Ультразвуковой контроль легированных сталей

Обновлено: 25.04.2024

Текст ГОСТ 12503-75 Сталь. Методы ультразвукового контроля. Общие требования

ГОСТ 12503-75

СТАЛЬ

МЕТОДЫ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ. ОБЩИЕ ТРЕБОВАНИЯ

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

И.Н. Голиков, Н.Н. Тимошенко, В.Ф. Змитрук, З.В. Шишканова, И.А. Балакина

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.08.75 № 2281

3. ВЗАМЕН ГОСТ 12503-67

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссыпка

5. Ограничение срока действия снято по протоколу № 2—92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2—93)

6. ИЗДАНИЕ (август 2009 г.) с Изменением № 1, утвержденным в декабре 1987 г. (ИУС 2—88)

Редактор Н.В. Таланова Технический редактор В.Н. Прусакова Корректор А. С. Черноусова Компьютерная верстка В.И. Грищенко

, 123995 Москва, Гранатный пер., 4. Набрано во на ПЭВМ.

Отпечатано в филиале — тип. «Московский печатник», 105062 Москва, Лялин пер., 6

МЕЖГОСУДАРСТВЕННЫЙ

СТАНДАРТ

СТАЛЬ

Методы ультразвукового контроля. Общие требования

Methods of ultrasonil control. General requirements

MKC 77.080.20 ОКСТУ 1709

Дата введения 01.01.78

Настоящий стандарт распространяется на листовую сталь в листах и рулонах, ленту, полосу, прутки и заготовки круглого и прямоугольного сечения, поковки и отливки из углеродистых, легированных и высоколегированных сталей и сплавов и устанавливает общие требования к методам ультразвукового контроля.

По соглашению изготовителя и потребителя указанные методы контроля могут быть распространены на продукцию других видов.

К методам ультразвукового контроля относятся: эхо-метод, теневой, зеркально-теневой, эхо-сквозной и различные их модификации и сочетания.

Данные методы контроля служат для выявления нарушений сплошности металла — раковин, трещин, грубых шлаковых включений, флокенов, заворотов корочки, расслоений и поверхностных дефектов (плен, закатов и др.), лежащих в пределах чувствительности методов.

Возбуждение колебаний в контролируемом объекте может осуществляться контактным, иммерсионным, струйным, щелевым или бесконтактным способами.

Ультразвуковой контроль может осуществляться при помощи продольных, поперечных, поверхностных и нормальных волн.

Чувствительность ультразвукового контроля устанавливается по согласованным и утвержденным в установленном порядке контрольным образцам или по АРД- диаграммам. Чувствительность контроля при теневом и зеркально-теневом методах устанавливается в нормативно-технической документации по величине ослабления амплитуды прошедшего или донного сигналов.

При эхо-сквозном методе контроля чувствительность задается уровнем регистрации амплитуды эхо-импульсов от несплошностей, отсчитываемым от начального уровня, в дБ.

Форма и размеры применяемых контрольных образцов, а также диаметр или площадь искусственных отражателей и их расстояние от преобразователей указываются в соответствующих стандартах и технических условиях на контролируемую продукцию или в методике проведения контроля.

Термины и определения — по ГОСТ 23829.

(Измененная редакция, Изм. № 1).

1. ОБОРУДОВАНИЕ

1.1. Для ультразвукового контроля могут применяться любые дефектоскопы и установки с техническими характеристиками, обеспечивающими выявление несплошностей металла, указанных в стандартах или технических условиях на продукцию.

© Издательство стандартов, 1975 © СТАНДАРТИНФОРМ, 2009

Дефектоскопы и установки, а также контрольные образцы должны быть аттестованы, а их параметры должны периодически проверяться в установленном порядке.

1.2. Ультразвуковые преобразователи должны обеспечивать ввод ультразвуковых колебаний в контролируемый металл, а геометрические размеры пьезопластин и их частоты должны обеспечивать необходимую чувствительность и разрушающую способность.

1.3. Основные параметры контроля (частота колебаний, чувствительность, «мертвая зона»), тип и размеры преобразователей, схемы включения их и способ ввода в металл ультразвуковых колебаний должны соответствовать технической характеристике дефектоскопа.

1.1— 1.3. (Измененная редакция, Изм. № 1).

1.4. Радиотехническая схема приборов и установок для автоматического ультразвукового контроля должна предусматривать контроль стабильности акустического контакта.

2. ПРОВЕДЕНИЕ КОНТРОЛЯ

2.1. Поверхность металла должна соответствовать требованиям, установленным в нормативно-технической документации на контроль.

2.2. Способ относительного перемещения преобразователя и контролируемой поверхности металла (вид сканирования и скорость сканирования) должен обеспечивать надежное выявление и фиксацию дефектов, указанных в стандартах или технических условиях на продукцию.

2.3. Появление сигнала в зоне контроля или ослабление интенсивности прошедших через металл ультразвуковых колебаний указывает на наличие в металле нарушения сплошности.

2.4. Границы выявленных дефектных участков определяются положениями преобразователя в момент, когда значение амплитуды регистрируемого сигнала изменится до величины, оговоренной в соответствующих стандартах и технических условиях.

2.1— 2.4. (Измененная редакция, Изм. № 1).

3. ОБРАБОТКА РЕЗУЛЬТАТОВ

3.2. Результаты контроля заносят в журнал, в котором указываются:

а) номер документа, по которому производится ультразвуковой контроль, и характеристики контролируемого объекта;

б) тип дефектоскопа и установки;

в) тип преобразователя;

г) частота ультразвуковых колебаний;

д) тип и номер испытательного образца;

е) результат ультразвукового контроля — соответствие или несоответствие требованиям стандартов или технических условий на продукцию;

ж) номер нормативно-технического документа, определяющего чувствительность контроля и требования к сплошности.

3.1, 3.2. (Измененная редакция, Изм. № 1).

3.3. Чувствительность контроля и размеры дефектов устанавливаются в зависимости от назначения металла и указываются в нормативно-технической документации.

Ультразвуковой контроль легированных сталей

ГОСТ Р 50.05.04-2018

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Система оценки соответствия в области использования атомной энергии

ОЦЕНКА СООТВЕТСТВИЯ В ФОРМЕ КОНТРОЛЯ

Унифицированные методики. Ультразвуковой контроль сварных соединений из стали аустенитного класса

Conformity assessment system for the use of nuclear energy. Conformity assessment in the form of examination. Unified procedures. Ultrasonic examination of austenitic steel welded joints

Предисловие

1 РАЗРАБОТАН Государственной корпорацией по атомной энергии "Росатом"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 322 "Атомная техника"

4 ВВЕДЕН ВПЕРВЫЕ

Введение

Настоящий стандарт взаимосвязан со стандартами, входящими в систему стандартов "Система оценки соответствия в области использования атомной энергии".

1 Область применения

1.1 Настоящий стандарт устанавливает требования к проведению неразрушающего ультразвукового контроля аустенитных сварных соединений, а также к средствам (в том числе измерений) и организации контроля, оценке и оформлению результатов контроля.

1.2 Настоящий стандарт распространяется на ультразвуковой контроль сварных соединений из сталей марок 08Х18Н9, 09Х18Н9, 10Х18Н9, 12Х18Н9, 08Х18Н10, 03Х16Н9М2, 08Х16Н11М3, 10Х18Н12МЗЛ, 10Х18Н9ТЛ, 12Х18Н9Т, 12Х18Н9ТЛ, 06Х18Н10Т, 08Х18Н10Т, 12Х18Н10Т, 08Х18Н12Т, 12Х18Н12Т, 10Х17Н13М2Т, 10Х17Н13МЗТ, 10Х18Н12МЗТЛ (перечисленные стали в дальнейшем именуются "стали аустенитного класса") оборудования и трубопроводов атомных энергетических установок (АЭУ) и других элементов атомных станций (АС), выполненных в соответствии с требованиями федеральных норм и правил в области использования атомной энергии, устанавливающих:

- требования к сварке и наплавке оборудования и трубопроводов АЭУ;

- правила контроля металла оборудования и трубопроводов АЭУ при изготовлении и монтаже;

- правила контроля основного металла, сварных соединений и наплавленных поверхностей при эксплуатации оборудования, трубопроводов и других элементов АС.

1.3 Настоящий стандарт не распространяется на ультразвуковой контроль сварных соединений литых изделий из аустенитных сталей.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 8.596 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ Р 50.05.02-2018 Система оценки соответствия в области использования атомной энергии. Оценка соответствия в форме контроля. Унифицированные методики. Ультразвуковой контроль сварных соединений и наплавленных покрытий

ГОСТ Р 50.05.11 Система оценки соответствия в области использования атомной энергии. Персонал, выполняющий неразрушающий и разрушающий контроль металла. Требования и порядок подтверждения компетентности

ГОСТ Р 50.05.15 Система оценки соответствия в области использования атомной энергии. Оценка соответствия в форме контроля. Неразрушающий контроль. Термины и определения

ГОСТ Р 50.05.16 Система оценки соответствия в области использования атомной энергии. Оценка соответствия в форме контроля. Неразрушающий контроль. Метрологическое обеспечение

ГОСТ Р ИСО 5577 Контроль неразрушающий. Ультразвуковой контроль. Словарь

ГОСТ Р 55724-2013 Контроль неразрушающий. Соединения сварные. Методы ультразвуковые

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения. Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 50.05.15, ГОСТ Р ИСО 5577, а также следующие термины с соответствующими определениями:

3.1 головная волна: Продольная волна, распространяющаяся вдоль контактной (и/или донной) поверхности контролируемого элемента (среды), и сопутствующие ей боковые (продольная и поперечная) волны.

3.2 эхо-сигнал; эхо-сигнал от отражателя; сигнал: Ультразвуковой сигнал, принятый пьезоэлектрическим преобразователем ультразвуковой волны, отраженной от несплошности, неоднородности или границы раздела сред в объекте контроля, и отображенный на экране дефектоскопа.

3.3 условный размер (протяженность, ширина, высота) несплошности: Размер в миллиметрах, соответствующий зоне между крайними положениями преобразователя, в пределах которой фиксируют сигнал от несплошности при заданном уровне чувствительности.

3.4 угол ввода: Угол между нормалью к поверхности, на которой установлен преобразователь, и линией, соединяющей центр цилиндрического отражателя с точкой выхода луча при установке преобразователя в положение, при котором амплитуда эхо-сигнала от отражателя наибольшая.

3.5 структурные шумы: Возникновение в зоне контроля на экране дефектоскопа двух или более импульсов, амплитуда и местоположение которых быстро изменяются (отсутствует огибающая) при перемещении преобразователя на 2-3 мм перпендикулярно оси аустенитных сварных соединений.

3.6 эхо-импульсный способ: Метод ультразвукового контроля, который основывается на анализе эхо-сигналов, отраженных от несплошностей.

3.7 боковой цилиндрический отражатель: Искусственный отражатель в виде боковой поверхности цилиндрического отверстия, ось которого перпендикулярна направлению падения ультразвуковой волны.

3.8 браковочный уровень чувствительности: Уровень чувствительности, при превышении которого выявленная несплошность относится к дефекту (бракуется по амплитудному признаку).

3.9 контрольный уровень чувствительности (уровень фиксации): Уровень чувствительности, при котором производят регистрацию несплошностей и оценку их допустимости по условным размерам и количеству.

3.10 поисковый уровень чувствительности: Уровень чувствительности, устанавливаемый при поиске несплошностей.

4 Сокращения

В настоящем стандарте используются следующие сокращения:

АС - атомная станция;

АСС - аустенитные сварные соединения;

АЭУ - атомная энергетическая установка;

БЦО - боковой цилиндрический отражатель;

КД - конструкторская документация;

КО - калибровочный образец;

НО - настроечный образец;

НП - наклонный ПЭП;

ОК - объект контроля;

ПГВ - преобразователь головных волн;

ПКД - проектно-конструкторская документация;

ПТД - производственно-техническая документация;

ПЭП - пьезоэлектрический преобразователь;

СС - сварное соединение;

УЗ - ультразвуковой (ультразвуковая);

УЗК - ультразвуковой контроль;

ТКК - технологическая карта контроля.

5 Общие положения

5.1 Общие требования

5.1.1 УЗК по унифицированной методике (далее - методике), представленной в настоящем стандарте, обеспечивает выявление несплошностей АСС, расположенных в наплавленном металле, по границам сплавления СС и околошовной зоне основного металла, размер которой определяется в соответствии с требованиями федеральных норм и правил в области использования атомной энергии, устанавливающих правила контроля металла оборудования и трубопроводов АЭУ при изготовлении и монтаже, и федеральных норм и правил в области использования атомной энергии, устанавливающих правила контроля основного металла, СС и наплавленных поверхностей при эксплуатации оборудования, трубопроводов и других элементов АС.

5.1.2 Применение методики УЗК, изложенной в настоящем стандарте, при изготовлении и монтаже допускается только при невозможности проведения контроля АСС радиографическим методом.

5.1.3 При изготовлении, монтаже и эксплуатации трубопроводов из сталей аустенитного класса оценка качества по результатам контроля, выполненного в соответствии с настоящей методикой, проводится в соответствии с требованиями федеральных норм и правил в области использования атомной энергии, устанавливающих правила контроля основного металла, СС и наплавленных поверхностей.

5.1.4 В настоящем стандарте изложен эхо-импульсный способ контроля (эхо-метод) прямым и однократно отраженным лучом АСС с повышенным уровнем структурных шумов на основе применения поперечных, продольных и головных волн с помощью совмещенных и раздельно-совмещенных УЗ-преобразователей.

5.1.5 По настоящему стандарту контролю подвергаются стыковые сварные соединения с номинальной толщиной свариваемых ОК от 4,5 до 100 мм включительно с радиусом кривизны околошовной наружной поверхности не менее 100 мм для продольных швов и не менее 25 мм для кольцевых.

5.1.6 Настоящий стандарт устанавливает технологию ручного УЗ-контроля сварных соединений без подкладных колец, выполненных электродуговой, аргонодуговой и комбинированной (электродуговая + аргонодуговая) сваркой с полным проплавлением корня шва.

5.1.7 Возможность контроля сварных соединений из аустенитных сталей в соответствии с настоящим стандартом должна быть установлена в соответствии с методикой, содержащейся в приложении А.

5.1.8 Сварные соединения, деформированный металл-литье контролируют только со стороны деформированного металла.

5.1.9 УЗК АСС может проводиться как при наличии, так и при отсутствии усиления на наружной поверхности СС.

5.1.10 УЗК АСС на поперечные несплошности проводят, если это предусмотрено КД, ПКД или требованиями, указанными в таблице 3 ГОСТ Р 50.05.02-2018.

5.1.11 При контроле АСС трубопроводов диаметром менее 300 мм следует использовать притертые ПЭП.

5.1.12 УЗК не гарантирует выявление несплошностей на фоне мешающих отражателей в виде неровностей усиления и корневой части шва, конструктивных элементов свариваемых деталей и структурных неоднородностей, если не предусмотрены специальные способы их обнаружения и идентификации. Не гарантируется выявление несплошностей в пределах мертвой зоны ПЭП, а также непосредственно под усилением сварного шва.

5.1.13 Работы по УЗК АСС должны быть организованы в соответствии с пунктом 5.2 ГОСТ Р 50.05.02-2018.

5.2 Общие требования при подготовке к УЗК

5.2.1 Подготовка поверхности ОК для проведения УЗК и рабочего места контролера осуществляется соответствующими службами завода-изготовителя или эксплуатирующей организацией ОК и в обязанности контролера не входит.

5.2.2 УЗК АСС по настоящему стандарту должен проводиться по ТКК (технологической инструкции), разработанной в соответствии с требованиями настоящего стандарта.

5.2.3 ТКК (технологические инструкции) должен разрабатывать специалист, квалификация которого подтверждена в соответствии с требованиями ГОСТ Р 50.05.11, имеющий право выдачи заключения по результатам контроля или право аттестации специалистов.

5.2.4 Каждая ТКК (технологическая инструкция) должна быть подписана разработчиком, а также руководителем подразделения (службы контроля), выполняющего контроль.

5.2.5 Для серии однотипных АСС может быть составлена одна ТКК или технологический процесс.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ.
ПОКОВКИ ИЗ ЧЕРНЫХ И ЦВЕТНЫХ МЕТАЛЛОВ

Методы ультразвуковой дефектоскопии

Non-destructive Testing.
Forgings from ferrous and non-ferrous metals.
Ultrasonic methods of slow defection

Дата введения 1982-01-01

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 30 декабря 1980 г. № 6178

Настоящий стандарт распространяется на поковки, изготовленные из черных и цветных металлов, толщиной 10 мм и более и устанавливает методы ультразвуковой дефектоскопии сплошности металла, обеспечивающие выявление дефектов типа раковин, закатов, трещин, флокенов, расслоений, неметаллических включений без определения их характера и действительных размеров.

Необходимость проведения ультразвукового контроля, его объем и нормы недопустимых дефектов должны устанавливаться в технической документации на поковки.

Общие требования к методам ультразвукового контроля - по ГОСТ 20415-82.

Термины, применяемые в стандарте, приведены в приложении.

1. АППАРАТУРА И ИСПЫТАТЕЛЬНЫЕ ОБРАЗЦЫ

1.1. При контроле должны быть использованы: ультразвуковой импульсный дефектоскоп, преобразователи, испытательные или стандартные образцы или АРД-диаграммы, вспомогательные устройства и приспособления для обеспечения постоянных параметров контроля и регистрации результатов.

1.2. При контроле применяют дефектоскопы и преобразователи, прошедшие аттестацию, государственные испытания и периодическую поверку в установленном порядке.

1.3. При контактном контроле цилиндрических поковок диаметром 150 мм и менее наклонными преобразователями в направлении, перпендикулярном образующей, рабочая поверхность преобразователя притирается по поверхности поковки.

При контроле поковок диаметром более 150 мм могут быть использованы насадки и опоры для фиксации угла ввода.

1.4. Испытательные и стандартные образцы применяют при крупносерийном производстве поковок, однородных по затуханию ультразвука, когда колебания амплитуды донного сигнала внутри отдельных поковок не превышают 4 дБ, а от поковки к поковке - 6 дБ (при равных толщинах и одинаковой обработке поверхности) .

1.5. АРД-диаграммы применяют при мелкосерийном производстве или при контроле крупногабаритных поковок, а также в том случае, когда колебания донного сигнала превышают значения, указанные в п.1.4.

1.6. АРД-диаграммы применяют при контроле по плоским поверхностям, по вогнутым цилиндрическим поверхностям диаметром 1 м и более и по выпуклым цилиндрическим поверхностям диаметром 500 мм и более - для прямого преобразователя, и диаметром 150 мм и более - для наклонного преобразователя.

1.7. Испытательные образцы должны быть изготовлены из металла той же марки и структуры и иметь ту же обработку поверхности, что и контролируемые поковки. В испытательных образцах должны отсутствовать дефекты, обнаруживаемые методами ультразвукового контроля.

1.8. Амплитуда донного сигнала в испытательном образце должна быть не меньше амплитуды донного сигнала в поковке (при равных толщинах и равной чистоте обработки поверхности) и не должна превышать ее более чем на 6 дБ.

1.9. Допускается использовать испытательные образцы из близких типов сплавов (например, из углеродистой стали различных марок) при условии выполнения требований п.1.8.

1.10. Форма и размеры контрольных отражателей в образцах указываются в нормативно-технической документации. Рекомендуется использовать отражатели в виде плоскодонных отверстий, ориентированных по оси ультразвукового луча.

1.11. Набор отражателей в испытательных образцах должен состоять из отражателей, изготовленных на разных глубинах, из которых минимальная должна быть равна "мертвой" зоне применяемого искателя, а максимальная - максимальной толщине поковок, подлежащих контролю.

1.12. Ступени глубины должны быть такими, чтобы отношение амплитуд сигналов от одинаковых контрольных отражателей, расположенных на ближайших глубинах, находилось в диапазоне 2-4 дБ.

1.13. На каждой ступени глубины в испытательном образце должны быть изготовлены контрольные отражатели, определяющие уровень фиксации и уровень браковки. Допускается изготовление контрольных отражателей и других размеров, но при этом отношение амплитуд от двух ближайших по размерам отражателей не должно быть менее 2 дБ.

1.14. Расстояние между контрольными отражателями в испытательных образцах должно быть таким, чтобы влияние соседних отражателей на амплитуду эхо-сигнала не превышало 1 дБ.

1.15. Расстояние от контрольного отражателя до стенки испытательного образца должно удовлетворять условию:

где - расстояние по лучу от точки ввода до отражающей поверхности контрольного отражателя, мм;

- длина волны ультразвуковых колебаний, мм.

(Измененная редакция, Изм. № 1).

1.16. Площади плоскодонных отражателей должны быть выбраны из ряда (в скобках указаны соответствующие диаметры отверстий): 1 (1,1); 2 (1,6); 3 (1,9); 5 (2,5); 7 (3); 10 (3,6); 15 (4,3); 20 (5); 30 (6,2); 40 (7,2); 50 (8); 70 (9,6) мм.

1.17. Глубины залегания плоскодонных отражателей (расстояния от их торцов до поверхности ввода) должны быть выбраны из ряда: 2, 5, 10, 20, 50, 75, 100, 150, 200, 250, 325, 400, 500 мм и далее через 100 мм с погрешностью не более ±2 мм.

1.18. Испытательные образцы для контроля алюминиевых поковок изготовляются по ГОСТ 21397-81. Допускается использование испытательных образцов-аналогов из алюминиевого сплава Д16Т для контроля других материалов с использованием пересчетных устройств.

1.19. Точность и технология изготовления контрольных отражателей для прямого преобразователя - по ГОСТ 21397-81, для наклонного преобразователя - по ГОСТ 14782-76.

1.20. Радиус испытательного образца должен быть равен

Допускается применять испытательные образцы другого радиуса при выполнении соотношения 0,9

1.21. Использование испытательных образцов с плоской поверхностью ввода допускается при контроле прямым совмещенным преобразователем цилиндрических изделий диаметром более 500 мм и при контроле прямым раздельно-совмещенным преобразователем или наклонным преобразователем цилиндрических изделий диаметром более 150 мм.

1.22. АРД-диаграммы или счетные устройства должны удовлетворять следующим требованиям:

цена деления шкалы "Амплитуда сигнала" должна быть не более 2 дБ;

цена деления шкалы "Глубина залегания" должна быть не более 10 мм;

расстояния по оси ординат между кривыми, соответствующими различным размерам контрольных отражателей, должны быть не более 6 дБ и не менее 2 дБ.

2. ПОДГОТОВКА К КОНТРОЛЮ

Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю .

Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».

Сталь. Методы ультразвукового контроля. Общие требования

Стандарт распространяется на листовую сталь в листах и рулонах, ленту, полосу, прутки и заготовки круглого и прямоугольного сечения, поковки и отливки из углеродистых, легированных и высоколегированных сталей и сплавов и устанавливает общие требования к методам ультразвукового контроля.

ГОСТ 12503-75

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕТОДЫ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ .
ОБЩИЕ ТРЕБОВАНИЯ

Москва
Стандартинформ
2009

ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТЧИКИ

5. Ограничение срока действия снято по протоколу № 2-92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2-93)

6. ИЗДАНИЕ (август 2009 г.) с Изменением № 1, утвержденным в декабре 1987 г. (ИУС 2-88)

Методы ультразвукового контроля
Общие требования

SNTELL
Меthоds оf ultrаsоnil со ntr оl.
Gеnеrаl requirements

ГОСТ
12503-75

Дата введения 01.01.78

Данные методы контроля служат для выявления нарушений сплошности металла - раковин, трещин, грубых шлаковых включений, флокенов, заворотов корочки, расслоений и поверхностных дефектов (плен, закатов и др.), лежащих в пределах чувствительности методов.

Чувствительность ультразвукового контроля устанавливается по согласованным и утвержденным в установленном порядке контрольным образцам или по АРД - диаграммам. Чувствительность контроля при теневом и зеркально-теневом методах устанавливается в нормативно-технической документации по величине ослабления амплитуды прошедшего или донного сигналов.

Термины и определения - по ГОСТ 23829 .

1. ОБОРУДОВАНИЕ

1.1 - 1.3. (Измененная редакция, Изм. № 1).

2. ПРОВЕДЕНИЕ КОНТРОЛЯ

2.1 - 2.4. (Измененная редакция, Изм. № 1).

3. ОБРАБОТКА РЕЗУЛЬТАТОВ

е) результат ультразвукового контроля - соответствие или несоответствие требованиям стандартов или технических условий на продукцию;

3.1, 3.2. (Измененная редакция, Изм. № 1).

Ультразвуковой контроль – самый универсальный метод НК

Вся технология ультразвукового контроля (УЗК) построена на простом физическом законе: траектория движения звуковых волн в однородной среде остаётся неизменной. Подповерхностные дефекты являются отражателями УЗ-волн. При помощи дефектоскопа и пьезоэлектрического преобразователя (ПЭП) в материал вводятся упругие колебания с частотой более 20 кГц (чаще всего - от 0,5 до 10 МГц). Они исходят от излучателя, преломляются в призме (в наклонных ПЭП), входят в объект контроля (ОК), преломляясь ещё раз на границе раздела, и дальше отражаются от дефектов (если таковые имеются) либо донной поверхности (если таковых нет). По амплитуде и времени прихода эхо-сигнала можно судить о размерах и глубине залегания отражателя. Конечно, это очень грубое, упрощённое описание технологии. На деле возникают тысячи нюансов. Среди опытных дефектоскопистов есть даже такое выражение: чем больше знаешь УЗК, тем меньше знаешь УЗК.

Ультразвуковой метод контроля предполагает использование продольных, поперечных, нормальных, подповерхностных и головных волн. У первых - самая высокая скорость. Они генерируются прямыми и, реже, наклонными ПЭП. Поперечные волны могут создавать только наклонные искатели - совмещённые и раздельно-совмещённые. Они же могут применяться для контроля нормальными волнами (преимущественно для УЗК листов и прутков), поверхностными (контроль такими волнами подходит в качестве альтернативы ПВК и МПД) или головными (для выявления подповерхностных дефектов в основном металле и наплавках на глубине 2-8 мм).

Другая важная характеристика упругих колебаний – длина волны. Чем она выше, тем выше разрешающая способность и, следовательно, чувствительность. Правда, пропорционально ей растёт и затухание (уменьшение энергии колебаний). Чем меньше длина волны - тем выше частота. Чем выше частота - тем выше чувствительность. При работе с толстостенными и крупнозернистыми материалами это чревато увеличением затухания, но об этом позже.

Ультразвуковой контроль технологического оборудования

Для чего проводят ультразвуковой контроль

  • обнаруживать подповерхностные дефекты – поры, пустоты, расслоения в наплавленном металле, трещины, шлаковые и иные включения;
  • выявлять очаги коррозионного поражения;
  • определять неоднородность структуры материалов;
  • оценивать качество сварных, паяных, клееных соединений практически любых типов (тавровых, нахлёсточных, кольцевых, стыковых, угловых), в том числе – соединений разных материалов;
  • измерять глубину залегания дефектов и их размеры.

В силу всех этих факторов ультразвуковой контроль всё чаще противопоставляют радиографическому. В пользу первого говорит ещё и то, что он безвреден для человеческого здоровья. Приборы для УЗК хороши своей портативностью, удобство работы в полевых условиях, большим многообразием датчиков, призм, сканеров и прочих принадлежностей для самых разных задач дефектоскопии.

  • существенные ограничения при сканировании материалов с крупнозернистой структурой и высоким коэффициентом затухания. Это объясняется слишком интенсивным рассеиванием колебаний. К таким «проблемным» материалам относятся, например, аустенитная сталь, титан, чугун и сплавы с повышенным содержанием никеля;
  • сложность при проведении контроля соединений разнородных материалов;
  • ограниченная пригодность к дефектоскопии объектов сложной конфигурации;
  • относительно низкая точность при оценке реальных размеров дефектов. Условная протяжённость, как правила, равна фактической протяжённости или, чаще всего, превышает её. С измерениями условной ширины и высоты сложнее - они коррелируют с реальными значениями ещё хуже. Именно поэтому ряд НТД не предусматривают определение условной ширины и высоты (тем не менее, данные результаты могут пригодиться для определения типа дефекта по коэффициенту отношения условной ширины к высоте и для классификации дефектов на развитые и не развитые по высоте). Данная проблема успешнее решена в технологиях ФР и TOFD, о которых написано ниже.

Ультразвуковой контроль сварных соединений: последовательность действий

1) зачистку металлической поверхности – сварного шва и околошовной зоны – от краски, ржавчины, окалины, загрязнений. После этого наносится разметка. При использовании мерительного пояса - обозначение начала и направление отсчёта координат. При его отсутствии - разделение на участки по 300-500 мм (если на ОК заложен РК - то лучше делать разметку сообразно с размером рентгеновской плёнки);

2) настройку чувствительности, амплитудной и временной шкалы дефектоскопа. Для начала - необходимо проверить (и при необходимости - скорректировать) точку выхода, стрелу, угол ввода, мёртвую зону, задержку в призме ПЭП. Затем необходимо правильно задать дефектоскопу параметры ОК - толщину, скорость распространения УЗ-волны, поправку на шероховатость и на затухание, выбрать единицу измерений для горизонтальной шкалы (обычно - в мм глубины). Далее - настроить временную регулировку чувствительности (для "выравнивания" эхо-сигналов от одинаковых отражателей на разной глубине) либо АРД-диаграммы (для определения эквивалентной площади отражателей). Задать опорный (браковочный уровень), поправку чувствительности (если таковая предусмотрена - в зависимости от того, по какому искусственному отражателю выполнялась настройка), выставить поисковое усиление, контрольный уровень (уровень фиксации) и браковочный уровень. Наконец, необходимо выставить усиление и масштаб развёртки, чтобы эхо-сигнал от опорного отражателя достигал 50-80% высоты экрана - кому как удобнее;

3) непосредственное прозвучивание объекта. Прижимая датчик к поверхности, оператор выполняет возвратно-поступательные поперечно-продольные либо продольно-поперечные движения с поворотом датчика на 10-15 градусов (для наклонного ПЭП) или вращением (для прямого ПЭП). В процессе прозвучивания нужно следить за тем, чтобы шаг перемещения пьезоэлектрического преобразователя не превышал 2-3 мм и не осталось пропущенных участков. Важно следить за осцилляциями сигналов на экране дефектоскопа - чтобы не пропустить эхо-сигналы, которые достигли контрольного уровня. Здесь-то и подтверждает свою полезность звуковая и световая АСД;

4) сохранение результатов, передача на ПК. Современные дефектоскопы позволяют "замораживать" изображение развёртки для последующего анализа. Либо - можно сразу наносить разметку мелом или маркером на поверхности ОК в местах выявленных дефектов;

5) расшифровку данных, оформление заключения. Обычно дефекты классифицируются на допустимые и недопустимые по амплитуде, протяжённые и непротяжённые, поперечные, в корне и в сечении шва. Формат заключения/протокола/акта по результатам УЗК утверждается в нормативно-технической документации на контроль и согласовывается с заказчиком. Запись дефектов осуществляется с использованием условных обозначений, указанием глубины залегания, координат относительно начала отсчёта, амплитуды, протяжённости и пр. Чтобы упростить выборку дефекта и ремонт ОК, рекомендуется указывать начальные и конечные координаты каждого дефекта. В зависимости от того, какие дефекты обнаружены и какими параметрами они обладают, объект контроля относят к категории "годен", "ремонтировать" или "вырезать".

Настройка перед проведением ультразвукового контроля

На каких объектах практикуется ультразвуковой контроль

  • магистральные и технологические трубопроводы газа, пара, нефти, нефтепродуктов и прочих рабочих сред;
  • оболочки реакторных установок;
  • рельсы, стрелочные переводы, колёсные пары, боковые рамы;
  • литые детали тележек грузовых вагонов;
  • обшивка сосудов, работающих под давлением;
  • корпуса насосов и многое-многое другое.

Виды ультразвукового контроля

  • теневой. По обе стороны ОК, перпендикулярно к его поверхности устанавливаются два преобразователя, один выполняет функцию излучателя, второй служит приёмником. При наличии инородной среды (несплошности) образуется глухая зона, что позволяет судить о наличии дефекта;
  • эхо-импульсный. Самый популярный метод. Повсеместно применяется для ультразвукового контроля сварных соединений. Система "дефектоскоп-преобразователь" одновременно и возбуждает, и принимает упругие колебания. Если они беспрепятственно проходят через материал и отражаются только от донной поверхности, значит, дефектов нет. Если есть - то возникает эхо-сигнал (впрочем, он может быть и ложным либо возникнуть вследствие структурных помех, но речь не об этом). Способ привлекателен тем, что подходит для объектов с односторонним доступом, может проводиться даже без снятия усиления, но требует зачистку поверхности, а в контактном варианте - ещё и нанесения контактной жидкости (хотя есть щелевой и иммерсионный способы акустического контакта);
  • эхо-зеркальный. Излучатель и приёмник разделены и расположены по одну сторону от исследуемого объекта. Волны излучаются под углом и, отражаясь от дефектов, фиксируются приёмником. «Тандем» как метод ультразвукового контроля особенно эффективен для выявления вертикальных дефектов, перпендикулярных сканируемой поверхности. Чаще всего к таковым относятся трещины и непровары в корневой зоне сварного шва;
  • зеркальной-теневой. Аналогичен обычному теневому, но отличается от него тем, что излучатель и приёмник располагаются по одну сторону сварного соединения. Признаком дефекта также является уменьшение амплитуды прошедшего сигнала;
  • дельта-метод. Данный вид ультразвукового контроля применяется редко – когда к качеству сварных соединений предъявляются особо жёсткие требования. Технология предполагает трудоёмкую, очень тонкую настройку дефектоскопа. Расшифровка результатов требует от специалиста особой подготовки. При всех недостатках у этого метода есть очень важное преимущество – повышенная чувствительность к вертикально-ориентированным трещинам, не всегда доступным для выявления стандартным эхо-методом. Дельта-метод основан на регистрации дифрагированных волн, переизлучённых "блестящими точками" - краями несплошности;
  • велосиметрический. Основан на том, чтобы зафиксировать и проанализировать изменение скорости колебаний в дефектной зоне. Обычно применяется для композиционных материалов;
  • ревербационно-сквозной. Также используется для ультразвукового контроля композитных, полимерных и многослойных материалов. Излучатель и приёмник располагаются по одну сторону объекта, на небольшой дистанции друг от друга. Волны посылаются в материал и после многократных отражений «добираются» до приёмника. Стабильные отражённые сигналы свидетельствуют об отсутствии дефекта. В противном случае наблюдается изменение амплитуды и спектра принятых сигналов.

Заканчивая этот блок, нельзя не сказать и об ультразвуковой толщинометрии (УЗТ). Измерение толщины металла – один из ключевых способов коррозионного мониторинга. По результатам УЗТ можно судить об остаточном ресурсе конструкции (механизма, оборудования и пр.).

Как и в ультразвуковом контроле, принцип построен на использовании импульсов, которые излучает преобразователь. Прибор измеряет скорость, за которую они проходят через стенку. Если конкретнее, то известно 3 основных режима:

1) однократного эхо-сигнала. Измеряется время, которое проходит между начальным импульсом возбуждения и первым эхо-сигналом. Значение корректируется с учётом толщины протектора ПЭП, компенсации степени изнашивания и слоя контактной среды;

2) однократного эхо-сигнала линии задержки. Измеряется время от конца линии задержки до первого донного эхо-сигнала;

Дефектоскопы и другое оборудование для ультразвукового метода контроля

Современные дефектоскопы хороши не только своей портативностью, удобством применения в полевых условиях и на большой высоте. Гораздо важнее – обширный набор функций и многообразие индивидуальных пользовательских настроек. В зависимости от модификации УЗК-дефектоскоп может отображать на своём дисплее А-, В-, С-, D-, S-, L-сканы (последние два - в дефектоскопах на фазированных решётках), вплоть до построения 3D-моделей профиля изделий.

Приборы и принадлежности для ультразвукового контроля

  • фазированных решётках (ФР). Имеются в виду особые датчики (кристаллы), на поверхности которых с определённым шагом расположены 16, 32, 64 или 128 элементов. Каждый из них излучает волны с определённой задержкой. Корректируя этот «сдвиг по фазе», можно получить фронт волны с определённым углом. В этом и заключается принцип секторного сканирования. Оператору не нужно водить датчиком по поверхности – он и без этого «видит» все дефекты, расположенные в заданной зоне. По сравнению с одноэлементными ПЭП фазированные решётки могут генерировать пучок волн точно в зоне дефекта. В режиме реального времени на экране многоканального дефектоскопа выстраиваются наглядные А-сканы, на основе которых формируются детализированные, информативные отчёты. Мёртвая зона минимальна. Производительность ультразвукового контроля с ФР примерно в 3–4 раза выше, чем у традиционного УЗК;
  • дифракционно-временном методе (Time of Flight Diffraction, сокращённо – TOFD). Суть технологии – регистрация поперечных и продольных (боковых) волн, дифрагированных на краях несплошностей. Метод предполагает использование двух наклонных датчиков для излучения и приёма волн, расположенные по обе стороны сварного шва. «Натыкаясь» на дефект, волны изменяют своё направление и время прохода. Последний показатель в режиме TOFD считается ключевым. Дифракционно-временной метод эффективно выявляет точечные дефекты, выходящие на поверхность трещины, вогнутость, непровары в корне, расслоения, питтинговую коррозию и пр. Точность измерений достигает ±1 мм. Повторяемость результатов приближается к 100%. По своей информативности и достоверности линейное сканирование – полноценная замена радиографическому методу, особенно для дефектоскопии низколегированных и нелегированных углеродистых сталей.
  • совмещённые, раздельные и раздельно-совмещённые;
  • прямые, наклонные, комбинированные и с переменным углом ввода;
  • хордовые, фокусирующие и нефокусирующие;
  • притёртые и непритёртые;
  • контактные, иммерсионные, бесконтактные, щелевые и т.д.

Датчики для ультразвукового дефектоскопа

Образцы для настройки перед проведением ультразвукового контроля

Помимо этого, в УЗК активно применяются различные призмы, координатные устройства и сканеры. Для настройки и калибровки не обойтись без стандартных образцов (СОП, СО) и настроечных мер. Для улучшения акустического контакта на поверхность объекта предварительно наносят контактную жидкость/гель.

Для проведения УЗТ требуется толщиномер. Такой прибор технически проще, компактнее, дешевле классического дефектоскопа.

Обучение и аттестация специалистов по ультразвуковому методу контроля

  • введение в классификацию видов и методов неразрушающего контроля;
  • физические основы – теория колебаний, типы упругих волн, их свойства, критические углы ввода, дифракция, интерференция, закон Снеллиуса;
  • блок по ультразвуковым колебаниям (что собой представляет акустическое поле, в чём разница между прямым и обратным пьезоэффектом, устройство ПЭП, мёртвая и ближняя зона, дальняя зона, реверберационно-шумовая характеристика преобразователя, резерв усиления);
  • методы УЗК;
  • технология проведения акустической дефектоскопии прямыми и наклонными совмещёнными и раздельно-совмещёнными ПЭП;
  • приборы и дополнительные принадлежности для УЗК.

По завершении обучения необходимо сдать квалификационный экзамен, состоящий из теоретической и практической части.

Разумеется, в каждом учебном центре есть своя библиотека методической и образовательной литературы. Дополнительно к этому можно почитать «классику» учебников по УЗК – труды И.Н. Ермолова, В.Г. Щербинского, В.В. Клюева, А.Х. Вопилкина и др. Посмотреть информацию об изданиях можно в специальном разделе «Библиофонд» онлайн-библиотеки «Архиус».

Для тех, кто открыт для новых знаний и обмена опытом, на форуме «Дефектоскопист.ру» предусмотрен свой раздел. Начать рекомендуем с веток «Изучение УЗ-контроля» и «Обучение УЗК».

Читайте также: