогенных температур -160 ÷ -196°С, что может ограничить ее применение температурой не ниже -140°С.

Задача, на решение которой направлено изобретение, состоит в получении особохладостойкой стали при криогенных температурах (-160 ÷ -196°С).

Техническим результатом изобретения является повышение хладостойкости стали (Т 50 , %В.С.) при сохранении прочности и экономном легировании никелем.

Указанный технический результат достигается тем, что сталь, содержащая углерод, марганец, кремний, никель, ниобий, кобальт, медь, железо и неизбежные примеси, согласно изобретению, дополнительно содержит титан и кальций при следующем соотношении элементов, мас.%:

Фосфор не более 0,010

Медь не более 0,30

Олово не более 0,005

Сурьма не более 0,005

Железо и неизбежные примеси остальное,

при выполнении следующих зависимостей:

отношение суммарного содержания ниобия и титана к содержанию углерода составляет 0,6-0,9, отношение содержания кальция к содержанию серы больше или равно 1,0, а суммарное содержание олова, сурьмы и фосфора не превышает 0,018 мас.%.

Сущность изобретения состоит в следующем. Комплекс механических свойств и хладостоикость стали определяется в основном ее химическим составом. Поэтому для получения высокой хладостойкости при криогенных температурах при сохранении достаточного уровня прочностных характеристик необходимо оптимизировать химический состав стали.

Использование стали предложенного состава обеспечивает высокую хладостоикость стали в интервале криогенных температур -160 ÷ -196°С с одновременным сохранением достаточной прочности при экономном легировании никелем.

Углерод в заявляемой стали определяет прочностные свойства листовой стали. Содержание углерода ниже 0,05% не обеспечивает после закалки или двойной нормализации достаточной твердости мартенсита и, следовательно прочности, а при содержании выше 0,10% образуется после отпуска избыточное количество карбидной фазы, которая чрезмерно упрочняет сталь и снижает хладостоикость.

Содержание марганца ниже 0,30% не обеспечит достаточной раскисленности металла. Содержание марганца выше 0,60% повышает склонность стали к отпускной хрупкости и приводит к снижению хладостойкости.

При содержании кремния ниже 0,15% металл будет недостаточно раскислен, при содержании выше 0,35 чрезмерно упрочнится феррит, что снизит хладостоикость.

Содержание никеля ниже 5,5% не обеспечивает достаточной легированности феррита для получения дисперсной структуры и высокой хладостойкости при температурах до -196°С. Содержание никеля выше 6,5% приведет к значительному удорожанию стали.

Ниобий вводится как карбидообразующий элемент. Содержание ниобия ниже 0,02% не обеспечит образования достаточного количества карбидов для измельчения зерна и подавления рекристаллизации при прокатке. При содержании ниобия выше 0,06% образуется избыточное количество карбидов, что может снизить хладостойкость.

Титан является сильным карбонитридообразующим элементом. Содержание титана ниже 0,01% не обеспечит образования достаточного количества карбонитридов и не повлияет на хладостойкость стали. При содержании титана выше 0,03% избыточное количество образующихся карбонитридов значительно упрочнит сталь и снизит хладостойкость.

Кальций вводят для повышения чистоты стали по неметаллическим включениям и их модифицирования. При содержании кальция ниже 0,001% образуются сульфиды марганца вытянутой формы, которые значительно снизят хладостойкость стали. Содержание кальция выше 0,005% приведет к образованию большого количества включений - алюминатов кальция, что также отрицательно отразится на хладостойкости. Содержание кальция в заявленных пределах обеспечивает глубокое обессеривание и получение сульфидов глобулярной формы, что способствует повышению уровня ударной вязкости при криогенных температурах.

Содержание кобальта ниже 0,01% не обеспечивает более полного образования структуры мартенсита при закалке или нормализации стали, что вызывает потерю величины ударной вязкости при криогенных температурах. Содержание кобальта выше 0,5% приводит к чрезмерному упрочнению стали и охрупчиванию.

Введение в состав стали меди в количестве более 0,3% при выбранной системе легирования и существенном ограничении содержания охрупчивающих границы зерен примесей (фосфора, сурьмы, олова) технически и экономически не целесообразно.

С целью значительного повышения хладостойкости при температурах до -196°С в предлагаемой стали ограничено содержание примесей цветных металлов сурьмы и олова не более 0,005% каждого и фосфора не более 0,01% с дополнительным условием, что суммарное содержание сурьмы, олова и фосфора не должно превышать 0,018%. Невыполнение этого условия, что подтверждено экспериментальными данными, приведет к появлению отпускной хрупкости и резкому снижению хладостойкости стали.

Действие карбонитридообразующих элементов (ниобия и титана) взаимосвязано в процессе измельчения зерна. Обеспечение повышенной прочности и трубуемого уровня ударной вязкости при криогенных температурах наблюдается при экспериментально найденном соотношении: сумма содержания ниобия и титана к содержанию углерода должно быть в пределах 0,6-0,9.

Кроме того, при соотношении этих элементов меньше 0,6 образуется в процессе термообработки стали чрезмерное количество остаточного аустенита, ответственного за уровень ударной вязкости при отрицательных температурах. Если это соотношение превышает 0,9, то образуется недостаточное количество остаточного аустенита, что снижает хладостойкость.

Еще одним отличительным признаком предлагаемой стали является условие, что отношение содержания кальция к содержанию серы должно быть не менее 1.

Как показали экспериментальные данные, если это соотношение будет менее 1, то образуются сульфиды марганца вытянутой формы, что значительно снижает уровень ударной вязкости при отрицательных температурах. Если это соотношение будет больше 1, то происходит глобуляризация сульфидов, за счет чего затрудняется распространение трещины и значительно повышается ударная вязкость стали при криогенных температурах.

Примеры реализации изобретения

Опытные стали выплавляли в открытой индукционной печи, шихта армко-железо. Предварительное раскисление проводили ферросилицием и ферромарганцем, окончательное - алюминием.

Слитки (25 кг) ковали на сутунки диаметром 45×500 мм. Сутунки катали на лист 12 мм. Термообработку проводили на заготовках 12×70×500 мм по режиму двойная нормализация с высоким отпуском.

Химический состав опытных сталей приведен в таблице 1. В таблицах 2-4 уровень механических свойств и хладостойкости опытных сталей при температуре испытания +20°С, -170°С, -196°С соответственно.

Как следует из представленных данных, предлагаемая сталь при достаточном высоком уровне прочности и пластичности имеет при криогенных температурах высокую ударную вязкость и сопротивление распространению трещины (КСТ).

При несоблюдении заявленных зависимостей (плавка 2) значительно снижается хладостойкость стали при криогенных температурах (порог хладноломкости, Т 50 , при -196°С снижается на 70°С, процент вязкой составляющей в изломе ударного образца, %В.С, падает на 30%).

Таким образом, заявленный технический результат - повышение хладостойкости до -196°С (Т 50 и %В.С.) при сохранении уровня прочности достигается заявленной совокупностью существенных признаков.

Самая прочная сталь для ножей — топ 20 лучших сплавов для клинка


Нож уже очень давно сопровождает человека по жизненному пути. Без него не обходились охотники и домохозяйки во все времена. Очень важен металл, из которого сделан нож. Это напрямую влияет на его способность быть настоящим помощником. В рамках этой статьи попробуем разобраться, какая сталь для ножей самая лучшая.

Классификация сталей для ножей

Современная металлургия имеет в своём арсенале очень большое количество различных сталей. Люди научились добывать этот материал различными способами. Сталь может отличаться химическим составом и способом производства. Рассмотрим эти моменты подробнее.

Отличия по технологии изготовления

Стали для изготовления ножей могут отличаться по способу производства:

  • самый распространённый метод считается – обычная плавка и штамповка заготовок. Такой способ применяется на больших производственных площадках;
  • традиционный кузнечный метод. Заготовки для изготовления ножей получаются с помощью ковки;
  • самый продвинутый и современный способ – порошковой металлургии. Метод порошкового спекания мельчайших частиц металла. Он позволяет достичь определённых характеристик стали, которых невозможно добиться обычной плавкой. Клинки получаются с высокой износостойкостью и твёрдостью;
  • специальная кузнечная выделка стали – дамаск или булат. Такие стали имеют слоистую структуру из нескольких металлов. Многое зависит от их состава и мастерства кузнеца. Такие стали обладают очень интересными и необычными характеристиками.

Отличия по химическому составу

Стали могут отличаться по ключевым химическим признакам:

  • легированная сталь или нержавеющая. Такой металл обладает высокой антикоррозионной устойчивостью, но это не значит, что он является самой лучшей сталью для ножей. Главным преимуществом такого металла можно назвать содержание различных элементов в составе;
  • высокоуглеродистая сталь содержит в своём составе очень мало других химических элементов. Но такой металл обладает высокой твёрдостью и ножи из него отлично держат заточку. Главным минусом такого сплава можно назвать его плохое сопротивление коррозии.

Характеристики стали для ножей

От свойств стали напрямую зависит, какое из неё получится изделие. В таком случае необходимо понимать ключевые характеристики металлов для ножей. Благодаря им можно сделать вывод, для какого клинка лучше подойдёт, тот или иной состав. Рассмотрим свойства более подробно:

  • ударная вязкость. Этот параметр указывает на прочностные характеристики стали при ударных нагрузках. Нож с высокой ударной вязкостью, не сломается при падении на твёрдую поверхность. Также он не сломается при рубке и ударах различного характера;
  • стойкость режущей кромки. Это способность ножа длительное время оставаться острым. Режущая кромка является рабочей поверхностью клинка. На неё ложится вся основная нагрузка при резе ножом. Соответственно от этого параметра будет зависеть рез изделия;
  • износостойкость. В данном случае подразумевается, насколько быстро металл истирается при соприкосновении с твёрдыми поверхностями. Это параметр напрямую связан со стойкостью режущей кромки;
  • твёрдость. Это способность металла прорезать различные материалы, не испытывая при этом повреждений. Для определения этого параметра существует шкала Роквелла. Рабочий диапазон обычных кухонных ножей равняется приблизительно 52-58 HRC;
  • прочность. Этот параметр указывает на способность стали выдерживать различные нагрузки. При использовании ножа в качестве рычага, можно сказать о его прочности. При высокой прочности, в таком случае изделие не сломается;
  • красностойкость. В характеристиках стали, этот параметр редко указывается. Но он указывает на жаропрочность ножа и это довольно важно. Таким термином называют способность клинка к нагреву. При этом изделие не должно терять своих первоначальных характеристик;
  • коррозионная устойчивость. Под этой терминологией подразумевается способность стали сохранять свою химическую однородность при воздействии окислителей и агрессивных сред. Коррозионная устойчивость никогда не бывает абсолютной. Очень часто этот параметр выходит на первое место при выборе клинка.

Химические элементы в стали

Любая сталь – это соединение железа с углеродом. Для улучшения её характеристик, сплав легируют различными химическими элементами. Если сталь имеет дополнительные добавки более чем на 10%, её относят к разряду легированных составов.

Каждый элемент в сочетании с другими придаёт металлу определённые характеристики. Ножи из нелегированной стали подвержены коррозии и неустойчивы к повреждениям. Порой примеси в сплаве просто необходимы. Ниже можно узнать о действии различных добавок на состав:

Химические элементы и их значение в составе стали для ножей:
Углерод (C) без достаточного количества углерода очень сложно получить подходящую твердость. Это самый важный элемент в стали, он повышает её прочность.
Хром (Cr) придаёт сплаву повышенные антикоррозийные свойства, карбиды хрома увеличивают износостойкость и прокаливаемость. Большое содержание хрома в сплаве влияет на его его хрупкость.
Марганец (Mn) повышает износостойкость и прочность. Его содержание положительно влияет на зерновую структуру сплава, а также способствует отличной прокаливаемости.
Молибден (Mo) предотвращает возникновение ломкости стали, позволяет сохранять прочность при высоких температурах. Также увеличивает устойчивость к коррозии, прочность, ударную вязкость.
Кремний (Si) увеличивает прочность и износоустойчивость стали, как и марганец, он делает сталь более стабильной и надежной.
Ванадий (V) формирует структуру карбидов таким образом, чтобы повысить сопротивление износу, живучесть и прокаливаемость.
Никель (Ni) повышает устойчивость к коррозии, предотвращает гниение стали. Повышает прочность стали.
Ниобий (Nb) лучший формирователь карбидов, который обеспечивает коррозионностойкость, пластичность, износостойкость.
Вольфрам (W) увеличивает износостойкость стали, повышает её стабильность при закалке и стойкость к высоким температурам.
Кобальт (Co) усиливает эффекты других отдельных элементов в более сложных сплавах. Повышает прочность и твердость.
Сера (S) является вредной примесью, приводит к образованию трещин и надрывов. Обычно содержание серы в высококачественной стали ограничено. Наличие сульфидов недопустимо для ответственных деталей.
Фосфор (P) ухудшает пластические свойства сплава, вызывая явление хладноломкости. В сталях допускается содержание фосфора в очень малых количествах.

Лучшие отечественные марки стали для ножей

Российская металлургия не отстаёт от общемировых показателей. У нас в стране имеются очень хорошие стали для изготовления ножей. Они отличаются своими характеристиками, что позволяет делать из них клинки различного назначения. Рассмотрим основные из них.

У10 и У10А

Сталь У10 и У10А содержит в себе углерода почти 1%. Имеет высокие показатели прочности и твёрдости. Ножи из сплава прекрасно удерживают режущую кромку. Изделия из металла отлично работают в тяжёлых условиях. Сталь применяют для изготовления различного инструмента. А любители ножей уже из них выковывают отличные клинки.

Читайте также: