Зубчатое колесо сталь 40х

Обновлено: 17.05.2024

При выборе материалов необходимо обеспечивать прочность зубьев на изгиб, стойкость поверхностных слоев зубьев (контактная прочность) и сопротивление заеданиям. Несущая способность по контактной прочности пропорциональна квадрату твердости зубьев, поэтому для повышения несущей способности передачи и уменьшения габаритов целесообразно применять стали, закаливаемых до значительной твердости. Однако высокая твердость снижает сопротивление изгибу, поэтому вместо объемной закалки (где закаливается весь объем материала зубчатого колеса) применяют поверхностную термическую и химико-термическую обработку (поверхностная закалка ТВЧ, цементация, азотирование и др.), которые придают высокую твердость поверхности зубьев (для высокой контактной прочности) и сохраняют вязкую сердцевину (для высокой изгибной прочности).

При изготовлении стальных зубчатых колес применяют следующие виды термической обработки:

· Нормализация позволяет получить твердость 180…220 HB, поэтому нагрузочная способность относительно невелика, но при этом зубья колес хорошо прирабатываются и сохраняют точность, полученную при механической обработке. Нормализованные колеса обычно используют во вспомогательных механизмах, например, в механизмах ручного управления.

Применяемые стали: 40, 45, 50 и др. Для повышения стойкости против заедания шестерни и колеса следует изготавливать из разных материалов.

· Улучшение позволяет получить твердость поверхности и сердцевины 200…240 HB (для небольших шестерен 280…320 HB), нагрузочная способность несколько выше, чем при нормализации, но зубья колес прирабатываются хуже. Обычно улучшенные колеса применяют в условиях мелкосерийного и единичного производства при отсутствии жестких требований к габаритам.

Применяемые стали: 40, 45, 50Г, 35ХГС, 40Х и др.

· Объемная закалка до твердости 45…55 HRC. Закаливается весь объем материала (см. выше). В настоящее время почти не применяется, за исключением ремонтных предприятий, где нет возможности выполнить поверхностную закалку.

Применяемые стали: 40Х, в более ответственных случаях – 40ХН и др.

· Поверхностная закалка с нагревом токами высокой частоты (ТВЧ) до твердости 50…55 HRC при глубине упрочненного слоя до 3…4 мм – дает среднюю нагрузочную способность при достаточно простой технологии упрочнения. Оптимальная глубина прокалки 0,5…1 мм. Закалке ТВЧ обычно предшествует улучшение, поэтому механические свойства сердцевины – как при улучшении.

Изгибная прочность по сравнению с объемной закалкой выше в 1,5-2 раза. Из-за повышенной твердости зубьев передачи плохо прирабатываются. Размеры зубчатых колес практически неограниченны. Необходимо помнить, что при модулях менее 3…5 мм, зуб прокаливается насквозь, что приводит к значительному их короблению и снижению ударной вязкости.

Применяемые стали: 40Х, 40ХН, 35ХМ, 35ХГСА.

· Цементация (поверхностное насыщение углеродом) с последующей закалкой ТВЧ и обязательной шлифовкой позволяет получить поверхностную твердость 56…63 HRC при глубине упрочненного слоя 0,5…2 мм. Нагрузочная способность высокая, но технология упрочнения более сложная. Изгибная прочность по сравнению с объемной закалкой выше в 2-2,5 раза.

Широко применяют сталь 20Х, а для ответственных зубчатых колес, особенно работающих с перегрузками и ударными нагрузками, стали 12ХН3А, 20ХНМ, 18ХГТ, 25ХГМ, 15ХФ.

· Азотирование (поверхностное насыщение азотом) обеспечивает высокую твердость и износостойкость поверхностных слоев при глубине упрочненного слоя 0,2…0,5 мм, при этом не требуется последующая закалка и шлифование. Малая толщина упрочненного слоя не позволяет применять азотированные колеса при ударных нагрузках и при работе с интенсивным изнашиванием (при загрязненной смазке, попадании абразива). Длительность процесса азотирования достигает 40-60 часов. Обычно азотирование применяют для колес с внутренним зацеплением и других, шлифование которых затруднено.

Применяют молибденовую сталь 38Х2МЮА, но возможно азотирование сталей 40ХФА, 40ХНА, 40Х до меньшей твердости, но большей вязкости.

· Нитроцементация – насыщение поверхностных слоев углеродом и азотом в газовой среде с последующей закалкой обеспечивает высокую контактную прочность, износостойкость и сопротивление заеданиям, обладает достаточно высокой скоростью протекания процесса – около 0,1 мм/час и выше. В связи с малым короблением позволяет во многих случаях обойтись без шлифования. Содержание азота в поверхностном слое позволяет применять менее легированные стали, чем при цементации: 18ХГТ, 25ХГТ, 40Х и др.

· Лазерная закалка – обеспечивает высокую твердость до 64 HRC, не требует легирования, позволяет местное упрочнение, не вызывает коробление, хорошо автоматизируется, но процесс очень медленный.

Характеристики механических свойств распространенных сталей, применяемых для изготовления зубчатых колес, после термической или термохимической обработки представлены в табл. 2.2.

Получение нужных механических свойств зависит не только от температурного режима термообработки, но и от наибольших размеров сечения заготовки D или толщины колеса (рис. 2.11).

При поверхностной термической обработке зубьев механические характеристики сердцевины зуба зависят от предшествующей операции – улучшения. Исключение составляют зубья с m < 3 мм, подвергаемые закалке ТВЧ: они прокаливаются насквозь, что приводит к значительному их короблению и снижению ударной вязкости.

Чугунные зубчатые колеса дешевле стальных, их применяют в крупногабаритных открытых передачах. Они имеют малую склонность к заеданию и хорошо работают при бедной смазке, но не выдерживают ударных нагрузок. Применяют серые чугуны СЧ 20…СЧ 35, а также высокопрочные магниевые чугуны с шаровидным графитом.

Колеса из неметаллических материалов имеют небольшую массу, не подвержены коррозии, бесшумны в работе. Но невысокая прочность, большие габариты, склонность к старению ограничивают их применение в силовых передачах. Обычно применяют пластмассовые зубчатые колеса в паре со стальной шестерней в слабонагруженных передачах для обеспечения бесшумности, или самосмазываемости, или химической стойкости. Стальные колеса при этом целесообразно закалить до 45 HRC и отшлифовать. К числу давно применяемых пластмасс относятся текстолит марки ПТ и ПТК и древесно-слоистые пластики ДСП-Г. Наиболее перспективными следует считать капролон, полиформальдегид и фенилон.

Детали машин

Выбор материала зубчатых колес зависит от назначения передачи и условия ее работы, а также габаритных размеров. При этом необходимо обеспечить контактную и изгибную прочность зубьев колес, сопротивление заеданию и изнашиванию.

Чаще всего для изготовления зубчатых колес применяют стали, реже – чугуны и пластмассы. Еще реже для изготовления зубчатых колес используют другие материалы - цветные металлы, и даже камень и дерево.

Зубчатые колеса из стали

Основными материалами для изготовления зубчатых колес силовых передач служат термически обрабатываемые стали. В зависимости от твердости рабочих поверхностей зубьев после термообработки зубчатые колеса можно условно разделить на две группы.

из чего делают шестерни и зубчатые колеса?

Первая группа – зубчатые колеса с твердостью поверхностей зубьев Н350 НВ. Материалами для колес этой группы служат углеродистые стали марок 40, 45, 50Г, легированные стали марок 40Х, 45Х, 40ХН и др.
Термообработку – улучшение, нормализацию – производят до нарезания зубьев. Твердость сердцевины зуба и его рабочей поверхности для улучшенных колес одинакова. Колеса при твердости поверхностей зубьев Н350 НВ хорошо прирабатываются и не подвержены хрупкому разрушению.
Применяют зубчатые колеса первой группы в слабо- и средненагруженных передачах. В настоящее время область применения улучшенных зубчатых передач сокращается.

Твердость шестерни прямозубой передачи рекомендуется принимать на 25…30 НВ больше твердости колеса. Это способствует прирабатываемости, сближению долговечности шестерни и колеса, повышению сопротивления заеданию зубчатых колес.

Для косозубых передач твердость рабочих поверхностей зубьев шестерни желательна по возможности большая, поскольку с ее ростом увеличивается несущая способность передачи по критерию контактной прочности.

Если в прямозубой передаче в процессе зацепления пары зубьев контактная линия зацепления движется параллельно основанию зуба, то в косозубой передаче контактная линия зацепления наклонена к основанию зуба и проходит одновременно по поверхностям головки и ножки зубьев.
Ножки зубьев обладают меньшей стойкостью против выкрашивания, чем головки, так как у них неблагоприятное сочетание направления скольжения и перекатывания зубьев. Следовательно, ножка зуба колеса, работающая с головкой зуба шестерни, начнет выкрашиваться в первую очередь. При этом вследствие наклона контактной линии нагрузка (полностью или частично) передается на головку зуба колеса, работающую с ножкой зуба шестерни. Слабая ножка зуба колеса разгружается, и выкрашивание уменьшается.
Дополнительная нагрузка ножки зуба шестерни не опасна, поскольку она изготовлена из более стойкого материала. Применение высокотвердой шестерни позволяет дополнительно повысить нагрузочную способность косозубых передач до 30%.

Повышение твердости достигают применением различных методов поверхностного упрочнения.

Вторая группа – колеса с твердостью рабочих поверхностей Н > 45 HRC (Н > 350 НВ). При Н > 350 НВ твердость материала измеряется по шкале HRC (1 HRC = 10 НВ). Высокая твердость поверхностных слоев материала при сохранении вязкой сердцевины достигается применением поверхностного термического или химико-термического упрочнения: поверхностной закалки, цементации и нитроцементации с закалкой, азотирования.

Поверхностная закалка зубьев с нагревом токами высокой частоты (ТВЧ) в течение 20…50 с целесообразна для зубчатых колес с модулем более 2 мм. При малых модулях мелкий зуб прокаливается насквозь, что приводит к его короблению и делает зуб хрупким.
Для закалки ТВЧ применяют стали марок 45, 40Х, 40ХН, 35ХМ. Твердость на поверхностях зубьев Н = 45…53 HRC.

Цементация – длительное поверхностное насыщение углеродом на глубину 0,3 m (модуля зацепления) с последующей закалкой. Наряду с большой твердостью (Н = 56…63 HRC) поверхностных слоев цементация обеспечивает и высокую прочность зубьев на изгиб.
Для цементации применяют стали марок 20Х, 12ХНЗА, 18ХГТ.

Азотирование (насыщение азотом) обеспечивает особо высокую твердость (Н = 58…65 HRC) поверхностных слоев зубьев. Оно сопровождается малым короблением и позволяет получить зубья высокой точности без доводочных операций.
Азотированные колеса не применяют при ударных нагрузках (из-за опасности растрескивания тонкого упрочненного слоя толщиной 0,2…0,3 мм) и при работе в загрязненной абразивом среде (из-за опасности истирания).
Для азотируемых колес применяют стали марок 38Х2МЮА, 40ХНМА.

Нитроцементация – насыщение поверхностных слоев зубьев углеродом и азотом с последующей закалкой – обеспечивает им высокую прочность, износостойкость и сопротивление заеданию. Процесс нитроцементации протекает с достаточно высокой скоростью. В связи с тем, что толщина насыщенного слоя и деформации малы, последующее шлифование зубьев не применяют.

Зубья колес с твердостью Н > 45 HRC нарезают до термообработки. Отделку зубьев производят после термообработки.
Передачи с твердыми (Н > 45 HRC) рабочими поверхностями зубьев плохо прирабатываются, и обеспечивать в таких передачах разность твердости зубьев шестерни и колеса не требуется.

Выбор марок сталей для зубчатых колес

Без термической обработки механические характеристики всех сталей близки, поэтому применение легированных сталей без термообработки нерационально ввиду их более высокой стоимости.
Прокаливаемость сталей различна: высоколегированных – наибольшая, углеродистых – наименьшая. Стали с плохой прокаливаемостью при больших сечениях заготовок нельзя термически обработать до высокой твердости. Поэтому марку стали для зубчатых колес выбирают с учетом размеров их заготовок (поковок). Окончательно решить вопрос о пригодности заготовки можно после проведения прочностных расчетов и определения геометрических размеров зубчатой передачи.

На рис. 1, а – в показаны эскизы заготовок червяка, вала-шестерни и колеса с выемками.

Характеристики механических свойств сталей, применяемых для изготовления зубчатых колес, после термообработки приводятся в справочных таблицах.

При поверхностной термической или химико-термической обработке зубьев механические характеристики сердцевины зуба определяет предшествующая термическая обработка (улучшение).

Характеристики сталей зависят не только от химического состава и вида термообработки, но и от предельных размеров заготовок.

Расчетные размеры заготовки Dзаг и Sзаг (рис. 1) не должны превышать предельных значений D и S , приводимых в справочных таблицах для данного вида стали.

Применяют следующие стали и виды термической обработки (ТО):

I – марки сталей одинаковы для колеса и шестерни: 45, 40Х, 40ХН, 35ХМ. ТО колеса – улучшение, твердость 235…262 НВ. ТО шестерни – улучшение, твердость 269…302 НВ.

II – марки сталей одинаковы для колеса и шестерни: 40Х, 40ХН, 35ХМ. ТО колеса – улучшение, твердость 235…262 НВ, ТО шестерни – улучшение с последующей закалкой ТВЧ, твердость 45…50 HRC, 48…53 HRC и др. (зависит от марки стали).

III – марки сталей одинаковы для колеса и шестерни: 40Х, 40ХН, 35ХМ. ТО колеса и шестерни одинакова – улучшение с последующей закалкой ТВЧ, твердость 45…50 HRC, 48…53 HRC и др. (зависит от марки стали).

IV – марки сталей различны для колеса и шестерни. Для колеса: 40Х, 40ХН, 35ХМ. ТО колеса – улучшение и последующая закалка ТВЧ, твердость 45…50 HRC, 48…53 HRC (зависит от марки стали). Марки сталей для шестерни: 20Х, 20ХНМ, 18ХГТ. ТО шестерни – улучшение, затем цементация и закалка; твердость 56…63 HRC.

V – марки сталей одинаковы для колеса и шестерни: 20Х, 20ХНМ, 18ХГТ. ТО колеса и шестерни одинакова – улучшение, затем цементация и закалка; твердость 56…63 HRC.

материалы зубчатых колес

Несущая способность зубчатых передач по контактной прочности тем выше, чем выше поверхностная твердость зубьев.

Наибольшие контактные напряжения σH возникают в тонком поверхностном слое материала зубьев. Поэтому для повышения его контактной прочности достаточно упрочнить только поверхностный слой зубьев. Для зубчатых передач толщина этого слоя составляет (0,2…0,3) m – модуля зацепления.
На практике это достигается поверхностными термическими или химико-термическими упрочнениями, которые в несколько раз повышают нагрузочную способность передач по сравнению с улучшенными сталями.
Однако при назначении твердости рабочих поверхностей зубьев следует иметь в виду, что большей твердости соответствуют более сложная технология изготовления зубчатых колес и небольшие размеры передачи.

Стальное литье

Стальное литье применяют при изготовлении крупных зубчатых колес ( d0 > 500 мм). Марки сталей – 35Л…55Л. Литые колеса подвергают нормализации.

Чугуны

Чугуны применяют для изготовления зубчатых колес тихоходных открытых передач. Марки серых чугунов – СЧ20…СЧ35, а также высокопрочных чугунов – ВЧ35…ВЧ50 (с шаровидным графитом и добавкой магния).
Зубья чугунных колес хорошо прирабатываются, могут работать в условиях ограниченного смазывании.
Существенный недостаток - пониженная прочность на изгиб, поэтому габариты чугунных колес значительно больше, чем стальных.

Пластмассы

Пластмассы в качестве материала зубчатых колес применяют в быстроходных слабонагруженных передачах для шестерен, работающих в паре с металлическими колесами.
Зубчатые колеса из пластмасс отличаются бесшумностью работы, плавностью хода, неприхотливостью к смазыванию.
Наиболее широко в качестве материала зубчатых колес используется текстолит (марок ПТ и ПТК), капролон , полиформ-альдегид , фенилон .

Материал и термическая обработка зубчатых колес

Основными материалами для зубчатых колес являются углеродистые и легированные стали, которые термически упрочняются до высокой твердости, марок 45, 20Х, 40Х, 40ХН, 35ХМ и пр.

Термическая обработка применяется для повышения твердости зубьев. С повышением твердости растет несущая способность передач по контактной прочности. Поэтому закалку используют для повышения твердости зубьев в силовых передачах. В кинематических передачах, предназначенных для точной передачи вращательного движения между валами при небольших значениях крутящего момента, зубчатые колеса закалке не подвергаются. Основными видами упрочняющей термической обработки зубчатых колес являются:

Объемная закалка является наиболее простым способом термообработки колес. К ее недостаткам следует отнести высокую прокаливаемость материала, что уменьшает сопротивление усталости материала при изгибе зубьев.

Поверхностной закалкой обеспечивается высокая твердость поверхности зубьев при вязкой сердцевине. Нагрев колес при поверхностной закалке производится в индукторах токами высокой частоты (ТВЧ).

Химико-термическая обработка (ХТО)заключается в насыщении поверхности металла за счет диффузии при высокой температуре различными химическими элементами. В настоящее время применяются следующие виды ХТО:

Цементация – насыщение стали углеродом при температуре 900 0 с последующей закалкой обеспечивает высокую твердость поверхности зубьев при вязкой сердцевине. Для цементации применяются легированные стали с низким содержанием углерода: 20Х, 12ХН3А, 20ХНМ, 15ХФ и пр.

Азотирование – насыщение стали азотом в среде аммиака при температуре 500 0 . Азотирование обеспечивает высокую твердость поверхности зубьев. До азотирования детали подвергают закалке, высокому отпуску (улучшению) и чистовой обработке. Сталями для азотирования являются 38Х2МЮА, 40ХФА, 40ХНА и пр. Зубья после азотирования не шлифуют. В этой связи азотирование применяют для упрочнения колес зубчатых передач с внутренним зацеплением. Недостатком азотирования является длительность процесса (до 60 час.) и малая толщина упрочняемого слоя до 0,5 мм.

Нитроцементация – процесс насыщения поверхности стали одновременно углеродом и азотом при температуре 700—950 °C в газовой среде, состоящей из науглероживающего газа и аммиака. После нитроцементации изделия подвергают закалке. Сталями для данного вида ХТО являются 40Х, 18ХГТ и пр.

Стальное литье применяют для колес большого диаметра. Литейными марками сталей являются: 35 – 55Л, 40ХЛ, 30ХГСЛ и пр. Литые колеса подвергают нормализации. Эти стали отличаются повышенной жидкотекучестью за счет повышенного содержания марганца и кремния.

Чугуны применяют для изготовления зубчатых колес открытых тихоходных передач. Чугуны проявляют хорошую стойкость к заеданию. Поэтому чугунные зубчатые колеса могут работать без смазки. Для изготовления чугунных колес используют серые чугуны марок СЧ25 - СЧ45, а также высокопрочные чугуны с шаровидным графитом.

2.1.4. Методы получения заготовок

Заготовки для зубчатых колес в мелкосерийном производстве изготавливают из проката или свободной ковкой. В крупносерийном и массовом производстве - штамповкой на молотах, прессах и горизонтально-ковочных машинах (ГКМ). Металл перед ковкой и штамповкой нагревают до температуры 1200 - 1300 0 .

Заготовки из проката получают их отрезкой от прутка на заданный размер. Максимальный диаметр проката, который выпускает промышленность, составляет 250 мм, что следует учитывать при выборе заготовки для зубчатых колес.

Свободную ковку осуществляют на молотах или прессах между плоскопараллельными плитами. Этим методом можно получать осаживанием заготовки из проката диаметром свыше 250 мм. Однако форма заготовки лишь приближена к профилю зубчатого колеса. Для снижения трудоемкости при механической обработке в крупных заготовках прошивают посадочное отверстие. При механической обработке заготовок полученным из проката и свободной ковкой расходный коэффициент металла является наиболее высоким по сравнения с штампованными заготовками.

Штамповку на прессах или молотах заготовок для зубчатых колес производят в подкладных или закрепленных штампах. Заготовку в подкладных штампах деформируют с торца (рис. 2.1.2, а). Закрепленные штампы могут быть закрытыми или открытыми (рис. 2.1.2, б; в). В открытых штампах в плоскости разъема образуется заусенец – облой, который удаляют затем в обрезных штампах в холодном или горячем состоянии. В закрытых штампах образуется торцовый заусенец, который удаляют точением. Штамповку в закрепленных штампах производят с торца, когда разъем штампа перпендикулярен оси заготовки, или с разъемом штампа вдоль оси заготовки (рис. 2.1.3, а; б).

Штамповкой (высадкой) на ГКМ получают заготовки из прутков для блоков зубчатых колес или валов – шестерен, т.е. когда заготовки имеют участки с большим перепадом по диаметру (рис. 2.1.4). Схема работы ГКМ показана на рис. 2.1.5. Матрица ГКМ имеет разъем. Одна часть матрицы подвижная другая неподвижная. Пуансон при высадке перемещается в горизонтальном направлении. Штамповка производится в следующей последовательности: I – пруток закладывается в разъемную матрицу до упора; II – упор отводится, пруток зажимается в матрице и деформируется пуансоном; III – процесс деформации заканчивается, IV – подвижная часть матрицы пуансон отводятся в исходное положение, поковка извлекается из штампа.

2.1.5. Базирование зубчатых колес при механической обработке

Поверхности для базирования необходимо выбирать так, чтобы соблюдались принципы совмещения, постоянства и последовательности перемены баз.

Принцип совмещения или единства баз заключается в совмещении при механической обработке технологической и измерительной баз, что позволяет исключить погрешность базирования.

Суть принципа постоянства баз состоит в использовании одних и тех же поверхностей для базирования на всех или большинстве операций технологического процесса, что повышает точность относительного расположения обработанных поверхностей. Максимальная точность обеспечивается при обработке заготовок за один установ.

Принцип последовательности перемены баз следует использовать тогда, когда при механической обработке, необходимо многократно менять положение заготовки с установкой на разные базы. В этом случае необходимо обрабатывать поверхности в порядке повышения точности их размеров.

Задачей базирования зубчатых колес является обеспечение соосности делительной окружности колеса и посадочных поверхностей (центрального отверстия колеса или шеек вала-шестерни). От этого зависят такие параметры точности зубчатых колес и передачи, как колебание межосевого расстояния, боковой зазор и радиальное биение зубчатого венца.

Базовыми поверхностями зубчатых колес на большинстве операций при механической обработке (токарных, зубонарезных, зубоотделочных) являются торец ступицы, и посадочное (центральное) отверстие. У одновенцовых и многовенцовых колёс длинное посадочное отверстие является двойной направляющей базой, а торец колеса - опорной базой.

У одновенцовых колёс типа дисков короткое посадочное отверстие является двойной опорной базой, а торец колеса установочной базой. Если после нарезания зубьев колеса подвергаются закалке, то форма и размеры колеса после термообработки изменяются. В этом случае торец и посадочное отверстие после термообработки шлифуют. Колесо базируют по боковой поверхности зубьев, что обеспечивает соосность делительной окружности и посадочного отверстия (рис.2.1.18). Базовыми поверхностями зубчатых колес типа валов являются центровые отверстия.

2.1.6. Структура технологического процесса при обработке цилиндрических зубчатых колес

Технология изготовления зубчатых колес зависит от следующих факторов: программы выпуска, конструкции, размеров, метода получения заготовок, материала, точности и термической обработки. Основными факторами являются точность и конструкция зубчатых колес.

Типовой технологический процесс изготовления зубчатых колес включает изготовление штамповок или поковок, токарную обработку наружных поверхностей и торцов; обработку центрального отверстия, зубонарезание, термическую обработку, отделочные и доводочные операции базовых и зубчатых поверхностей. Особенностью технологического процесса изготовления зубчатых колес – валов является наличие операций по обработке зубьев, а в остальном он тот же, что и при изготовлении ступенчатых валов.

2.1.7. Токарная обработка

В мелкосерийном производстве зубчатые колеса до нарезания зубьев обрабатываются на универсальных токарно-винторезных станках (рис.2.1.6; 2.1.7). В среднесерийном производстве для повышения производительности применяются токарно-револьверные станки (ТРС). Общий вид этого станка показан на (рис.2.1.8).Станок имеет два суппорта. Суппорт 1 такой же, как у обычного универсального токарно-винторезного станка. Он может работать с продольной и поперечной подачами. Поэтому его называют крестовым. На этом суппорте установлен поворотный резцедержатель 2. Для закрепления заготовки используется патрон 3. Револьверная головка 4 размещена на суппорте 5. Поэтому этот суппорт называется револьверным. Он установлен вместо задней бабки на направляющих станины и работает только с продольной подачей. Револьверная головка представляет собой поворотное устройство на шесть позиций. Для установки режущего инструмента: резцов, сверл, зенкеров, сверл, метчиков используются оправки 6, которые закрепляются в гнездах револьверной головки. Крестовый и револьверный суппорты могут перемещаться независимо друг от друга. За счет установки на револьверной головке в одной позиции двух и более инструментов можно при обработке совмещать переходы. Например, одновременно обтачивать поверхность и сверлить отверстие.

Точность диаметральных и линейных размеров деталей при обработке на ТРС обеспечивается наладкой станка, т.е. оснащением станка необходимым режущим инструментом с установкой его в определенном положении. Точность диаметральных размеров обеспечивается мерным инструментом, сверлами, зенкерами, развертками, а также регулировкой вылета резцов, установленных на оправках. Точность линейных размеров обеспечивается ограничением хода суппортов упорами. Наружную резьбу нарезают плашками, внутреннюю резьбы нарезают метчиками. Пример наладки токарно-револьверного станка при обработке втулки показан на рис. 2.1.9. Деталь зажимают в патроне 1 и обрабатывают инструментами, установленными в резцедержателе суппорта 2 и револьверной головки 3. Смена инструмента производится поворотом резцедержателя и револьверной головки.

В настоящее время независимо от типа производства широко проименяются токарные станки с числовым программным управлением (ЧПУ) разных моделей от различных производителей. Общий вид токарного станка с ЧПУ показан на рис. 2.1.10. Станок имеет следующие основные узлы: 1- привод; 2 - передняя шпиндельная бабка; 3 и 7 - верхний и нижний суппорты; 4 и 6 - поворотные резцедержатели; 5 - задняя бабка; 8 - станина с направляющими. Все модели этих станков имеют практически одинаковую конструкцию и снабжены револьверными головками рис. 2.1.11. Револьверные головки служат для установки резцов, сверл, зенкеров, разверток, метчиков, фрез. Причём, часть позиций револьверной головки может иметь индивидуальный привод для вращения инструмента. Это обеспечивает обработку отверстий, расположенных эксцентрично относительно оси шпинделя, а также фрезерование плоских и фасонных поверхностей.

Для повышения производительности применяются двухшпиндельные токарные станки с ЧПУ, у которых вместо задней бабки установлена шпиндельная бабка с самоцентрирущим патроном (рис.2.1.12). Перемещением бабки в осевом направлении производится смена установ заготовки для обработки ее с другой стороны.. Можно также одновременно обрабатывать два зубчатых колеса с противоположных сторон.

Токарную обработку крупных цилиндрических колес диаметром свыше 500 мм для тяжелого машиностроения выполняют на токарно-карусельных станках (ТКС) (рис.2.1.13). По своей компоновке ТКС делятся на одностоечные и двухстоечные. Одностоечный станок имеет следующие основные узлы: 1 – станина» 2 – планшайба; 3 – револьверная головка; 4 – траверса; 5 - вертикальный револьверный суппорт; 6 – стойка; 7 – боковой (горизонтальный суппорт); 8 – резцедержатель бокового суппорта. Колеса 8 степени точности и менее точные обрабатываются на ТКС окончательно. Колеса 7 степени точности и более точные обрабатываются на ТКС с припуском для окончательной обработки после сборки с валом. Диаметр заготовок, обрабатываемых на ТКС, достигает 20 м. Широко применяются ТКС с ЧПУ.

Закалка стали 40Х

При сильном нагреве практически все материалы изменяют свои физические характеристики. В некоторых случаях нагрев проводится целенаправленно, так как подобным образом можно улучшить некоторые эксплуатационные качества, к примеру, твердость. Термическая обработка на протяжении многих лет используется для повышения твердости поверхности стали. Выполнять закалку следует с учетом особенностей металла, так как технология повышения твердости поверхности создается на основании состава материала. В некоторых случаях провести закалку можно в домашних условиях, но стоит учитывать, что сталь относиться к труднообрабатываемым материалам и для придания пластичности нужно проводить сильный нагрев до высоких температур при помощи определенного оборудования. В данном случае рассмотрим особенности нагрева стали 40Х для повышения пластичности и проведения закалки или отпуска.

Круг из стали 40Х

Круг из стали 40Х

Сталь 40Х

Как ранее было отмечено, для правильного проведения закалки и отпуска стали следует учитывать ее состав и многие другие особенности. Выбрать правильно режимы термической обработки можно с учетом следующей информации:

  1. Рассматриваемая сталь относится к конструкционной легированной группе. Легированная группа характеризуется содержанием большого количества примесей, которые определяют изменение эксплуатационных качеств, в том числе твердости.
  2. Используется в промышленности при создании валов, осей, штоков, оправок, реек, болтов, втулок, шестерней и других деталей.
  3. Показатель твердости до проведения термической обработки HB 10 -1 = 217 Мпа.
  4. Температура критических точек определяет момент, при котором сталь 40Х начинает терять свои качества из-за термической обработки: c1= 743 , Ac3(Acm) = 815 , Ar3(Arcm) = 730, Ar1 = 693.
  5. При температуре отпуска 200 °С HB = 552.

Расшифровка стали 40Х говорит о том, что в составе материала находится 0,40% углерода и 1,5% хрома.

Процесс закалки

Процесс обработки высокой температурой стали 40Х и иного сплава называют закалкой. Стоит учитывать, что нагрев выполняется до определенной температуры, которая была определена путем многочисленных испытаний. Время выдержки, после которого проводится охлаждение, а также другие моменты можно узнать из специальных таблиц. Провести нагрев в домашних условиях достаточно сложно, так как в рассматриваемом случае нужно достигнуть температуры около 800 градусов Цельсия.

Химический состав стали 40Х

Химический состав стали 40Х

Результатом сильного нагрева и выдержки металла 40Х на протяжении определенного времени с последующим резким охлаждением в воде становится повышение твердости и уменьшение пластичности. При этом результат зависит от нижеприведенных показателей:

  1. скорости нагрева металла 40Х;
  2. времени выдержки;
  3. от скорости охлаждения.

При проведении работы в домашних условиях следует учитывать температуру обработки и время охлаждения.

Механические свойства стали 40Х в зависимости от температуры отпуска

Механические свойства стали 40Х в зависимости от температуры отпуска

При выборе метода разогрева поверхности следует обратить внимание на ТВЧ. Этот метод более популярен, чем обычная объемная обработка по причине достижения необходимой температуры за более короткое время.

В домашних условиях ТВЧ используется крайне редко. После проведения работы при использовании ТВЧ повышается эксплуатационная прочность детали, что связано с появлением поверхностных сжимающих напряжений.

Провести закалку 40Х на примере изделия болта М24 можно следующим образом:

  1. разогревается электропечь;
  2. следует провести разогрев до 860 °C, для чего в некоторых случаях необходимо 40 минут;
  3. время, необходимое для аустенизации, после которого проводится охлаждение, составляет 10-15 минут. Равномерный желтый цвет изделия – признак правильного прохождения процесса закалки 40Х;
  4. завершающим этапом становится охлаждение в ванной с водой или другой жидкостью.

Определить самостоятельно момент, после которого следует охладить металл, в промышленных и домашних условиях невозможно. Именно поэтому по проведенным исследованиям было принято, что для нагрева металла в электропечах необходимо 1,5-2 минуты на один миллиметр, после чего структура может быть перегрета.

Определение твердости проводится по методу Роквелла. Улучшение, проведенное путем отпуска или закалки, можно измерить при помощи обозначения HRC. Стандартное обозначение HR, к которому проводится добавление буквы в соответствии с типом проведенного испытания. Обозначение HRC наиболее часто встречается, последняя буква означает использование алмазного конуса с углом 120 0 при испытании.

Отпуск и нормализация

Отпуск проводится непосредственно сразу после завершения закалки, так как есть большая вероятность возникновения трещин в структуре. Разогревается изделие в этом случае до точки ниже критической, проводится выдерживание на протяжении определенного промежутка времени и выполняется охлаждение. Отпуск обеспечивает улучшение структуры, устраняет напряжение и повышает пластичность, устраняет хрупкость стали 40Х.

Различают три вида рассматриваемой термообработки:

  1. Низкий отпуск определяет разогрев поверхности до 250 °С с выдержкой и охлаждение на воздухе. Применяется для снятия напряжений и незначительного повышения пластичности практически без потери твердости. В случае конструкционного сплава применяется крайне редко.
  2. Средний отпуск позволяет нагревать изделие до 500 °С. В этом случае вязкость значительно повышается, а твердость снижается. Используют этот метод термообработки при получении пружин, рессор и некоторого инструмента.
  3. Высокий позволяет раскаливать деталь до 600 °С. В этом случае происходит распад мартенсита с образованием сорбита. Подобная структура представлена лучшим сочетанием прочности и пластичности. Также повышается показатель ударной вязкости. Используют этот метод термообработки для получения деталей, применяемых при ударных нагрузках.

Еще одним видом распространенной термообработки является нормализация. Зачастую нормализация проводится путем разогрева металла до верхней критической точки с последующей выдержкой и охлаждением в обычной среде, к примеру, на открытом воздухе. Проводят нормализацию для придания мелкозернистой структуры, что приводит к повышению пластичности и ударной вязкости.

Читайте также: