Стальной каркас одноэтажного промышленного здания

Обновлено: 15.05.2024

Преобладающим видом промышленных зданий являются одноэтажные (примерно 64% всех промышленных зданий). Это объясняется требованиями технологии, возможностью передачи нагрузок от тяжеловесного оборудования непосредственно на грунт, сравнительной простотой и экономичностью их возведения. Конструктивные схемы одноэтажных промышленных зданий разнообразны (рис. 1): наиболее распространенными являются однопролетная и многопролетная рамные схемы каркасов с системой покрытий (плоской и пространственной) в виде куполов и вантовых конструкций. По виду материалов конструкции каркасов бывают железобетонные и стальные. Железобетонные каркасы могут быть монолитными и из типовых сборных железобетонных элементов заводского изготовления.

Каркас одноэтажного здания с покрытием из плоских элементов состоит из поперечных рам, образованных защемленными в фундаментах колоннами, и шарнирно опирающимися на колонны стропильными фермами или балками. В продольном направлении рамы связаны подкрановыми балками, балками-распорками, подстропильными фермами, жестким диском покрытия и- в необходимых случаях — стальными связями. Жесткий диск образуют плиты, приваренные к стропильным фермам или к балкам с последующим замоноличиванием швов. Плоские конструкции перекрывают пролеты до 36 м.

Пролетом называется внутренний объем, ограниченный двумя рядами колонн и торцовыми стенками.

В связи с массовым выпуском унифицированных 6-м стеновых и оконных панелей в крайних рядах колонн чаще принимают 6-м шаг. В целях эффективного и маневренного использования производственных площадей в средних рядах колонн наиболее распространен 12-м шаг.

Пролеты одноэтажных промышленных зданий принимают равными 12, 18, 24, 30 и 36 м для цехов с крановыми нагрузками и от 12 до 48 м и более для бескрановых цехов.

Колонны сборные железобетонные могут быть сплошными прямоугольного сечения и двухветвевыми.


Рис. 1. Схемы покрытий одноэтажных пролетных зданий а — плоская по стропильным и подстропильным фермам; б — по решетчатым прогонам и стропильным фермам; в — пространственная система покрытия с оболочкой двоякой кривизны

Сплошные колонны применяют в бескрановых цехах и при наличии кранов грузоподъемностью до 30 • 104 Н и высоте здания до 10,8 м; сквозные — при кранах грузоподъемностью более 30 • 104 Н и высоте здания свыше 10,8 м.

Двухветвевые колонны имеют в нижней подкрановой части две стойки (ветви), соединенные распорками по высоте через 1,5—3 м, а в верхней надкрановой части — сплошное прямоугольное сечение.

По расположению в здании колонны бывают крайние и средние. К крайним колоннам с наружной стороны примыкают стеновые ограждения. Крайние колонны, в свою очередь, подразделяют на основные, воспринимающие нагрузки от стен, кранов и конструкций покрытия, и фахверковые, служащие только для крепления стен. Стальные фахверковые колонны (рис. 2) устанавливают в торцах здания и между основными колоннами у продольных стен при шаге основных колени 12 м и 6-м стеновых панелях. В ряду выделяют связевые колонны, соединенные стальными вертикальными связями для восприятия горизонтальных сил.

Колонны армируют сварными каркасами и формуют при прямоугольном сечении из бетона марки 200; двухветвевые — из бетона марок 300—400. Во всех колоннах в местах опирания стропильных конструкций и подкрановых балок, в крайних колоннах на уровне швов стеновых панелей, в связевых колоннах в местах примыкания продольных связей имеются закладные элементы, заанкеренные в бетон или приваренные для фиксации положения к рабочей арматуре. Закладные стальные трубки диаметром 50—70 мм образуют отверстия, используемые для строповки при распалубке и монтаже. Закладные элементы в местах опирания подкрановых балок и стропильных конструкций представляют собой стальной лист с пропущенными сквозь него анкерными болтами.

Для соединения с фундаментом колонну заводят в стакан на глубину до 0,85 м при прямоугольном сечении и до 1,20 м при двухветвевом изамоноличивают бетоном марки, равной марке бетона в колонне.

В поперечном направлении устойчивость зданий обеспечивается жесткостью заделанных в фундамент колонн и жестким диском покрытия, в продольном направлении — дополнительно стальными связями, устанавливаемыми по всем рядам между колоннами и опорами стропильных конструкций.

Межколонные стальные связи располагают в среднем шаге тем- ператуного отсека в бескрановых зданиях при высоте помещений до 10,8 м в пределах подземной высоты колонн; в зданиях с опорными кранами — при любой высоте помещений в пределах высоты подкрановой части колонн. По схеме стальные связи подразделяют на крестовые и портальные.

Рис. 2. Стальной торцовый фахверк а — стойки фахверка; б — ригели

Для перемещения мостовых кранов по колоннам монтируют железобетонные или стальные подкрановые балки. Железобетонные подкрановые балки применяют в зданиях с опорными кранами грузоподъемностью до 30 • 104 Н, с шагом основных колонн 6 и 12 м. Балки таврового сечения с предварительным напряжением арматуры формуют из бетона марок 300—500.

Крепят подкрановую балку к консоли колонны анкерными болтами, пропущенными через опорный лист, а к шейке колонны путем приварки вертикального листа к закладным пластинам. На торцовых подкрановых балках устанавливают стальные торцовые упоры.

В качестве несущих конструкций покрытий одноэтажных промышленных зданий применяют: сборные железобетонные плиты типа КЖС размером 1,5 X 12, 3 X 12, 3 X 24 м, которые опираются на продольные обвязочные и подстропильные железобетонные балки; железобетонные стропильные балки (односкатные, двухскатные и с параллельными поясами) для пролетов до 18 м; железобетонные фермы для пролетов до 24 м; железобетонные арки для пролетов более 36 м; стальные фермы для пролетов более 24 м; пространственные конструкции в виде сферических и цилиндрических оболочек из сборных железобетонных плит; монолитные и сборные железобетонные своды-оболочки и купола; пространственные конструкции покрытий типа «Структура» из стальных элементов для перекрытий ячеек 12 X 18, 12 X 24, 18 X 24, 24 X 24 и 30 X 30 м.

По схеме восприятия внешних и распределению внутренних усилий эти конструкции представлены балками и фермами.

Балка — одноэлементная конструкция, на которую плиты могут опираться по всему пролету (рис. 3); ферма — составная стержневая конструкция, нагрузка на которую может передаваться только в узловых соединениях (рис. 4). Собственная масса фермы в 1,5—2 раза меньше массы балки.

Перед установкой к опорным узлам стропильных конструкций приваривают опорные листы, затем опорные листы приваривают к оголовкам колонн; монтажное крепление — на анкерных болтах. Подстропильные балки и фермы непосредственно приваривают к оголовкам колонн. Крепление стропильных конструкций к подстропильным аналогично креплению к колоннам.

Арки. При больших пролетах зданий 36 м и более экономичной конструкцией покрытия считаются трехшарнирные, двухшарнир- ные и бесшарнирные железобетонные арки. Распор арки воспринимается затяжкой или же передается на фундаменты и грунты основания. Арки преимущественно собирают из сборных элементов, напрягаемой затяжки и подвесок.


Рис. 3. Покрытие по железобетонным бяшгам 1 – фундамент; 2 — фундаментная балка; 3 — колонна; 4 — иоде!цивильные балки; стропильная балка; 6 — плвта покрытия



Рис. 4. Покрытие по железобетонным стропильным и подстропильным фермам

Рис. 5. Железобетонные арки а — схемы бесшарнирной, двухшарнирной и трехшарнирной арок; б — монолитная арка: 1 — арка; 2 — затяжка; 3 — подвеска

Своды, оболочки, купола представляют собой тонкую железобетонную монолитную или сборную из элементов заводского изготовления плиту (собственно оболочку), изогнутую по заданной расчетной кривой, усиленную по свободным краям бортовыми элементами и опирающуюся на диафрагмы или опорные кольца.

Стальные стропильные и подстропильные фермы применяют для перекрытия пролетов 24, 30, 36, 42 м и более с шагом колонн 12 и 18 м.

Стропилг-чые фермы опираются на железобетонные или стальные колонны, но могут быть оперты и на кирпичные столбы или подстропильные фермы.
По очертанию верхнего пояса различают фермы с параллельными поясами, трапециевидные, сегментные и треугольные.

Подстропильные стальные фермы одновременно служат в качестве продольных вертикальных связей между колоннами, поэтому их проектируют обычно с параллельными поясами.

Легкие стальные конструкции каркасов промышленных зданий. В последние годы в промышленном строительстве все более широко применяют легкие стальные конструкции каркасов. Отличительные особенности этих конструкций: они предназначены для зданий с легкими ограждающими конструкциями стен и кровли с использованием синтетических материалов — светопрозрачных обшивок, легких утеплителей; их изготовляют из тонкостенных трубчатых и прокатных профилей, которые соединяют при помощи склеивания, самонарезных болтов, точечной сварки. В результате металла расходуется на 25—50% меньше по сравнению с расходом его на обычные металлические конструкции.


Рис. 6. Блок покрытий типа «Структура»

Легкие несущие конструкции заводского изготовления представлены фермами из круглых и прямоугольных труб, тонкостенными прогонами, колоннами постоянного сечения из широкополочных прокатных и сварных профилей, П-образных рам и покрытий типа «Структура».

«Структура» — это пространственная стержневая система, используемая обычно как несущая конструкция покрытия и представляющая собой ряд пересекающихся между собой ферм, расположенных наклонно или вертикально. Обычно решетка этих ферм треугольная из одинаковых элементов. Элементы поясов также имеют постоянное сечение, все узлы одинаковы (рис. 6).

Покрытие такого типа является уникальным, красивым и экономичным, и его широко применяют в гражданском и промышленном строительстве. Используют «Структуры» главным образом для пролетов до 50 м (при опирании по контуру). Устройство консолей увеличивает область рационального применения их. В уникальных конструкциях пролеты превышают 100 м.

Стальные каркасы одноэтажных промышленных зданий.

Стальной каркас одноэтажных зданий состоит из тех же элементов, что и железобетонный. В стальных колоннах различают: верхнюю часть - оголовок,на который опираются вышележащие конст­рукции; стержень -основную часть колонны, передаю­щую нагрузку сверху вниз; базу (башмак) -нижнюю часть колонны, передающую нагрузку от стержня на фундамент. Стальные колонны по конструкции бывают сплошные и сквозные. Сплошные колонныприменяют, как правило, при больших нагрузках и небольших высо­тах. Наиболее простая сплошная колонна получается из одного прокатного двутавра. Недостатком ее является относительно небольшая боковая жесткость. Наиболее распространены составные двутавровые сечения из прокатных профилей или листов, сваренных между со­бой по всей высоте. Сквозные (решетчатые) колонныприменяют при больших высотах здания. Состоят они из отдельных ветвей, соединенных раскосами или план­ками.

Висячие покрытия одноэтажных промышленных зданий.

Висячими покрытиями называют конструкции, основные элементы которых работают на растяжение, передавая нагрузки от покрытия на анкеры. Эти элементы представляют собой гибкие канаты или мембраны. В качестве анкеров используются жесткие опорные конструкции (кольца, рамы, арки). Металлическим висячим покрытиям относят тонколистовые (2 . 4 мм) мембранные, совмещающие несущие и ограждающие функции, а также с гибкими и жесткими несущими нитями, по которым укладывают ограждающие кровельные конструкции из профилированного стального настила или из сборных железобетонных элементов. Возможны комбинированные системы висячих покрытий - тонколистовые мембраны, подкрепленные системой гибких (вантовых) или жестких нитей в виде балок, прогонов, ферм или стальных полос.
Достоинства мембранных покрытий - высокая технологичность их изготовления и монтажа.

Деревянные несущие покрытия одноэтажных промышленных зданий

Покрытия промышленных зданий состоят из несущих элементов ( балок и ферм) и ограждающих конструкций, предназначенных для защиты зданий от атмосферных осадков и поддержания в здании необходимого температурно-влажностного режима. Покрытия промышленных зданий пролетом 18 м и более обычно проектируют по стропильным фермам.

Ферма представляет собой решетчатую конструкцию, предназначенную для восприятия нагрузки от покрытия цеха. Фермы, перекрывающие поперечный пролет здания и опирающиеся непосредственно на несущие элементы ( колонны, стены), называются стропильными. В случае большого расстояния между колоннами в продольном направлении цеха, когда существующими типами плит покрытия или прогонами его перекрыть нельзя, вдоль цеха ставят по колоннам дополнительные фермы и на них в пролете опирают промежуточную стропильную ферму. Здесь рассматриваются только легкие стропильные фермы как наиболее распространенные.

Покрытия промышленных зданий состоят из несущей и ограждающей частей. Покрытия промышленных зданий, как правило, проектируют бесчердачные, и состоят они из несущих и ограждающих конструкций. Покрытия промышленных зданий обычно бывают бесчердачными, утепленными и неутепленными. Для покрытия промышленных зданий может быть применена пространственная ферма, причем межферменное пространство иногда используется для размещения вспомогательных помещений.

Несущие ограждающие покрытия промышленных зданий могут быть двух видов - прогонные и беспрогонные. В первом случае несущими элементами являются прогоны, которые опираются на основные несущие конструкции покрытия. По прогонам укладываются железобетонные плиты покрытия, а по плитам устраивается кровля. Во втором случае плиты покрытия опираются непосредственно на основные несущие конструкции покрытия. Для покрытий промышленных зданий изготовляют армопеноси-ликатные и армогазосиликатные прямоугольные плиты. В покрытиях промышленных зданий применяют комбинированные несущие конструкции: металло-деревянные и стале-железобетонные фермы и арки. В таких конструкциях более полно используются положительные качества каждого материала. Так элементы, работающие на сжатие, выполняют из железобетона или дерева, а элементы, подверженные растяжению, - из стали. Благодаря этому комбинированные конструкции часто имеют повышенную надежность в работе и большую долговечность.

Вопрос 23 Металлический каркас одноэтажного промышленного здания. Конструктивные особенности и действующие нагрузки

При проектировании производственного здания необходимо иметь ряд сведений технологического, общестроительного и эксплуатационного характера. К сведениям технологического характера относятся данные о расположении и габаритах аппаратуры и рабочих агрегатов, подъемно-транспортного оборудования и его грузоподъемности; подземных каналов и трубопроводов различного назначения, а также о бытовых устройствах, специальных рабочих и ремонтных площадках, проходах, проездах и т. п. Сведения общестроительного характера содержат данные о топо­графии участка строительства, грунтах и их расчетных сопротивлениях, уровне грунтовых вод, местных строительных материалах и климатиче­ских условиях в районе строительства. Данные об эксплуатационном режиме здания - режим работы кра­нов и других подъемно-транспортных средств, временные нагрузки и их динамические воздействия; вопросы освещения, вентиляции и отопления. Кроме того, при проектировании необходимо учитывать вопросы, свя­занные с перспективами развития производства и соответствующей реконструкцией помещения, т. е. увеличение его габаритов и усиления несущих конструкций в связи с увеличением грузоподъемности подъемно-транспортных механизмов.


Выбор материала для строительных конструкций производственных зданий производится на основании анализа технико-экономических расчетов возможных сопоставимых вариантов конструктивных решений и сметно-финансовых расчетов с учетом рекомендаций «Технических правил по экономному расходованию металла, леса и цемента в строительстве» (ТП 101-61), утвержденных Государственным комитетом Совета Министров СССР по делам строительства.

Металлические несущие конструкции применяют для покрытий пролетом 30 м и более, для колонн высотой 15 м и выше, а также при наличии кранов грузоподъемностью более чем 30 т. В производственных корпусах с большими пролетами и значительной высотой, не имеющих больших нагрузок (гаражи, авторемонтные мастерские и др.), устройство маталлического каркаса может быть также целесообразным.

Элементы металлического каркаса производственного здания автотранспортного предприятия:

1 - колонны; 2 - подкрановые балки; 3 - горизонтальные связи по нижним и 8 - по верхним поя­сам стропильных ферм; 4 - сборные железобетонные плиты; 5 - фонарь; 6 - стропильные фермы; 7 - балка подвесного крана; 9 - вертикальные связи покрытия; 10 - вертикальные связи между колоннами; 11 - база колонны; 12 - анкерные болты

Металлический каркас представляет собой пространственную систему из несущих элементов, воспринимающих нагрузки от ограждающих конструкций (элементов кровли, стен и др.), мостовых кранов и другого технологического оборудования.

Элементами плоских поперечных рам каркаса являются стропильные фермы-ригели и колонны-стойки.

К элементам покрытия относятся фермы — стропильные и подстропильные (при большом шаге колонн), а также укладываемый по верхним поясам стропильных ферм сборный железобетонный настил или прогоны с плитами кровельного ограждения. Устройство беспрогонного покрытия более экономично по расходу металла и затрате труда.

Связи металлического каркаса обеспечивают его пространствен­ную жесткость; они воспринимают ветровые нагрузки на здание и инерционные усилия кранов.

Фонари устраивают для освещения и аэрации зданий; они могут быть как продольные (перпендикулярно рамам), так и поперечные. Совершенствование искусственного освещения и вентиляции позволяет отказаться от фонарей и перейти к бесфонарным типам производственных зданий. Эти здания в технологическом отношении лучше, так как они имеют постоянный световой, температурно-влажностный и аэрационный режим. Отсутствие световых и аэрационных фонарей значительно упрощает конструкцию здания и снижает его стоимость.

Подкрановые балки являются дополнительными продольными элементами каркаса, вместе с тем они воспринимают давление от колес мостовых кранов, обслуживающих цех.

Фахверк представляет собой плоскую систему металлических го­ризонтальных и вертикальных элементов, поддерживающих стеновое ограждение (стеновые сборные панели, плиты или каменную кладку).

К комплексу металлических конструкций производственных зданий относятся также рабочие площадки для поддержания и обслуживания производственного оборудования, лестницы, монорельсовые пути для внутрицехового транспортирования грузов и т. д.

Конструкции металлического каркаса здания должны удовлетворять ряду требований, главнейшими из которых являются эксплуатационные, экономические и производственно-монтажные.

Согласно эксплуатационным требованиям производственное здание и его габаритные размеры должны обеспечивать удобство обслуживания технологических агрегатов цеха, нормальную работу кранов и других подъемно-транспортных механизмов, возможность осуществления достаточного освещения, вентиляции и т. п., а также отвечать определенным условиям производственной эстетики. Конструкция каркаса в целом и отдельные его элементы должны обладать необходимой прочностью и устойчивостью, а также поперечной и продольной жесткостью.

К экономическим требованиям относятся: всемерное сокращение затрат, связанных с возведением здания, максимально возможное снижение стоимости материалов, транспортирования, изготовления и монтажа конструкций, а также сокращение сроков возведения. Вопрос экономии стали является основным, поэтому особое внимание обращают на целесообразность применения того или иного материала для конструкции и на рациональное конструктивное решение каркаса, требующее минимального расхода металла.

Конструкции каркаса должны удовлетворять принципам индустри­ализации строительства, чему соответствует унификация и типизация основных параметров каркаса зданий и элементов металлических конструкций.

Экономическими требованиями предусматривается снижение стоимости эксплуатации сооружения и амортизационных расходов, зависящих от его срока службы.

В соответствии с производственно-монтажными требованиями элементы конструкций каркаса должны иметь возможно простую форму и состоять из минимального количества деталей; в каркасе следует при­менять максимальное количество однотипных элементов и деталей, что снижает трудоемкость их изготовления; необходимо стремиться к мини­мальному количеству монтажных элементов; конструкции, отправляе­мые с завода, как правило, должны вписываться в габариты предусмот­ренного вида транспорта; следует проектировать укрупнительную сборку элементов каркаса.

Нагрузки от кранов рассчитываются приневыгодном положение кранов. При торможение кранов возникают горизонтальная нагрузка Т которая передается на конструкцию. Максимальное приближение кранов дает возможность рассчитать возникающие вертикальные нагрузки.

1. Максимально приближают краны друг к другу и определяют расчетную раму.

Стальной каркас одноэтажных промышленных зданий

Колонны постоянного сечения для зданий, необорудованных мостовыми кранами выполняются из прокатных или сварных двутавроав. Их параметры. Стальная база колонны, её элементы и их сопряжения.

Колонны для зданий, оборудованных мостовыми кранами могут быть одноветвевые и сквозные. Консоли колонн представляют собой комбинацию стальных пластин или выполняется из прокатных или сварных двутавров. Ветви в сквозных колоннах соединяются двухплоскостной решеткой из уголков.


Рис.7.1 Стальные колонны одноэтажного промышленого здания.


Рис.7.2 Базы стальных колонн одноэтажного промышленого здания.

Стальные подкрановые балки выполняются из прокатных или сварных из двутавров.


Рис.7.3 Стальные подкрановые балки.

Жесткость балки обеспечивается ребрами жесткости, расположенными на расстоянии 1000 мм (для балок пролетом 12 м) и 1500 мм (для балок пролетом 6000 м). Ребра жесткости не доводятся до нижней полки на 60 мм для того чтобы нижняя растянутая полка не была разрезана сварными швами и не потеряла свою несущую способность. По торцам балок имеются опорные стальные пластины с отверстиями для болтовых соединений торцов балок на консоли колонны.

Пространственная жесткость и устойчивость стального каркаса обеспечивается вертикальными и горизонтальными связями о которых было упомянутых выше.

Вертикальные связи по стальным колоннам.

Этажерки

Применяются, когда для некоторых производств технологическое оборудование частично или полностью может располагаться вне здания, т.е. на открытых площадках.

Они могут располагаться и внутри здания павильонного типа при наличии вертикального локального технологического процесса.

По расположению – внутренние и наружные;

По этажности – низкие до 4-5 этажей, и высокие более 5 этажей;

По способу возведения – стационарные и сборно-разборные;

По материалу каркаса – сборные железобетонные, монолитные железобетонные, стальные.

Объемно-планировочные параметры этажерок: сетка колонн 6×6 м; 6×4,5 м; 6×9 м; 4,5×9 и др. высота этажа первого 4,8 – 7,2 м, остальных 4,8 м.

Элементы каркаса: колонны, ригели перекрытий, настилы перекрытий, вертикальные связи. Колонны выполняются из прокатных или сварных двутавров, ригели – прокатные двутавры или швеллеры, перекрытия – сборные желзобетонные плиты или стальные листы. Сборно-разборные этажерки выполняют с соединением элементов на болтах. Стальные этажерки могут быть по этажности низкие до 4-5 этажей и высокие более 5 этажей (могут быть высотой до 100 м).

Железобетонные этажерки выполняют, если применение ж/б каркаса дает снижение стоимости строительства. Недостатки ж/б этажерок – увеличение массы конструкций, сложность сопряжения узлов и крепления технологического оборудования к этажерке. Максимальная высота ж/б этажерки 18 м.

Достоинства применения внутренних этажерок:

1. Снижение себестоимости строительства за счет отсутствия наружных ограждающих конструкций;

2. Максимальная унификация конструктивных элементов;

3. Увеличение производственной площади, занятой технологическим оборудованием;

4. Универсальность и максимальная приспособляемость к технологическим процессам.

Достоинства применения наружных открытых этажерок:

1. Снижение стоимости на 10-15 %;

2. Сокращение сроков строительства;

3. Сокращение сроков монтажа оборудования;

4. Создание условий для рационального расположения оборудования на сложном рельефе местности;

5. Снижение эксплуатационных расходов;

6. Снижение пожаро-взрывоопасности;

7. Облегчение конструкции;

8. Легкий доступ к очагам пожара.

Недостатки: необходимость защиты от коррозии, утепление технологического оборудования в зимнее время.

Стальной каркас одноэтажного промышленного здания

Toggle navigation

Ремонт в регионах

Каркас это несущая основа промздания, которая состоит из поперечных и продольных элементов. Поперечные элементы - рамы воспринимают нагрузки от стен, покрытий, перекрытий (в многоэтажных зданиях), снега, кранов, ветра, действующего на наружные стены и фонари, а также нагрузки от навесных стен. Продольные элементы каркаса — это подкрановые конструкции, подстропильные фермы, связи между колоннами и фермами, кровельные прогоны (или ребра стальных кровельных панелей).

Основные элементы каркаса - рамы. Они состоят из колонн и несущих конструкций покрытий - балок или ферм, длинномерных настилов и пр. Эти элементы соединяют в узлах шарнирно с помощью металлических закладных деталей, анкерных болтов и сварки. Рамы собирают из типовых элементов заводского изготовления. Другие элементы каркаса - фундаментные, обвязочные и подкрановые балки и подстропильные конструкции. Они обеспечивают устойчивость рам и воспринимают нагрузки от ветра, действующего на стены здания и фонари, а также нагрузки от кранов.

Составные элементы каркаса одноэтажных промышленных зданий

Как пример однопролетное здание, оборудованное мостовым краном (рис.1).

В состав каркаса входят следующие основные элементы:

    Колонны, расположенные с шагом Ш вдоль здания; основное назначение колонн поддерживать подкрановые балки и покрытие.

схема каркасного здания


Рис. 1. Каркас одноэтажного однопролетного здания (схема):

а — при одинаковом шаге колонн и несущих конструкций покрытия; б — при неодинаковом шаге колонн и несущих конструкций покрытия; 1 — колонны; 2 — несущие конструкции покрытия; 3 — подстропильные конструкции; 4 —- прогоны; 5 — подкрановые балки; 6 — фундаментные балки; 7 — обвязочные балки; в — продольные связи колонн; 9 — продольные вертикальные связи покрытия; 10 — поперечные горизонтальные связи покрытия; 11 — продольные горизонтальные связи покрытия.

В стальных каркасах обвязочные балки также относят к фахверку (рис. 2, а). Каркас в целом должен надежно и устойчиво работать под действием крановых, ветровых и других нагрузок.

здание фахверк

Рис. 2 Схемы фахверка

а - фахверк продольной стены, б - торцовой фахверк, 1 - основные колонны, 2 - колонны фахверка, 3 - ригель фахверка, 4 - ферма покрытия

Вертикальные нагрузки Р от мостового крана (рис.3), передаваемые через подкрановые балки на колонны с большим эксцентриситетом, вызывают внецентренное сжатие тех колонн, против которых расположен в данный момент мост крана.

мостовой кран

Рис. 3. Схема мостового крана

1 - габарит крана, 2 - тележка, 3 - мост крана, 4 - крюк, 5 - колесо крана; 6 - крановый рельс; 7 - подкрановая балка; 8 - колонна

Торможение тележки мостового крана при ее движении вдоль кранового моста (поперек пролета) создает горизонтальные поперечные тормозные силы Т1 действующие на те же колонны.

Торможение мостового крана в целом при его движении вдоль пролета создает продольные тормозные силы Т2, действующие вдоль рядов колонн. При грузоподъемности мостовых кранов, достигающей 650 т и выше, передаваемые ими на каркас нагрузки бывают очень велики. Подвесные краны движутся по путям, подвешенным к несущим конструкциям покрытия, и через них передают свои нагрузки на колонны.

Ветровые нагрузки при различных направлениях ветра могут действовать на каркас как в поперечном, так и в продольном направлениях.

Для обеспечения устойчивости отдельных элементов каркаса в процессе его монтажа и совместной пространственной их работы при воздействии на каркас различных нагрузок в состав каркаса вводят связи.

Основные виды связей каркаса одноэтажных зданий

1. Продольные связи колонн, обеспечивающие их устойчивость и совместную работу в продольном направлении при продольном торможении крана и продольном действии ветра, устанавливаются в конце или посередине длины каркаса.

Устойчивость остальных колонн в продольной плоскости достигается креплением их к связевым колоннам горизонтальными продольными элементами каркаса (подкрановыми балками, обвязочными балками или специальными распорками).

Связи этого вида могут иметь различную схему в зависимости от требований, предъявляемых к проектируемому зданию. Самыми простыми являются крестовые связи (рис. 4, а). В тех случаях, когда они мешают установке оборудования или врезаются в габарит проезда (рис. 4, б), их заменяют портальными связями.

схема связей колонн

В бескрановых зданиях небольшой высоты такие связи не нужны. Работа колонн в поперечном направлении во всех случаях обеспечивается большими в этом направлении размерами их поперечного сечения и жестким креплением их к фундаментам.

Рис.4. Схема вертикальных связей по колоннам. 1 - колонны, 2 - покрытие, 3 - связи, 4 - проезд

2. Продольные вертикальные связи покрытия, обеспечивающие устойчивость вертикального положения несущих конструкций (ферм) покрытия на колоннах, поскольку крепление их к колоннам считается шарнирным, располагаются по концам каркаса. Устойчивость остальных ферм достигается креплением их к связевым фермам горизонтальными распорками.

3. Поперечные горизонтальные связи, обеспечивающие устойчивость верхнего сжатого пояса ферм против продольного изгиба, располагаются по концам каркаса и образуются путем объединения верхних поясов двух соседних ферм в единую конструкцию, жесткую в горизонтальной плоскости. Устойчивость верхних поясов остальных ферм достигается креплением их к связевым фермам в плоскости верхнего пояса при помощи распорок (или ограждающих элементов покрытия) .

4. Продольные горизонтальные связи покрытия, располагаемые вдоль наружных стен в уровне нижнего пояса ферм.

Все три вида связей покрытия имеют целью объединить отдельные плоские несущие элементы покрытия, жесткие только в вертикальной плоскости, в единую неизменяемую пространственную конструкцию, воспринимающую местные горизонтальные нагрузки от кранов, нагрузки от ветра и распределяющую их между колоннами каркаса.

Каркасы одноэтажных промышленных зданий возводят чаще всего из сборного железобетона, стальные конструкции допускаются лишь при наличии особенно больших нагрузок, пролетов или других условий, делающих нецелесообразным применение железобетона. Расход стали в железобетонных конструкциях меньше, чем в стальных: в колоннах — в 2,5-3 раза; в фермах покрытия— в 2-2,5 раза. Виды промзданий в один этаж подробнее здесь.

Однако стоимость стальных и железобетонных конструкций одинакового назначения отличается незначительно и в настоящее время каркасы делают в основном стальные.

промышленное здание

Описанный выше комплекс связей в наиболее полной и четкой форме встречается в стальных каркасах, отдельные элементы которых имеют особенно малую жесткость. Более массивные элементы железобетонных каркасов имеют и большую жесткость. Поэтому в железобетонных каркасах отдельные виды связей могут отсутствовать. Например, в здании без фонарей, с несущими конструкциями покрытия в виде балок и настилом из крупнопанельных плит связи в покрытии не делают.

В монолитных железобетонных каркасах (которые в отечественной практике встречаются очень редко) жесткое соединение элементов каркаса в узлах и большая массивность элементов делают все виды связей ненужными.

Связи чаще всего делают металлические — из прокатных профилей. В железобетонных каркасах встречаются и железобетонные связи, в основном в виде распорок.

Каркас многопролетного здания отличается от каркаса однопролетного здания в первую очередь наличием внутренних средних колонн, поддерживающих покрытие и подкрановые балки. Фундаментные балки по внутренним рядам колонн устанавливают только для опирания внутренних стен, а обвязочные — при большой их высоте. Связи проектируются по тем же принципам, что и в однопролетных зданиях.

При сезонных колебаниях температуры конструкции каркаса испытывают температурные деформации, которые при большой длине каркаса и значительном температурном перепаде могут быть весьма существенными. Например, при длине каркаса 100 м, коэффициенте линейного расширения α = 0,00001 и температурном перепаде 50° (от +20° летом до —30° зимой), т. е. для конструкций, находящихся на открытом воздухе, деформация равна 100 • 0,00001 • 50 = 0,05 м — 5 см.

Свободным деформациям горизонтальных элементов каркаса препятствуют колонны, жестко закрепленные к фундаментам.

Во избежание появления в конструкциях значительных напряжений от этой причины, каркас делят в надземной части температурными швами на отдельные самостоятельные блоки.

Расстояния между температурными швами каркаса по длине и ширине здания выбирают так, чтобы можно было не считаться с усилиями, возникающими в элементах каркаса от климатических колебаний температуры.
Предельные расстояния между температурными швами для каркасов из различных материалов установлены СНиПом в пределах от 30 м (открытые монолитные железобетонные конструкции) до 150 м (стальной каркас отапливаемых зданий).

Температурный шов, плоскость которого расположена перпендикулярно к пролетам здания, называется поперечным, шов, разделяющий два смежных пролета — продольным.

Конструктивное выполнение температурных швов бывает различное. Поперечные швы всегда осуществляются путем установки парных колонн, продольные швы выполняются как путем установки парных колонн (рис. 5, а), так и путем устройства подвижных опор (рис. 5, б), обеспечивающих независимую деформацию, конструкций покрытия соседних, температурных блоков. В каркасах, разделенных температурными швами на отдельные блоки, связи устанавливают в каждом блоке, как в самостоятельном каркасе.

температурные швы

Рис.5. Варианты продольного температурного шва

а - с двумя колоннами, б - с подвижной опорой, 1 - балки, 2 - столик, 3 - колонна, 4 - каток

К каркасу относят также несущие конструкции рабочих площадок, которые бывают необходимы внутри основного объема здания (если они связаны с основными конструкциями здания).

Конструкции рабочих площадок состоят из колонн и опирающихся на них перекрытий. В зависимости от технологических требований рабочие площадки могут располагаться на одном или нескольких уровнях (рис. 6).

схема рабочей площадки

Рис. 6. Многоярусная рабочая площадка.

Таким образом, при строительстве одноэтажных и многоэтажных промышленных зданий в качестве несущей принимается, как правило, каркасная система. Каркас позволяет наилучшим образом организовать рациональную планировку производственного здания (получить большепролетные пространства, свободные от опор) и наиболее приемлем для восприятия значительных динамических и статических нагрузок, которым подвержено промышленное здание в процессе эксплуатации.

Читайте также: