Для чего служит сварочный трансформатор

Обновлено: 19.05.2024

Статья посвящена оборудованию, незаменимому при сварке постоянным током – сварочному выпрямителю. Рассмотрено его устройство, принцип работы, достоинства и недостатки, часто встречающиеся неисправности.

Что такое сварочный выпрямитель

В дуговой сварке используется электрическая дуга, которая возникает между свариваемыми материалами и электродом и служит для их разогрева. Чтобы ее создать, требуется источник электроэнергии.

Таким является сварочный трансформатор, способный обеспечить ток величиной в сотни ампер, который нужен, чтобы нагреть металл до точки плавления. При этом качество шва зависит не только от количества энергии, поступающей в зону сварки, но и от его стабильности.

Этому способствует использование постоянного тока, в связи с чем вместо трансформатора часто применяется другой прибор, называемый сварочным выпрямителем. Он содержит дополнительный узел, задачей которого является преобразование переменного напряжения в постоянное.

Сварочные выпрямители – их устройство и принцип работы

Для работы прибора используется энергия одно- или трехфазной электрической сети переменного напряжения.

Принцип работы сварочного выпрямителя

Прибор представляет из себя преобразователь напряжения и работает следующим образом.

В итоге на выходных проводах появляется постоянное напряжение, прикладываемое между электродом и свариваемыми предметами с целью создания электрической дуги.

Устройство сварочного выпрямителя

В состав прибора входят следующие блоки:

  • трансформатор, понижающий напряжение промышленной сети;
  • схема выпрямления;
  • фильтр;
  • блок регулировок;
  • узел индикации;
  • система охлаждения;
  • выходные провода для подачи напряжения на электрод и свариваемые материалы.

Vypriamitel svarochnyi 1

Схема трехфазного сварочного выпрямителя.

1 – трехфазный понижающий трансформатор;

2 –двухполупериодный выпрямитель из шести диодов;

3 – дроссельный фильтр;

4 – дуга между электродом и листом металла.

Применение и назначение сварочного выпрямителя

Простейшее оборудование, которое необходимо для создания электрической дуги, способной расплавить металл – это сварочный трансформатор на одну или три фазы, который понижает напряжение с тем, чтобы имея ту же мощность, быть способным пропустить больший ток.

Однако в этом случае выходной электрический сигнал изменяется по синусоиде, то есть периодически пересекает ось Ох, приобретая в этот момент значение¸ равное нулю, в результате чего дуга гаснет. Поскольку частота сети равна 50 Гц, то такое происходит 100 раз за секунду.

Vypriamitel svarochnyi 2

График зависимости напряжения промышленной сети от времени.

При сварке обычных конструкционных сталей это не существенно, однако для таких металлов как легированная или углеродистая сталь, являющихся тугоплавкими, затухание дуги даже на короткий срок недопустимо.

Поэтому для сварки этих сталей необходимо преобразование переменного напряжения в постоянное, способное обеспечить цепь постоянным током. Это достигается при использовании сварочного выпрямителя. Ниже представлены формы напряжения в различных точках прибора.

Vypriamitel svarochnyi 3

График напряжения на выходе диодного моста.

Vypriamitel svarochnyi 4

График напряжения на выходных клеммах (после фильтра).

Разновидности

В число основных характеристик сварочного выпрямителя входят следующие:

  • напряжение питания – однофазное 220 В или трехфазное 380 В;
  • выделяемая мощность;
  • потребляемая мощность;
  • вид и сила тока;
  • диаметр используемых электродов;
  • вес;
  • габаритные размеры.

В зависимости от величины выходного тока прибор может быть бытовым (до 200 А), полупрофессиональным (до 300 А) и профессиональным (свыше 300 А).

В профессиональных аппаратах в качестве фильтра, как правило, используется дроссель, в бытовых же эту роль может выполнять электролитический конденсатор.

Выпрямитель в сварочном аппарате изготавливается с применением вентилей – полупроводниковых диодов или тиристоров.

По видам – однопостовые и многопостовые

Сварочный выпрямитель может быть рассчитан на одновременное использование одним или несколькими сварщиками, то есть быть однопостовым либо многопостовым.

Многопостовые сварочные выпрямители питаются от трехфазной сети 380 В и на каждом посту имеют свой блок управления током. Они используются при необходимости проведения больших объемов сварочных работ – на производстве, судоверфях, в строительстве.

По регулировке тока

Регулировка выходного напряжения, следовательно, и тока производится также различными способами:

  • выбор подключения первичной обмотки в трехфазной сети по схеме «звезда» либо «треугольник»;
  • исполнение первичной обмотки в виде секций, которые можно подключать к цепи с помощью переключателей, меняя таким образом напряжение на вторичной обмотке;
  • установка между вторичной обмоткой и выпрямителем индуктивной нагрузки в виде нескольких катушек, которые также можно по отдельности подключать с помощью механических рычагов;
  • использование балластного реостата – регулируемого активного сопротивления, включенного последовательно с нагрузкой и ограничивающего выходной ток;
  • возможность перемещения вторичной обмотки трансформатора относительно первичной, вследствие чего изменяется индуктивная связь между ними, и, значит, напряжение на выходе;
  • использование в качестве вентилей тиристоров, которые дают возможность регулировать время, в течение которого выпрямитель пропускает электрический ток.

Преимущества и недостатки

По сравнению с другими аппаратами сварочные выпрямители имеют следующие достоинства:

  • большой выходной ток;
  • широкие диапазоны регулировок;
  • надежность в работе;
  • удобство при использовании;
  • низкий уровень шума;
  • повышенные качество и прочность шва.

К недостаткам можно отнести большой вес, чувствительность к скачкам входного напряжения и возникновению короткого замыкания на выходе на длительный срок. Во время работы может понизиться выходная мощность.

Обслуживание и ремонт

Чтобы аппарат работал долго и безотказно, требуется следить за уровнем его нагрузок, не подвергая перегрузкам. При работе необходимо контролировать функционирование системы охлаждения, – как правило, это вентилятор(ы), – поскольку ее неисправность может привести к перегреву и выходу из строя как самого трансформатора, так и полупроводниковых элементов выпрямителя.

Рекомендуется раз в три месяца продувать прибор сжатым воздухом.

Такой аппарат как сварочник нуждается в периодическом техническом обслуживании. У каждой модели есть свои особенности, поэтому перед началом таких работ необходимо ознакомиться с паспортом, который поставляется вместе с изделием. В нем содержится необходимая информация и требования техники безопасности.

Любые действия по ТО должны выполняться специалистом соответствующей квалификации, имеющим группу по электробезопасности не ниже третьей.

Перед началом работ выпрямитель следует очистить от грязи и пыли, использовав при необходимости струю сжатого воздуха.

Основные неисправности

  1. Аппарат не включается. Причинами могут быть следующие:
  • отсутствие напряжения в сети;
  • нарушение контактов в вилке питания;
  • неисправность одной из деталей выпрямителя.
  1. Возникает «залипание» электрода. При этом нарастает шум от работы выпрямителя. Причины:
  • пониженное напряжение сети;
  • неисправность вентиля;
  • пробой конденсатора;
  • межвитковое замыкание в дросселе.
  1. Происходит отключение устройства во время работы. Возможные причины:
  • неисправна система охлаждения;
  • пробой изоляции проводов одной из обмоток трансформатора.
  1. Нестабильно выходное напряжение на холостом ходу либо под нагрузкой. В этом случае необходимо проверить качество контактов:
  • ручки регулятора;
  • гнезда предохранителя;
  • клеммы пускателя, если он есть.

Популярные модели выпрямителей

Все представленные ниже аппараты имеют крашеный металлический корпус.

ЭТА ВДМ-2х313

Устройство двухпостовое, имеет тепловую защиту. Охлаждение осуществляется с помощью вентилятора, что позволяет проводить длительные работы без перерывов.

Мощность – 27 кВт, ПВ (продолжительность включения – отношение времени работы при максимальном токе к общему времени (с учетом перерыва)) – 35%.

Дуга легко возбуждается, широкий диапазон регулировок позволяет проводить самые различные виды сварки.

Telwin Linear 530 HD

Vypriamitel svarochnyi 6

Выпрямитель снабжен регулятором для плавной настройки силы тока. Для удобства при перемещении оборудования есть П-образная ручка и два больших колеса.

Мощность – до 20 кВт, сила тока – до 450 А. В комплект поставки входят перчатки, маска, материал для зачистки свариваемых поверхностей.

Аппарат может работать как от однофазной, так и трехфазной сети.

Дуга 318М1

Выпрямитель имеет две ручки для переноски, колес нет. Система охлаждения состоит из трех вентиляторов. Регулировка тока ступенчатая в диапазоне 25–300 А. ПВ – 60%. Масса – 37 кг, мощность – 8,8 кВт.

Весомое достоинство – малое энергопотребление.

Selma DL-306 М1

Главная особенность – присутствие длинной ручки и двух колес большого диаметра, что дает возможность без труда перемещать агрегат. Охлаждение принудительное.

Есть защита от перегрева, индикация и плавная регулировка выходного тока внутри двух переключаемых диапазонов. Аппарат весит 69 кг, работает от трехфазного напряжения.

Напряжение холостого хода – 75 В. Диапазон выходного тока 70–315 А. Мощность – 24 кВт, ПВ – 60%.

Вопросы-ответы

Ниже представлены ответы на часто задаваемые вопросы.

Применяемые электроды

Качество сварного шва во многом зависит от типа и размера применяемых электродов, которые призваны обеспечить:

  • стабильность дуги;
  • определенный химический состав шва;
  • малое разбрызгивание металла;
  • отделение шлака;
  • прочность соединения.

Производители выпускают большое количество типов электродов, предназначенных для сварки сталей, чугуна, цветных металлов и их сплавов. На их выбор влияют такие факторы как:

  • металл, из которого изготовлена подлежащая сварке конструкция;
  • климатические условия выполнения работы и будущей эксплуатации;
  • опыт работника;
  • качественные характеристики электродов.

При учете типа металла выбирают электроды, которые дают шов, близкий к нему по физическим свойствам и химическому составу. Это определяется типом обмазки и сердечника.

Свариваемый материал группируется следующим образом.

  • сталь углеродистая и низколегированная;
  • легированная теплоустойчивая;
  • сталь высоколегированная;
  • чугун;
  • медь и ее сплавы.

Толщина свариваемых материалов определяет диаметр используемого электрода, который должен расплавить металл и при этом не прожечь его. Чем больше диаметр, том больше может быть ток сварки. Рекомендуемые режимы производители обычно указывают на упаковке партии.

Поскольку качество используемых расходников влияет и на процесс работы, и на ее результат, следует выбирать надежных производителей и остерегаться контрафактной продукции.

По типу процессов при сварке электроды могут быть следующими:

  • плавящиеся с покрытием;
  • плавящиеся без покрытия;
  • неплавящиеся.

В ручной дуговой сварке используется первый вид.

По типу обмазки также существует несколько типов:

  • основные – в состав покрытия входят соединения фтора;
  • рутиловые – покрытие состоит, в основном, из двуокиси титана;
  • кислотные;
  • целлюлозные;
  • смешанные.

Первый тип – с основным покрытием – является самым популярным и маркируется буквой «Б». С его помощью создается шов высокой прочности и ударной вязкости, стойкий при низких температурах.

Такими электродами варят на постоянном токе обратной полярности. Перед проведением сварки поверхность, на которой предполагается быть шву, должна быть зачищена. Электроды применяются при строительстве нефте- и газопроводов, в том числе, в северных широтах, при сооружении мостов, на корабельных верфях.

Электроды с рутиловым покрытием занимают второе место по распространенности.

К их главным достоинствам можно отнести легкость поджига, стабильность дуги, слабое разбрызгивание, простота снятия шлака, отсутствие выделения вредных веществ во время работы, использование как на постоянном, так и на переменном токе.

Сварка возможна в любом положении в пространстве, а также на окисленных и загрязненных поверхностях.

Остальные типы покрытия используются реже. Кислотные обозначаются буквой А, целлюлозные – Ц, смешанные – двумя буквами.

Сварщикам-новичкам лучше начинать работу с электродов с рутиловым покрытием, поскольку изделия с основным покрытием, хотя и позволяют сделать шов более высокого качества, требуют наличия опыта.

Диаметр изделия подбирается в зависимости от толщины и свойств металла. Так, например, для стали толщиной 3,0 мм подходит размер в 2,5 или 3 мм. Необходимо иметь в виду, что конструкции толщиной менее 1,5 мм вручную, как правило, не варят.

Как подключить балластник (балластный реостат)

Vypriamitel svarochnyi 9

В соответствии с законом Ома

где I – сила тока в цепи,

U – напряжение, приложенное к цепи,

R – сопротивление цепи.

Из формулы следует, что при увеличении сопротивления сила тока падает. Балластный реостат включается в выходную цепь последовательно – между выпрямителем и электродом – и предназначен для ограничения тока дуги.

Реостат состоит из набора резисторов, выполненных в виде нихромовых проволок, каждая из которых может быть соединена с выходной цепью при помощи рубильника. Резисторы включаются параллельно друг другу, и чем больше их подключено, тем меньше их сопротивление и больше сила тока.

Каждый пост многопостового выпрямителя с целью возможности независимой регулировки тока комплектуется отдельным балластным реостатом.

Можно ли собрать своими руками

Сварочный выпрямитель представляет собой несложный аппарат, которое не требует настройки, поэтому, даже собранный самостоятельно, он может не уступать по своим характеристикам серийному экземпляру. Для изготовления не требуется больших знаний в области электроники и электротехники.

Чтобы собрать простое устройство, потребуется следующая комплектация:

  • понижающий одно- или трехфазный трансформатор, вторичная обмотка которого может обеспечить необходимый для сварки ток;
  • комплект диодов – 4 для одно- и 6 для трехфазной сети;
  • комплект радиаторов, на которых диоды будут установлены;
  • вентилятор;
  • дроссель;
  • балластный реостат, если предполагается регулировка выходных параметров.

Диоды соединяются по схеме моста и подключаются к вторичной обмотке трансформатора. Напряжение с моста через дроссель, сглаживающий пульсации, поступает на выходные клеммы.

При разработке конструкции основной задачей является обеспечение необходимого теплового режима диодам выпрямителя, которые размещаются на радиаторах, охлаждаемых потоком воздуха от вентилятора.

Принцип работы сварочного трансформатора и чем он отличается от инвертора

Принцип работы сварочного трансформатора и чем он отличается от инвертора

Электросвариванием соединяют между собой металлические элементы уже около 150 лет. Способ не теряет актуальности и по сегодняшний день. А сварочный трансформатор выступает классическим оборудованием для этого метода. И хотя его неуклонно вытесняют более функциональные и недорогие инверторы, несколько устаревший агрегат остается в чести у сварщиков старой закалки. Рассмотрим устройство трансформатора и определим, чем он отличается от инвертора.

Что такое сварочный трансформатор

В первый раз куски металла между собой с помощью электричества соединил русский инженер Николай Бенардос в 1882 году. И запатентовал этот способ по всему миру под названием «электрогефест». Впоследствии метод неоднократно дорабатывался, оборудование усовершенствовалось, а термин упростился до «электросварки».

Сварочный трансформатор – это прибор, который преобразует переменный ток, обеспечивая оптимальный уровень для сварки металлов. Для этого он понижает напряжение в сети, как от 220 В, так и 380 до необходимых 60-75 В. Назначение аппарата – ручная дуговая сварка при помощи электродов. Рассмотрим, для чего служит сварочный трансформатор и какие у него достоинства.

Агрегат очень широко применяется повсеместно. Эта сфера охватывает, как использование для бытовых нужд, так и промышленное эксплуатирование. Для работы на производстве требуется овладеть специальностью. Потому что технологии и способы сварки сильно отличаются из-за сложности обрабатываемых механизмов и узлов.

Поэтому сварщику приходится знать все о характеристиках металлов. Уметь делать различные швы и знать в каком случае использовать каждый из них. В бытовых целях трансформатором может легко пользоваться и новичок, без специализированных знаний. Для получения достаточно качественного шва потребуется лишь немного практики.

Достоинства сварочного трансформатора:

  • Большая мощность.
  • Способность сварить металлы большой толщины.
  • Очень долгий срок эксплуатации.
  • Простота в использовании.
  • Неприхотливость в хранении.
  • Легкий ремонт.
  • Низкая цена, как на сам агрегат, так и его запчасти.

Из недостатков можно выделить большой вес и габариты. Правда это касается только промышленных экземпляров. Аппараты для домашнего использования очень компактны и весят не слишком много. У обоих вариантов бывают трудности в зажигании, а также нестабильное горение дуги.

Новички отмечают неудобство регулировки силы тока. У трансформатора отсутствуют переключатели и кнопки для этой цели. Необходимо самостоятельно изменять либо величину индуктивного сопротивления, либо вторичное напряжение холостого хода. А для этого нужен опыт.

Устройство трансформатора

Рассмотрим, из чего состоит сварочный трансформатор. Востребованным агрегат делает его простота. Это отражается в его обслуживании и необременительном ремонте. Ведь аппарат состоит всего из двух несложных узлов.

Первый нужен для понижения напряжения, идущего от сети. Причем можно включать прибор в источник питания, как в 220 В, так и 380. Из-за последней особенности трансформаторный узел может быть в первом случае однофазным. А если необходимо преобразовать напряжение в 380 В, то двухфазным или трехфазным.

Одна фаза состоит из сердечника и двух обмоток. Трехфазный трансформатор содержит внутри три однофазных. Двухфазный – только два обычных, но такие приборы большая редкость. А для управления служит регулировочный узел.

Его роль часто играет простейший дроссель насыщения. Чтобы поднять силу тока и тем самым снизить напряжение нужно изменить зазор магнитопровода у этой детали. И для удобства в работе для этой операции на корпус выводят специальную ручку. Такую простейшую конструкцию умельцы часто собирают самостоятельно.


В заводском исполнении к первой обмотке добавляют полупроводниковый регулятор, на основе тиристоров. Вторую обмотку подключают к выпрямительному мосту. Тем самым обеспечивая два уровня напряжения. Охлаждение для обоих вариантов устанавливается принудительное.

Стандартная комплектация сварочного аппарата:

  • Магнитопровод.
  • Сердечник.
  • Первичная обмотка.
  • Вторичная обмотка.
  • Тиристорный регулятор.
  • Импульсный стабилизатор.
  • Конденсаторы.
  • Регулировочный винт с рукояткой для вращения.
  • Защитная система подвесов.
  • Клеммы для проводов.
  • Корпус.

Для большей эффективности и удобства при пользовании в прибор добавляется вентилятор. Принудительное охлаждение увеличивает время беспрерывной работы аппарата. Для защиты от перегрузки устанавливают автоматический выключатель. А для лучшей функциональности монтируют несколько вторичных обмоток.

Простейшая схема исполнения является залогом надежной работы. Агрегаты очень редко выходят из строя. А если это происходит, то ремонт их несложен. Заменить недорогие детали может любой человек. В том числе и без специальных знаний.

Как работает прибор

Большинство сварочных аппаратов преобразует постоянный ток в переменный. Это нужно для зажигания дуги. Трансформатор же позволяет работать с постоянным током. Поэтому остается только адаптировать электрический ток под нужные условия.

Принцип действия сварочного трансформатора основан на обычных физических процессах. Сначала подается ток на первую катушку. И она создает магнитное поле. В результате, благодаря электродвижущей силе (ЭДС), электроны получают направленное движение.

Ток, двигаясь по спирали первой катушки, через сердечник доходит до вторичной обмотки. А поскольку витков на ней меньше, то выходное напряжение понижается. Этой работой занимается трансформаторный узел.

Для того, чтобы отрегулировать силу тока, необходимо изменить расстояние между обмотками. Приближение вторичной спирали из проволоки к первой катушке повышает силу тока. Бывают трансформаторы с иной конфигурацией. Вторичная обмотка закреплена наглухо, а подвижным делают сердечник.


Пока электрод сваривает металл, агрегат находится под нагрузкой. После окончания работы над швом, аппарат сразу переходит в холостой режим. Причем на вторичной обмотке сохраняется напряжение. Ведь ЭДС наводится магнитным потоком.

Величина напряжения холостого хода сварочного трансформатора от 48 до 70 В считается безопасной. Все, что не входит в эти рамки, уже несет угрозу для жизни. Поэтому в простейшую электрическую цепь необходимо встроить ограничитель. Он автоматически будет снижать напряжение сразу же после затухания дуги. Также требуется обеспечить надежное заземление корпуса прибора при работе.

Видео описание

Видео объяснит, как работает сварочный трансформатор:

Классификация по признакам

Обычно агрегаты делят на 3 вида. По принципу работы сварочного трансформатора. Вернее, его управляющего узла. Выделяют приборы амплитудного регулирования с нормальным или увеличенным рассеиванием. Первый вариант содержит дроссель. Второй более сложен, поскольку имеет, кроме реактивной обмотки, стабилизатор напряжения и конденсаторы.

В третьем виде силу тока регулируют тиристоры. Иногда в такие приборы встраивают еще один трансформатор для подпитки. Она нужна для устойчивости горения дуги. Или эту роль берет на себя импульсный стабилизатор.

В остальном все виды сварочных трансформаторов можно классифицировать по таким признакам:

  • Количество рабочих постов. Этот показатель определяет, сколько сварочных кабелей можно подключить к аппарату. Существуют многопостовые агрегаты, позволяющие работать одновременно шести сварщикам.
  • Способ регулировки. Он зависит от состава управляющего узла.

Ввиду сказанного можно сформулировать рекомендации по выбору сварочного трансформатора для бытовых нужд. Для дома подойдет однофазный прибор с регулирующим дросселем насыщения. Однопостовой агрегат лучше подобрать с выходной силой тока не меньше 300 А. Это пригодится, если придется работать с толстым металлом.


Чем отличается трансформатор от инвертора

Современный сварочный аппарат подключается к сети переменного тока. Затем он преобразует его в постоянный. А после этого инвертирует обратно в переменный. Такая сложность нужна, чтобы получить на выходе частоту 50-80 кГц вместо обычных 50 Гц.

Но это еще не все. В процессе преобразования напряжение падает до 90 вольт. Некоторые приборы могут понизить его и до 30 В. Благодаря этому сила тока может достигнуть отметки в 500 ампер. А на выходе прибор снова выпрямляет напряжение, и работа ведется на постоянном токе в режиме многотысячной пульсации.

Такая операция возможна благодаря сложности устройства. Кроме понижающего трансформатора, прибор укомплектован различными фильтрами и модуляторами. В него установлены кулеры охлаждения, а также всевозможные регуляторы и датчики.

Но при всей сложности схемы, она позволяет уменьшить размеры трансформатора и значительно сократить, как габариты прибора, так и его вес. К тому же электрическая дуга не теряет стабильности, а металл хорошо плавится и образует ровный шов.

Дополнительные преимущества инвертора перед трансформатором:

  • Потребление электроэнергии значительно сокращено.
  • Хорошая производительность при меньшей мощности.
  • Регулировка силы тока, позволяющая сваривать не только тонкие, но и толстые металлы.
  • Возможность работы с легированными сталями, медью и алюминием.
  • КПД остается неизменным длительное время при непрерывной работе.

А главным минусом выступает высокая цена на инверторы. К тому же прибор очень капризен. Сразу же реагирует на понижение температуры окружающей среды. А из-за сложности комплектации затрудняется ремонт, который также превращается в дорогостоящее удовольствие.

Видео разъяснит, что такое сварочные трансформаторы, каково устройство и принцип работы у прибора. И в чем их отличие от инверторов:


Коротко о главном

Сварочный трансформатор понижает напряжение бытовой или промышленной сети до семидесяти вольт. При такой нагрузке становится возможным соединение металлических элементов между собой ручной дуговой сваркой. При работе необходимо использовать специальные электроды.

Трансформатор имеет неоспоримые преимущества перед современным сварочным инвертором. Это заключается в простоте устройства, стабильности в работе и низкой цене, как на сам прибор, так и на его комплектующие. Промышленные трехфазные модели качественно сваривают между собой даже самый толстый металл.

При выборе прибора для бытовых нужд, нужно обратить внимание на его фазность и способ управления, а также на максимальную генерацию тока. Приобретать для дома лучше однофазное устройство с регуляцией либо на дросселе, либо на тиристорах. Сила тока должна быть не меньше 300 А.

Что такое сварочный трансформатор?

Сварочный трансформатор — это классическая разновидность сварочного аппарата, применяемая уже более ста лет. Трансформаторы зарекомендовали себя как надежные и неприхотливые аппараты, которые способны сварить даже самый толстый металл за счет большой сили сварочного тока. Сейчас трансформаторы используются нечасто, поскольку производители предлагают недорогие функциональные инверторы. Но для профессионалов и сварщиков старой закалки трансформаторы все еще играют большую роль.

сварочный трансформатор

В этой статье мы подробно расскажем, что такое сварочный трансформатор, как он устроен, какие существуют типы сварочных трансформаторов и для чего служит сварочный трансформатор. Этот материал создан специально для тех, кто только изучает азы сварки и выбирает сварочный аппарат для себя.

Общая информация

Сварочный аппарат трансформаторного типа — это один из классических представителей сварочного оборудования. Основная функция сварочного трансформатора — преобразование напряжения сети 220В или 380В в низкое, а также преобразование тока от низких до высоких значений. Любой трансформатор (будь он современный или выпущенный 30 лет назад) предназначен для ручной дуговой сварки с применением покрытых электродов.

трансформатор сварочный

С помощью трансформатора возможна как бытовая, так и профессиональная или промышленная сварка. В 20 веке сварочные трансформаторы широко использовались для профессиональных сварочных работ, пока их не вытеснили компактные инверторы нового поколения. Тем не менее, трансформаторы все еще используются многими сварщиками.

  • Низкая стоимость самого аппарата, а также его запчастей и технического обслуживания
  • Неприхотливость к хранению и эксплуатации
  • Высокая ремонтопригодность
  • Большая мощность
  • Возможность сварки толстых металлов
  • Большой вес и габариты, затрудняющие транспортировку
  • Не интуитивная регулировка силы тока (отсутствуют ручки и кнопки, регулировка осуществляется путем изменения величины индуктивного сопротивления или вторичного напряжения холостого хода)
  • Часто нестабильное горение дуги, затруднительный поджиг

Устройство и принцип работы

Устройство и принцип действия сварочного трансформатора крайне просты. Именно из-за этой особенности трансформаторы настолько ремонтопригодны и недороги в обслуживании.

устройство трансформатора

Устройство сварочного трансформатора

Трансформатор состоит из трансформаторного и регуляторного узла. Трансформаторный узел необходим для понижения напряжения, поступающего от сети 220В или 380В. Регулярный узел позволяет установить нужную вам силу тока.

Состав трансформаторного узла может разниться в зависимости от напряжения, необходимого для стабильной работы аппарата. Существуют однофазные, двухфазные и трехфазные аппараты. Однофазный трансформатор состоит из сердечника и двух обмоток. Двухфазный — из двух однофазных. Трехфазный — из трех однофазных соответственно.

Что касается регуляторного узла, то зачастую это дроссель насыщения. Чтобы отрегулировать силу тока необходимо изменить зазор магнитопровода этого дросселя. Как вы понимаете, выполнять подобные манипуляции, каждый раз снимая корпус с аппарата, очень неудобно. Поэтому умельцы выводят на поверхность корпуса специальную ручку, с помощью которой можно механическим образом регулировать силу сварочного тока.

Два этих узла — трансформаторный и регуляторный — являются основой сварочного трансформаторного аппарата. Помимо этих узлов предусмотрены дополнительные устройства. Тем не менее, стандартная схема сварочного трансформатора все равно очень простая. По этой причине трансформаторы крайне редко выходят из строя. Если у трансформатора обнаружились неполадки, их можно легко устранить в домашних условиях.

Принцип работы сварочного трансформатора

В большинстве сварочных аппаратов сварочный ток преобразовывается из постоянного в переменный, чтобы была возможность зажечь дугу. В случае с трансформатором это правило не работает. Это единственный сварочный аппарат, позволяющий выполнять сварку с применением постоянного тока. Все, что необходимо — это адаптировать электрический ток под необходимые вам условия.

Это задача трансформаторного узла, о котором мы говорили выше. Он понижает входное напряжение до необходимого значения. Затем дело за регуляторным узлом, который позволяет точно настроить силу тока. Вот и все. Принцип действия максимально прост. Дополнительно может быть заземление.

Виды трансформаторов

Существуют различные виды сварочных трансформаторов. Они могут классифицироваться по разным критериям: по напряжению сети, по функциональности, по способу регулировки тока, по количеству рабочих постов. Давайте рассмотрим эти критерии подробнее

Напряжение сети

Сварочный трансформатор для ручной дуговой сварки может работать как от 220В, так и от 380В. Это зависит от того, сколько фаз у трансформатора. Выше мы уже говорили, что существуют однофазные, двухфазные и трехфазные аппараты. Однофазные работают от розетки 220В. Двухфазный сварочный трансформатор встречается редко, поэтому не будет заострять на нем внимание Трехфазные трансформаторы требуют напряжения 380В.

Также существуют комбинированные трансформаторные аппараты, способные работать при любом напряжении сети.

Функционал трансформатора

От функциональности напрямую зависит назначение сварочного трансформатора. Разделяют бытовые, профессиональные и промышленные аппараты. У них разные характеристики, соответственно разный функционал. Аппарат бытового класса не способен выдать более 200А, поэтому его возможности ограничены. А вот профессиональные модели генерируют от 300А и позволяют варить даже толстый металл.

трансформатор

Промышленный сварочный трансформатор обладает возможностями, позволяющими выполнять самые сложные сварочные работы. Но, справедливости ради, сейчас трансформаторы практически не используются в промышленной сварке. Их заменили более технологичные аппараты.

Количество рабочих постов

Трансформаторы для ручной дуговой сварки могут предназначены для разного количества рабочих постов. Чем больше сварочных кабелей можно подключить к трансформатору, тем больше рабочих постов можно организовать.

Условно аппараты делятся на однопостовые и многопостовые. Однопостовые рассчитаны на одно рабочее место. Проще говоря, к такому аппарату можно подключить всего один сварочный кабель и работу сможет выполнить только один сварщик. Многопостовые аппараты позволяют подключать от 3 до 6 кабелей, тем самым позволяя осуществлять сварку трех-шести сварщикам одновременно.

Способ регулировки силы тока

Выше мы писали, что трансформатор для сварки оснащен регуляторным узлом в котором есть дроссель насыщения. Меняя расстояние между катушками можно изменить и силу тока. Но на самом деле, это не единственный тип регулировки сварочного тока.

Помимо дросселя насыщения может использоваться дроссель магнитного зазора, двигающийся или подмагниченный шунт, реактивная обмотка, подвижная катушка кондекнсатор, рассеивающиеся обмотки, тиристорные регулировки или импульсные стабилизаторы.

Как видите, существует множество разновидностей трансформаторов. Поэтому выбирайте аппарат исходя из своих потребностей и нужд. Для домашнего использования будет достаточно однофазного однопостового трансформатора с максимальной силой тока до 300А, с дросселем насыщения для регулировки. Такие аппараты наиболее надежны и неприхотливы в эксплуатации.

Вместо заключения

Трансформаторы — это надежные и неприхотливые аппараты, зарекомендовавшие себя при выполнении любых задач: от бытовых до промышленных. Сейчас они практически не используются из-за большого разнообразия аппаратов инверторного типа, но это не значит, что трансформаторы исчезнут. У них есть свои неоспоримые преимущества, которыми вряд ли смогут похвастаться даже самые современные инверторы.

С помощью трансформатора можно варить толстый металл, ему под силу сварка любой сложности. Но учтите, что для работы с трансформатором необходимо обладать навыками сварки. Только так вы сможете добиться достойного качества швов. С другой стороны, если вы изучите азы сварки на трансформаторе, то потом сможете качественно выполнять работу на любом типе сварочного оборудования. Желаем удачи в работе!

Трансформаторы — назначение, виды и характеристики

Трансформатор — это статическое устройство, имеющее две или более обмотки, предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного напряжения и тока в одну или несколько других систем переменного напряжения и тока, имеющих обычно другие значения при той же частоте, с целью передачи мощности. (Источник: ГОСТ 30830-2002)

общий вид трансформатора

Рис.1 Общий вид трансформатора

Значение трансформаторов как в электроэнергетике в целом, так и в повседневной жизни каждого человека трудно переоценить, они применяются повсеместно: на подстанциях, в городах и поселках, стоят силовые трансформаторы, понижающие высокое напряжение в тысячи и даже десятки тысяч Вольт до привычных нам 380/220 Вольт, на предприятиях стоят сварочные трансформаторы которые совершенно незаменимы на производстве, трансформаторы так же применяются и у нас дома в бытовой технике: в СВЧ-печах, блоках питания компьютеров и даже зарядных устройствах для телефонов.

В этой статье мы разберемся в том как устроены и как работают трансформаторы, какие бывают виды трансформаторов, а так же приведем их общие характеристики.

Общее устройство и принцип работы трансформаторов

В общем виде трансформатор представляет собой две обмотки расположенных на общем магнитопроводе. Обмотки выполняются из медного или алюминиевого провода в эмалевой изоляции, а магнитопровод изготовлен из тонких изолированных лаком пластин электротехнической стали, для уменьшения потерь электроэнергии на вихревые токи (так называемые токи Фуко).

Та обмотка, которая подключается к источнику питания, называется первичной обмоткой, а обмотка к которой подключается нагрузка — соответственно вторичной. Если со вторичной обмотки (W2) трансформатора снимается напряжение (U2) ниже, чем напряжение (U1) которое подаётся на первичную обмотку (W1), то такой трансформатор считается понижающим, а если выше — повышающим.

Общее устройство трансформатора

Рис.2 Схема общего устройства трансформатора

Металлическая часть на которой располагается электрическая обмотка (катушка), т.е. которая находится в ее центре, называется сердечником, в трансформаторах этот сердечник имеет замкнутое исполнение и является общим для всех обмоток трансформатора, такой сердечник называется магнитопроводом.

Как уже было сказано выше принцип работы трансформаторов основан на законе электромагнитной индукции, для понимания того как это работает представим самый простой трансформатор, аналогичный тому который представлен на рисунке 2, т.е. у нас есть магнитопровод на котором располагаются 2 обмотки, представим, что первая обмотка состоит всего из одного витка, а вторая — из двух.

Теперь подадим напряжение 1 Вольт на первую обмотку, ее единственный виток условно создаст магнитный поток величиной в 1 Вб (Справочно: Вебер (Вб) — единица измерения магнитного потока) в магнитопроводе, так как магнитопровод имеет замкнутое исполнение магнитный поток будет протекать в нем по кругу при этом пересекая 2 витка второй обмотки, при этом в каждом из этих витков за счет электромагнитной индукции наводит (индуктирует) электродвижущую силу (ЭДС) в 1 Вольт, ЭДС этих двух витков складывается и на выходе со второй обмотки мы получаем 2 Вольта.

Таким образом, подав на первичную обмотку 1 Вольт на вторичной обмотке мы получили 2 Вольта, т.е. в данном случае трансформатор будет называться повышающим, т.к. он повышает поданное на него напряжение.

Но этот трансформатор может работать и в обратную сторону, т.е. если на вторую обмотку (с двумя витками) подать 2 Вольта, то с первой обмотки по тому же принципу мы получим 1 Вольт, в этом случае трансформатор будет называться понижающим.

Общие характеристики трансформаторов

К основным техническим характеристиками трансформаторов можно отнести:

  • номинальную мощность;
  • номинальное напряжение обмоток;
  • номинальный ток обмоток;
  • коэффициент трансформации;
  • коэффициент полезного действия;
  • число обмоток;
  • рабочую частоту;
  • количество фаз.

Мощность является одним из главных параметров трансформаторов. В паспортных (заводских) данных трансформатора указывается его полная мощность (обозначается буквой S), она зависит от типа используемого магнитопровода, количества и диаметра витков в обмотках, то есть от массогабаритных показателей электромагнитного аппарата.

Измеряется мощность в единицах В∙А (Вольт-Ампер). На практике для трансформаторов больших мощностей, как правило используются кратные Вольт-Амперам величины Киловольт-ампер — кВА (10 3 В∙А) и Мегавольт-ампер — МВА (10 6 В∙А).

Фактически каждый трансформатор имеет 2 значения мощности: входную (S1) — мощность, которую трансформатор потребляет из питающей его сети и выходную (S2) — мощность, которую трансформатор отдает подключенной к нему нагрузке, при этом выходная мощность всегда меньше входной за счет электрических потерь в самом трансформаторе (потери на нагрев обмоток, потери на вихревые токи и т.д.) величина этих потерь определяется другим основным параметром — коэффициентом полезного действия, сокращенно — КПД (обозначается буквой η), данный параметр указывается в процентах.

Например если КПД указано 92% — это значит, что выходная мощность трансформатора будет меньше входной на 8%, т.е. 8% -это потери в трансформаторе.

Формулы расчета мощности:

  • I1,I2 — соответственно, токи в первичной и вторичной обмотках трансформатора в Амперах;
  • U1,U2 — соответственно, напряжения первичной и вторичной обмоток трансформатора в Вольтах.

Следует помнить, что полная мощность состоит из активной (P) и реактивной (Q) мощностей:

  • Активная мощность определяется по формуле: P=U х I х cosφ ,Ватт (Вт)
  • Реактивная мощность определяется по формуле: Q=U х I х sinφ ,вольт-ампер реактивный (Вар)
  • Коэффициент мощности: cosφ=P/S;
  • Коэффициент реактивной мощности:sinφ=Q/S

Формулы расчета КПД (η) трансформатора:

Как уже было указано выше КПД определяет величину потерь в трансформаторе или иными словами эффективность работы трансформатора и определяется оно отношением выходной мощности (P2) к входной (P1):

В результате данного расчета значение КПД определяется в относительных единицах (в виде десятичной дроби), например — 0,92, чтобы получить значение КПД в процентах рассчитанную величину необходимо умножить на 100% (0,92*100%=92%).

Чем ближе КПД к 100% тем лучше, т.е. идеальный трансформатор — это трансформатор в котором P2=P1, однако в реальности из-за потерь в трансформаторе выходная мощность всегда ниже входной.

Это хорошо видно из так называемой энергетической диаграммы трансформатора (рис.3):

энергетическая диаграмма трансформатора

  • P1 — активная мощность, потребляемая трансформатором от источника;
  • P2 — активная (полезная) мощность, отдаваемая трансформатором приемнику;
  • ∆Pэл — электрические потери в обмотках трансформатора;
  • ∆Рм — магнитные потери в магнитопроводе трансформатора;
  • ∆Рдоп — дополнительные потери в остальных элементах конструкции.

В режиме холостого хода (работы без подключенной к трансформатору нагрузки) КПД трансформатора η = 0. Мощность холостого хода P0, потребляемая трансформатором в этом режиме, расходуется на компенсацию магнитных потерь. С увеличением нагрузки в достаточно небольшом диапазоне (приблизительно β = 0,2) КПД достигает больших значений. В остальной части рабочего диапазона КПД трансформатора держится на высоком уровне. В режимах, близких к номинальному, КПД трансформатора η ном = 0,9 — 0,98.

Зависимость КПД от нагрузки представлена на следующем графике (рис.4):

график зависимости КПД отт нагрузки трансформатора

Первичное номинальное напряжение U1н — это напряжение, которое требуется подать на первичную катушку трансформатора, чтобы в режиме холостого хода получить номинальное вторичное напряжение U2н.

Вторичное номинальное напряжение U2н — это значение, которое устанавливается на выводах вторичной обмотки при подаче на первичную обмотку номинального первичного напряжения U1н, в режиме холостого хода.

Номинальный первичный ток I1н — это максимальный ток, протекающий в первичной обмотке, т.е. потребляемый трансформатором из сети, на который рассчитан данный трансформатор и при котором возможна его длительная работа.

Номинальный вторичный ток I2н — это максимальный ток нагрузки, протекающий во вторичной обмотке, на который рассчитан данный трансформатор и при котором возможна его длительная работа.

Коэффициент трансформации (kт) — это отношение числа витков в первичной обмотке к числу витков во вторичной обмотке k=W1/W2.

Так же kт определяется как отношение напряжений на зажимах обмоток: kт=U1н/U2н.

Для понижающего трансформатора коэффициент трансформации больше 1, а для повышающего — меньше 1.

Примечание: для трансформаторов тока kт определяется как отношение номинальных значений первичного и вторичного токов kт=I1н/I2н

Число обмоток у однофазных трансформаторов чаще две, но может быть и больше. На первичную обмотку подают одно значение напряжения, а с вторичной обмотки снимают другое значение.

Когда требуются различные напряжения для питания нескольких приборов, то в этом случае вторичных обмоток может быть несколько. Также есть трансформаторы с общей точкой на вторичной обмотке для двуполярного питания.

Рабочая частота трансформаторов может быть различной. Но при одинаковых напряжениях первичной обмотки, трансформатор, разработанный для частоты 50 Гц, может использоваться при частоте сети 60 Гц, но не наоборот. При частоте меньше номинальной увеличивается индукция в магнитопроводе, что может повлечь его насыщение и как следствие резкое увеличение тока холостого хода и изменение его формы. При частоте больше номинальной повышается величина паразитных токов в магнитопроводе, повышается нагрев магнитопровода и обмоток, приводящий к ускоренному старению и разрушению изоляции.

Габариты трансформатора напрямую зависят от частоты тока в цепи, в которой он будет установлен. Конечно, трансформатор должен быть рассчитан на эту частоту. Зависимость эта обратная, т.е. с увеличением частоты габариты трансформатора значительно уменьшаются. Именно поэтому, импульсные блоки питания (с импульсными высокочастотными трансформаторами) намного компактнее.

В зависимости от назначения трансформаторы изготавливают однофазными и трехфазными.

Однофазный трансформатор представляет собой устройство для трансформирования электрической энергии в однофазной цепи. В основном имеет две обмотки, первичную и вторичную, но вторичных обмоток может быть и несколько.

Трехфазный трансформатор представляет собой устройство для трансформирования электрической энергии в трёхфазной цепи. Конструктивно состоит из трёх стержней магнитопровода, соединённых верхним и нижним ярмом. На каждый стержень надеты обмотки W1 и W2 высшего (U1) и низшего (U2) напряжений каждой фазы (рис.5).

схема общего устройства трехфазного трансформатора

Виды трансформаторов

Все трансформаторы можно разделить на следующие виды:

  1. силовые;
  2. автотрансформаторы;
  3. измерительные;
  4. разделительные;
  5. согласующие;
  6. импульсные;
  7. пик-трансформаторы;
  8. сварочные.

Силовые трансформаторы являются наиболее распространенным типом промышленных трансформаторов. Они применяются для повышения или понижения напряжения. Являются неотъемлемой частью сети электроснабжения предприятий, населенных пунктов и т.д.

Общий вид силового трансформатора

Автотрансформатором называется такой трансформатор, у которого имеется только одна обмотка с числом витков W1. Часть этой обмотки с числом витков W2 принадлежит одновременно первичной и вторичной цепям:

схема однофазного автотрансформатора

Данный тип трансформаторов применяется в приборах автоматического регулирования напряжения. Эти устройства используются, например, в образовательных учреждениях для проведения лабораторных работ, их можно встретить в электролабораториях различных предприятий для проведения тестовых работ.

Внешний вид автотрансформаторов:


Измерительные трансформаторы подразделяются на трансформаторы напряжения и трансформаторы тока. Они обеспечивают гальваническую развязку между цепями высокого и низкого напряжений. Как видно из названия, основное применение — снижение первичного напряжения или тока до величины, используемой в измерительных цепях, например для подключение амперметров, вольтметров, счетчиков электрической энергии. Также они могут применяться в различных цепях защиты, управления и сигнализации. От других типов трансформаторов отличаются повышенной точностью и стабильностью коэффициента трансформации.

Пример измерительных трансформаторов:

внешний вид измерительных трансформаторов

Разделительные трансформаторы, данные устройства мало чем отличается от обычных понижающих или повышающих трансформаторов. Единственное различие заключено в том, что на общем магнитопроводе размещаются абсолютно идентичные обмотки. То есть у них полностью совпадают такие параметры как сечение провода, количество витков, изоляция. Поэтому коэффициент трансформации у них равен единице.

Задачей этих устройств является обеспечение гальванической развязки, т.е. исключение непосредственной электрической связи между электрической сетью и подключаемому к ней, через данный трансформатор, оборудованию.

Применяются в тех областях где предъявляются повышенные требования к электробезопасности, например подключение медицинского оборудования.


Согласующие трансформаторы применяются для согласования сопротивления различных частей каскадов электронных схем, а также для подключения нагрузки, не соответствующей по сопротивлению допустимым значениям источника сигнала, что позволяют передать максимум мощности в такую нагрузку. При этом само непосредственное изменение показателей силы тока и напряжения не имеет значения.

Они применяются в усилителях низкой частоты в качестве входных, межкаскадных и выходных трансформаторов.

В качестве входных, согласующие трансформаоры применяются в звуковоспроизводящей аппаратуре для подключения микрофонов и звукоснимателей различных типов.

Трансформаторы этого типа используются для согласования сигнала при подключении антенн к приёмным и передающим устройствам.


Импульсные трансформаторы — это устройства с ферромагнитным сердечником, которые используются для изменения импульсов тока или напряжения. Преобразуют получаемый сигнал в прямоугольный импульс. Применяются для предотвращения высокочастотных помех. Импульсные трансформаторы наиболее часто используются в электронно-вычислительных устройствах, системах радиолокации, импульсной радиосвязи, в качестве измерительных устройств в счетчиках электроэнергии

внешний вид импульсных трансформаторов

Пик-трансформаторы — преобразуют напряжение синусоидальной формы в импульсные пики с сохранением их полярности и частоты колебаний.

Незаменимы там, где для запуска исполнительного устройства требуется единичный импульс с установленной амплитудой напряжения. Это, например, управляющие электронные схемы, собранные на тиристорах. Так же применяются в качестве генераторов импульсов, главным образом в высоковольтных исследовательских установках, в технике связи и радиолокации. Наибольшее применение пиковые трансформаторы получили в автоматизации технологических процессов.

внешний вид пик-трансформаторов

Сварочные трансформаторы — являются основными источникам питания для ручной дуговой сварки на переменном токе. Они служат для понижения напряжения сети с 220В или 380В до безопасного и вместе с тем повышения величины тока для увеличения температуры электрической дуги.

внешний вид сварочных трансформаторов

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Читайте также: