Для какого класса сталей применяют при сварке наплавке электроды типов э38 э42 э46 э50

Обновлено: 15.05.2024

Ввиду большого разнообразия применяемых покрытий электроды по ГОСТ делятся на типы не по составу покрытий, а по назначению электродов и механическим свойствам металла шва и сварного соединения, получаемых при сварке электродами данного типа. Каждому типу электрода соответствует несколько марок. Например, типу Э42 соответствуют электроды ОМА-2, АНО-6, МЭЗ-04 и др. Марка электрода – это его промышленное обозначение, как правило характеризующее стержень и покрытие.

Согласно ГОСТ 9467-75 «Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы» для сварки углеродистых и низколегированных конструкционных сталей предусмотрены 9 типов электродов: Э38, Э42, 42А, Э46, Э46А, Э50, Э50А, Э55 и Э60; для сварки легированных конструкционных сталей повышенной и высокой прочности 5 типов: Э70, Э85, Э100, Э125, Э150. Кроме того, предусмотрены 9 типов электродов для сварки теплоустойчивых сталей: Э09М, Э09МХ, Э09Х1М, Э05Х2М, Э09Х2М1, Э09Х1МФ, Э10Х1М1НФБ, Э10Х3М1БФ, Э10Х5МФ.

Тип электрода для конструкционных сталей обозначается буквой Э и цифрой, указывающий гарантируемый предел прочности металла шва 10 -1 МПа. Буква А в обозначении указывает, что металл шва, наплавленный этим электродом, имеет повышенные пластические свойства. Такие электроды применяются при сварке наиболее ответственных швов.

Механические свойства металлов шва и наплавленного при дуговой сварке металлическими электродами указаны в таблицах 3.2., 3.3

Механические свойства металла шва, наплавленного при дуговой сварке металлическими электродами для конструкционных сталей

Тип электрода Временное сопротивление разрыву, МПа Металл шва и наплавленный Угол загиба для металла соединения, сваренного электродами диаметрами менее 3 мм, град
Относительное удлинение , МПа Ударная вязкость, Дж/см 2
Э38 Э42 Э46 Э50 Э42А Э46А Э50А Э55 Э60 Э70 Э85 Э100 Э125 Э150 - - - - -

Механические свойства металла шва, наплавленного при дуговой сварке металлическими электродами для легированных теплоустойчивых сталей

Тип электрода Временное сопротивление разрыву, МПа Относительное удлинение , МПа Ударная вязкость, Дж/см 2
Э09М Э09МХ Э09Х1М Э05Х2М Э09Х2М1 Э09Х1МФ Э10Х1М1НФБ Э10Х3М1БФ Э10Х5МФ

Для изготовления стержней большинства электродов, предназначенных для сварки углеродистых и легированных конструкционных сталей, применяют проволоку Св-08 и Св-08А.

Наиболее распространенные марки электродов для ручной дуговой сварки конструкционных и теплоустойчивых сталей приведены в таблице 3.4

Марки электродов для сварки конструкционных и теплоустойчивых сталей

Тип электродов по ГОСТ 9467-75 Марка электродов
Э42 АНО-1, АНО-5, АНО-6, СМ-5, ВСЦ-2, ВСЦ-4
Э46 ЦМ-9, АНО-4, ОЗС-12, МР-3
Э50 ВСН-3, ВСЦ-3
Э42А СМ-11, ОЗС-2, УП-1/45, УП-2/45
Э46А ИТС-1, УОНИИ-13/45
Э50А УОНИИ-13/55, АНО-9, УП-2/55, ЦУ-1, ДСК-50
Э55 УОНИИ-13/55У
Э60 УОНИИ-13/65
Э70 Н-1, ЛКЗ-70
Э85 УОНИИ-13/85, ЦЛ-18
Э100 ВИ-10-6, У-340/105, ЦЛ-19
Э125 НИАТ-3М
Э150 НИАТ-3
Э09М УОНИИ-13/45М
Э09МХ УОНИИ-13/45МХ, ЦУ-2МХ, ЦЛ-14
Э09Х1М ЦУ-2ХМ, ЦЛ-38, Н-3
Э05Х2М Н-10
Э09Х2М1 ЦЛ-55
Э09Х1МФ ЦЛ-20, Н-6
Э10Х1М1НФБ ЦЛ-36
Э10Х3М1БФ ЦЛ-26М
Э10Х5МФ ЦЛ-17

Согласно ГОСТ 10052-75 «Электроды покрытые металлические для ручной дуговой сварки высоколегированных сталей с особыми свойствами. Типы» для сварки коррозионно-стойких, жаропрочных и жаростойких сталей предусмотрены 49 типов электродов.

Механические свойства металлов шва и наплавленного при дуговой сварке металлическими электродами для высоколегированных сталей указаны в таблице 3.5

Механические свойства металла шва, наплавленного при дуговой сварке металлическими электродами для высоколегированных сталей

Тип электрода Временное сопротивление разрыву, МПа Относительное удлинение , МПа Ударная вязкость, Дж/см 2
Э-12Х13 Э-06Х13Н Э-10Х17Т Э-12Х11НМФ Э-12Х11НВМФ Э-14Х11НВМФ Э-10Х16Н4Б Э‑08Х24Н6ТАФМ Э-04Х20Н9 Э-07Х20Н9 Э-02Х21Н10Г2 Э-06Х22Н9 Э‑08Х16Н8М2 Э-08Х17Н8М2 Э-06Х19Н11Г2М2 Э-02Х20Н14Г2М2 Э‑02Х19Н9Б Э-08Х19Н10Г2Б Э-08Х20Н9Г2Б Э-10Х17Н13С4 Э‑08Х19Н10Г2МБ Э-09Х19Н10Г2М2Б Э-08Х19Н9Ф2С2 Э-08Х19Н9Ф2Г2СМ Э-09Х16Н8ГЗМЗФ Э-09Х19Н11ГЗМ2Ф Э-07Х19Н11МЗГ2Ф Э‑08Х24Н12ГЗСТ Э-10Х25Н13Г2 Э-12Х24Н14С2 Э-10Х25Н13Г2Б Э‑10Х28Н12Г2 Э-0ЗХ15Н9АГ4 Э-10Х20Н9Г6С Э-28Х24Н16Г6 Э‑02Х19Н15Г4АМЗВ2 Э-02Х19Н18Г5АМЗ Э-11Х15Н25М6АГ2 Э‑09Х15Н25М6Г2Ф Э-27Х15Н35ВЗГ2Б2Т Э-04Х16Н35Г6М7Б Э‑06Х25Н40М7Г2 Э-08Н60Г7М7Т Э-08Х25Н60М10Г2 Э-02Х20Н60М16ВЗ Э‑04Х10Н60М24 Э-08Х14Н65М15В4Г2 Э-10Х20Н70Г2М2В Э‑10Х20Н70Г2М2Б2В - - - - - - - -

Наиболее распространенные марки электродов для ручной дуговой сварки высоколегированных сталей с особыми свойствами приведены в таблице 3.6

Билеты экзамена для проверки знаний специалистов сварочного производства 1 уровень

3. Обозначение химических элементов и их содержание в стали.

ВОПРОС 3. Укажите причины образования кратера?

1. Кратер образуется в месте выделения газов в процессе сварки.

2. Из-за резкого отвода дуги от сварочной ванны.

3. Из-за значительной усадки металла в процессе кристаллизации.

ВОПРОС 4. Зависит ли напряжение дуги от ее длины при ручной дуговой сварке?

3. Зависит при малых и больших величинах сварочного тока

ВОПРОС 5. Кто должен производить подключение и отключение сварочного источника питания к силовой сети?

1. Электротехнический персонал данного предприятия.

2. Сварщик, работающий на данной установке.

3. Сварщик, работающий на данной установке под наблюдением мастера.

ВОПРОС 6. Какие должны быть род и полярность тока при выполнении горячего прохода соединений из углеродистых сталей электродами с целлюлозным покрытием?

1. Переменный ток.

2. Постоянный ток обратной полярности.

3. Постоянный ток прямой полярности.

ВОПРОС 7. Какие поверхности подлежат зачистке при подготовке под сборку деталей трубопровода пара и воды?

1. Должны быть очищены от загрязнений и ржавчины до металлического блеска торцы труб.

2. Должны быть очищены от загрязнений и ржавчины до металлического блеска кромки и наружные поверхности деталей.

3. Должны быть очищены от загрязнений и ржавчины до металлического блеска кромки, а также прилегающие к ним внутренние и наружные поверхности деталей.

ВОПРОС 8. Для сварки какого класса сталей применяют электроды типов Э-09М и Э-09МХ?

1. Для сварки теплоустойчивых низколегированных сталей.

2. Для сварки конструкционных сталей повышенной и высокой прочности.

3. Для сварки высоколегированных сталей.

ВОПРОС 9. С какой целью на электродный стержень наносят покрытие?

1. Для стабилизации горения дуги, легирования металла шва и защиты сварочной ванны от попадания газов из воздуха и формирования шва.

2. Для предохранения стержня от попадания влаги.

3. Для снижения вероятности образования как холодных, так и горячих трещин в металле шва.

ВОПРОС 10. Как влияет длина дуги на устойчивость ее горения?

1. С увеличением длины дуги устойчивость горения снижается.

2. С увеличением длины дуги устойчивость горения увеличивается.

3. Не оказывает практического влияния.

ВОПРОС 11. Выберите наиболее полные рекомендации по защите места сварки в условиях монтажа?

1. Необходимо обеспечить защиту места сварки от ветра.

2. Необходимо обеспечить защиту в виде навеса от воздействия атмосферных осадков.

3. Необходимо защищать от ветра, сквозняков и атмосферных осадков.

ВОПРОС 12. Листы какой толщины можно сваривать ручной дуговой сваркой без разделки кромок?

ВОПРОС 13. Как влияет увеличение тока при ручной дуговой сварке на геометрические размеры сварного шва?

1. Уменьшается глубина провара и увеличивается высота усиления шва.

2. Увеличиваются глубина проплавления и высота усиления шва.

3. Уменьшается высота усиления шва и увеличивается глубина проплавления.

ВОПРОС 14. Как включают амперметр в электрическую цепь?

1. Последовательно в электрическую цепь с вольтметром.

2. Последовательно в общую электрическую цепь.

3. Параллельно в общую электрическую цепь.

ВОПРОС 15. Для чего сварщику нужна спецодежда?

1.Для защиты сварщика от тепловых, световых, механических и других воздействий при сварке.

2. Для защиты его от выделяющихся вредных аэрозолей и свечения дуги.

3. Для защиты его от поражения электрическим током.

ВОПРОС 16. Что из перечисленного ниже наиболее сильно влияют на свариваемость металла?

1. Химический состав металла.

2. Механические свойства металла.

3. Электропроводность металла.

ВОПРОС 17. Как влияет величина объема металла, наплавленного за один проход, на величину деформаций?

1. Увеличивает остаточные деформации сварных конструкций.

2. Уменьшает остаточные деформации сварных конструкций.

3. Не влияет на остаточные деформации сварных конструкций.

ВОПРОС 18. В какой момент следует исправлять дефекты сварных соединений подлежащих последующей термообработке?

1. До термообработки

2. По согласованию с головной материаловедческой организацией.

3. После термообработки.

ВОПРОС 19. Граждане какого возраста могут быть допущены к выполнению сварочных работ?

ВОПРОС 20. Какой линией условно изображают видимый сварной шов на чертеже?

1. Сплошной основной.

3. Штрих – пунктирной.

Для перехода на следующую страницу, воспользуйтесь постраничной навигацией ниже

Электроды для сварки углеродистых и низколегированных сталей

Группа электродов для сварки углеродистых и низколегированных сталей весьма многочисленна. Многообразие марок электродов этой группы объясняется главным образом следующими причинами: стремлением разработчиков улучшить сварочно-технологические свойства электродов, которые невозможно оценивать количественно путем измерений, что приводит иногда из-за субъективности оценки к возникновению марок электродов, близких по свойствам; разнообразием минералов, химических соединений и других материалов, которые возможно использовать в качестве компонентов электродных покрытий; необходимостью постоянно улучшать технологические свойства электродов при их опрессовке; необходимостью постоянно улучшать гигиенические свойства электродов; конъюнктурными соображениями разработчиков; необходимостью в узкоспециализированных электродах, отличающихся от других улучшенными одним или несколькими свойствами.

Важнейшие характеристики группы электродов для сварки углеродистых и низколегированных сталей: прочностные и пластические свойства металла шва, а иногда также результаты дополнительных испытаний; вид электродного покрытия, обусловливающего гигиенические характеристики, количество водорода и неметаллических включений в металле, стабильность горения дуги, склонность к образованию пор, производительность процесса сварки.

Перечисленные характеристики необходимо учитывать при выборе марки электродов для сварки определенного объекта из углеродистой или низколегированной стали.

Одна из главных характеристик электрода для сварки углеродистых и низколегированных сталей — временное сопротивление. Этот показатель позволяет судить о соответствии прочности металла сварного шва и свариваемой стали. Следует помнить, что использование электродов с большим временным сопротивлением, чем у свариваемой стали, может привести к концентрации сварочных напряжений в сварных швах, что отрицательно отразится на работоспособности сварной конструкции.

Относительное удлинение и ударная вязкость — не менее важные характеристики, без учета которых невозможен правильный выбор марки электрода для сварки конкретного объекта. При выборе марки электрода необходимо стремиться к тому, чтобы минимальное значение ударной вязкости металла шва было бы не ниже минимального значения такой характеристики свариваемой стали; допустимое минимальное значение относительного удлинения металла шва может быть несколько ниже этой характеристики основного металла, которая зависит от условий работы и технологии изготовления изделия и должна регламентироваться техническими условиями на изделие.

ГОСТ 9467—75 стандартизовано девять типов электродов для сварки углеродистых и низколегированных конструкционных сталей: Э38, Э42, Э46 и Э50 — для сталей с временным сопротивлением до 490 МПа; Э42А, Э46А и Э50А — для тех же сталей, когда к металлу сварных швов предъявляются повышенные требования по относительному удлинению и ударной вязкости; Э55 и Э60 — для сталей с временным сопротивлением от 490 до 590 МПа. При выборе электродов для сварки конкретной марки углеродистой или низколегированной стали одинаковость химического состава металла шва и основного металла не является обязательным условием. Поэтому химический состав металла швов, выполненных электродами типов Э38, Э42, Э46, Э50, Э42А, Э46А, Э50А, Э55 и Э60, ГОСТ 9467—75 не нормируется и обычно не приводится в технической документации на электроды, за исключением содержания серы и фосфора. Максимально допустимая стандартом концентрация этих элементов составляет: для электродов типов Э38, Э42, Э46, Э50 — 0,040% серы; 0,045% фосфора; для электродов типов Э42А, Э46А, Э50А, Э55 и Э60 — 0,030% серы; 0,035% фосфора.

Электроды типа Э38 в настоящее время в нашей стране не производятся, поскольку прочность сварных соединений, выполненных такими электродами, ниже прочности стали марки ВСт3сп — наиболее распространенного конструкционного материала. В редких случаях, когда для сварных конструкций используют стали марок 10, 15 и другие, временное сопротивление которых после отжига или нормализации составляет 293 МПа и менее, применяют электроды типа Э42.

Для обеспечения высокой эксплуатационной надежности сварных соединений, работающих в экстремальных условиях, к электродам какого-либо типа следует предъявлять дополнительные требования по механическим свойствам и химическому составу металла шва, не предусмотренные ГОСТ 9467—75. Поэтому значительное число марок электродов для сварки углеродистых и низколегированных сталей выпускается по отраслевым стандартам и техническим условиям. Причем электроды одной марки могут быть изготовлены или по ГОСТ, или по ОСТ, или по техническим условиям. В ряде случаев применение электродов регламентируется специальными документами. Так, конструкции морских и речных судов характеризуются высокой степенью жесткости сварных узлов и конструкций, вследствие чего при имеющем место в процессе эксплуатации неравномерном охлаждении сварной конструкции возникает повышенная опасность растрескивания сварных швов. Поэтому для сварки судовых конструкций морских и речных судов разрешается применять только определенные марки электродов, из принадлежащих какому-то одному типу, выдержавшие дополнительные испытания, предусмотренные правилами Морского и Речного Регистров. Электродами, разрешенными Морским Регистром СССР для сварки судовых конструкций, являются марки: АНО-6, АНО-4, АНО-13, ОЗС-17Н, ОЗС-22Р, ОЗС-22Н, АНО-3, 03C-20H, 03C-20P, ЗТМ-2У. К электродам, разрешенным Речным Регистром РСФСР для сварки речных судов, относятся марки: АНО-6, АНО-6М, УОНИ-13/45, ОЗС-4, АНО-13, ОЗС-12, МР-3, ОЗС-17Н, ОЗС-22Р, ОЗС-22Н, УОНИ-13/55, АНО-9, 03C-20P, 03C-20H.

Сварные швы объектов атомной энергетики должны обладать повышенной надежностью. Для сварки этих объектов могут быть использованы только некоторые марки электродов, выдержавшие специальные аттестационные испытания. В соответствии с документом «Основные положения по сварке и наплавке узлов и конструкций атомных электростанций, опытных и исследовательских ядерных реакторов и установок» (ОП 1513-72) для сварки углеродистых и низколегированных сталей разрешается использовать следующие марки электродов: УОНИ-13/45, УОНИ-13/45А, УОНИ-13/55, ТМУ-21, ЦУ-5, ЦУ-6, ЦУ-7.

Вязкопластические свойства металла сварных швов, обладающих одинаковой прочностью, но выполненных электродами с различными видами покрытий, значительно отличаются. Эти различия объясняются следующими причинами: различной степенью насыщения водородом расплавленного и кристаллизующегося металла; различным содержанием в металле шва оксидных и сульфидных включений, различием их состава и морфологии (форма, дисперсность, распределение в структуре металла).

При сварке углеродистых сталей растворение водорода в сварочной ванне и неполное выделение его в процессе кристаллизации и дальнейшего охлаждения металла вызывает уменьшение пластичности за счет образования трещин-надрывов протяженностью до 0,3 мм в том случае, когда велика скорость охлаждения наплавляемого валика, например, при сварке без подогрева металла большой толщины.

При сварке низколегированных сталей водород может не только снизить пластичность металла шва за счет образования трещин-надрывов, но и вызвать образование макротрещин как в швах, так и в околошовной зоне. Это объясняется снижением температуры превращения γ→α, вызванным содержанием в металле шва легирующих элементов и водорода, и более интенсивным вследствие этого выделением водорода при температуре образования надрывов и при дальнейшем охлаждении.

Электроды с целлюлозным, кислым (рудно-кислым) и рутиловым видами покрытий содержат в покрытии органические вещества и значительное количество влаги (температура прокалки не выше 200 °С), вследствие чего содержание водорода, поступающего в зону сварки, выше чем при сварке электродами с покрытием основного вида (температура прокалки 350—450 °С), содержащим к тому же фтористые соединения, способствующие уменьшению абсорбции водорода каплями расплавленного металла.

Наибольшее количество серы и оксидных включений наблюдается в сварных швах, выполненных электродами с рудно-кислым и окислительным покрытиями, к тому же эти включения имеют наиболее неблагоприятную форму; соотношение содержания марганца и кремния в оксидных включениях — наименее благоприятное. Наименее загрязнен серой и кислородом металл швов, сваренных электродами с основным видом покрытия, сульфидные и оксидные включения имеют в этом случае благоприятную сфероидальную форму, неметаллические включения в виде цепочек и плен не наблюдаются, соотношение содержания марганца и кремния в оксидных включениях — наиболее благоприятное.

Электроды с рутиловым, ильменитовым и целлюлозным покрытиями занимают промежуточные положения.

Рассмотренные факторы определяют различия в вязко-пластических свойствах металла сварных швов, выполненных электродами с различными видами покрытий и вместе с прочностными свойствами должны учитываться при выборе марки электрода для сварки конкретного объекта.

Вид покрытия электрода определяет также его важнейшие сварочно-технологические свойства: характер процесса переноса расплавленного металла через дуговой промежуток, формирование сварного шва в различных пространственных положениях, отделимость шлаковой корки, стабильность горения дуги, склонность к образованию пор.

Перенос металла через дуговой промежуток при ручной дуговой сварке покрытыми электродами осуществляется главным образом короткими замыканиями. Поэтому число коротких замыканий можно рассматривать в качестве характеристики процесса переноса металла через дуговой промежуток. Другой характеристикой этого процесса является относительная доля капель разных фракций.

При сварке электродами с целлюлозным покрытием основная часть металла переносится через дуговой промежуток в виде мелких капель, тогда как в случае электродов с основным покрытием большая часть металла переносится в виде капель крупного и среднего размеров. Электроды с рутиловым и рудно-кислым покрытиями намного превосходят по этому показателю электроды с покрытием основного вида и существенно уступают электродам с покрытием целлюлозного вида.

Электроды для сварки легированных сталей

Группа марок электродов для сварки легированных сталей значительно менее многочисленна по сравнению с группой электродов для сварки углеродистых и низколегированных сталей. Это объясняется главным образом тем, что из всех видов покрытий для легированных электродов применяются только покрытия основного вида или, в редких случаях, рутилово-основного вида. Кроме того, разработка легированного электрода, обеспечивающего комплекс эксплуатационных и сварочно-технологических свойств, почти всегда является сложной инженерной задачей, решение которой требует больших материальных и временных затрат.

Важнейшие характеристики группы электродов для сварки легированных сталей: химический состав наплавленного металла; прочностные и вязкопластические свойства металла шва, а также специальные свойства металла сварного шва или соединения. Этими показателями следует пользоваться при выборе марки электродов для сварки определенного объекта из легированной стали.

В группу электродов для сварки легированных сталей объединены стандартизованные ГОСТ 9467—75 пять типов электродов для сварки конструкционных сталей повышенной и высокой прочности: Э70, Э85, Э100, Э125, Э150; девять типов электродов для сварки легированных теплоустойчивых сталей: Э-09М, Э-09МХ, Э-09Х1М, Э-05Х2М, Э-09Х2М1, Э-09Х1МФ, Э-10Х1М1НФБ, Э-10ХЗМ1БФ, Э-10Х5МФ; ряд марок электродов, содержащихся в ОСТ 108.948.01—86; электроды по отдельным ТУ.

Химический состав металла швов, выполненных электродами типов Э70 . Э150, не нормируется ГОСТ 9467—75 и может не приводиться в нормативно-технической документации на электроды, за исключением серы и фосфора, содержание которых не должно быть более 0,030 и 0,035% соответственно. Однако в технической документации на электроды, соответствующие указанным типам, всегда содержатся данные по химическому составу наплавленного металла, которые чаще всего являются приемосдаточной характеристикой электродов. Если же такие данные отсутствуют в числе приемосдаточных характеристик, а приведены в качестве справочных (типичный химический состав наплавленного металла), их необходимо учитывать при выборе марки электрода для сварки того или иного объекта из легированной стали.

Сварные швы объектов атомной энергетики должны обладать повышенной надежностью. Поэтому для этих целей могут быть использованы только некоторые марки электродов, выдержавших специальные аттестационные испытания. В соответствии с документом «Основные положения по сварке и наплавке узлов и конструкций атомных электростанций, опытных и исследовательских ядерных реакторов и установок» ОП 1513-72 для сварки легированных сталей разрешается использовать электроды следующих марок: ЦУ-2ХМ, ЦЛ-20, ЦЛ-21, ЦЛ-38, ЦЛ-45, ЦЛ-48, ПТ-30, РТ-45А, РТ-45АА.

Электродные покрытия основного вида обеспечивают наивысшие вязкопластические свойства за счет наименьшего содержания в наплавленном металле водорода, сульфидных и оксидных включений по сравнению с покрытиями других видов. Это является первой из главных причин, по которой покрытия основного вида используют для электродов, предназначенных для сварки легированных сталей.

Второй причиной использования низководородистых покрытий основного вида при сварке склонных к образованию холодных трещин легированных сталей является отрицательное влияние водорода в околошовной зоне свариваемых изделий. Атомарный водород диффундирует из металла шва в околошовную зону, где выделяется в имеющиеся в основном металле микропустоты и поры, образовавшиеся от слияния дислокаций, которые перемещаются под воздействием сварочных напряжений. При выделении в пустоты атомарный водород превращается в молекулярный, вследствие чего развивается давление порядка 10 5 МПа, и в окружающих объемах металла возникают растягивающие напряжения второго рода. Возможна также адсорбция водорода на поверхности или в вершине образовавшейся микротрещины. В результате развития этих явлений снижается прочность металла и возрастает вероятность возникновения холодных трещин в околошовной зоне основного металла.

Электроды типа Э70. Электроды АНП-2 предназначены для сварки сталей 14Х2ГМР, 14Х2ГМ-СШ, 14ХМНДФР, 14ХГНМД; наплавленный металл легирован никелем, хромом, молибденом. Электроды ВСФ-75У предназначены для сварки труб и других ответственных конструкций из легированных сталей с временным сопротивлением 640—690 МПа. Наплавленный металл легирован молибденом и ванадием. Электроды К-5НМХ предназначены для сварки легированных сталей с пределом текучести 590—790 МПа, например 14Х2ГМР. Наплавленный металл легирован никелем, хромом и молибденом. Электроды ЛКЗ-70 предназначены для сварки углеродистых и легированных сталей повышенной прочности (до 690 МПа). Наплавленный металл легирован хромом. Сварку можно выполнять только в нижнем положении. Электроды ВСФ-85 предназначены для сварки неповоротных стыков термически упрочненных труб из легированных конструкционных сталей с временным сопротивлением 690—710 МПа. Металл легирован никелем, хромом и молибденом.

Электроды НИАТ-3М предназначены для сварки сталей марок 30ХГСА, 30ХГСНА, 25ХГСА, 20ХГСА, 12Х2НВФА и др. Наплавленный металл легирован хромом и молибденом. Электроды УОНИ-13/85 предназначены для сварки легированных сталей с временным сопротивлением 690—980 МПа. Наплавленный металл легирован молибденом. Электроды УОНИ-13/85У предназначены для сварки сталей 35ГС, 25Г2С, 30ХГ2С и др. Сварку производят как на постоянном, так и на переменном токе; наплавленный металл легирован молибденом.

Электроды Н-20/Св-12Х2НМА-ВИ предназначены для сварки сталей ВНЛ-3М, 30ХГСА и их сочетаний между собой в нижнем и вертикальном положениях. Наплавленный металл легирован никелем, хромом и молибденом. Электроды ОЗШ-1 предназначены для сварки легированных сталей с временным сопротивлением до 1080 МПа. Электроды Н-17/ЭП331, Н-17/ЭП331У предназначены для сварки литейных сталей 27ХГСНМЛ, 35ХГСЛ и их сочетаний со сталями 30ХГСНА, 35ХГА в нижнем и вертикальном положениях. Наплавленный металл легирован никелем, хромом, молибденом и вольфрамом. Электроды Н-17/ЭП331-ВИ, Н-17/ЭПЗЗ1У-ВИ предназначены цля сварки литейных сталей 27ХГСНМЛ, 35ХГСЛ и их сочетаний с деформируемыми сталями 30ХГСНА и 30ХГСА в нижнем и вертикальном положениях. Наплавленный металл легирован никелем, хромом, молибденом и вольфрамом.

Электроды ОЗС-11 предназначены для сварки сталей 12МХ, 15ХМ, 12ХМФ, 15Х1М1Ф и им подобных, работающих при температурах до 510 °С, как на постоянном, так и на переменном токе. Наплавленный металл легирован хромом и молибденом. Электроды ТМЛ-1У предназначены для сварки паропроводов из сталей 12МХ, 15ХМ, 12Х1МФ, 15Х1М1Ф, 20ХМФЛ, работающих при температурах до 540 °С, и элементов поверхностей нагрева из сталей марок 12Х1МФ, 12Х2МФСР и 12Х2МФБ. Наплавленный металл легирован хромом и молибденом. Электроды ТМЛ-4В предназначены для исправления дефектов в литых корпусных деталях турбин и паровой арматуры из сталей 20ХМЛ, 20ХМФЛ, 15Х1М1ФЛ, 12МХЛ, работающих при температурах до 565 °С без последующей термообработки отремонтированных участков. Наплавленный металл легирован хромом и молибденом. Электроды ЦУ-2ХМ предназначены для сварки энергооборудования из сталей 15ХМ, 20ХМ, 20ХМЛ, эксплуатирующихся при температуре не выше 540 °С. Наплавленный металл легирован хромом и молибденом.

Электроды ТМЛ-ЗУ предназначены для сварки паропроводов из сталей 12Х1МФ, 15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ, работающих при температуре не выше 570 °С, и элементов поверхностей нагрева из сталей марок 12Х1МФ, 12Х2МФБ и 12Х2МФСР, а также для заварки дефектов в элементах из тех же сталей. Наплавленный металл легирован хромом, молибденом и ванадием. Электроды ЦЛ-20 предназначены для сварки сталей 12Х1М1Ф, 15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ и аналогичных, эксплуатирующихся при температуре не выше 565 °С, а также для заварки дефектов отливок. Наплавленный металл легирован хромом, молибденом и ванадием. Электроды ЦЛ-17 предназначены для сварки сталей марок 15Х5М, 12Х5МА и 15Х5МФА, работающих в агрессивных средах при температуре не выше 450 °С. Наплавленный металл легирован хромом, молибденом и ванадием.

Электроды ПТ-30 предназначены для сварки энергооборудования из стали 10ГН2МФАА, эксплуатирующегося при температуре не выше 350 °С. Наплавленный металл легирован марганцем, никелем и молибденом. Электроды РТ-45А и РТ-45АА предназначены для сварки энергетического оборудования из сталей 15Х2НМФА и 15Х2НМФАА, эксплуатирующегося при температуре не выше 350 °С. Наплавленный металл легирован марганцем, хромом, никелем и молибденом. Электроды ЦЛ-21 предназначены для сварки энергооборудования из сталей марки 16ГНМА и аналогичных, эксплуатирующегося при температуре не выше 400 °С. Наплавленный металл легирован марганцем, никелем и молибденом. Электроды ЦЛ-38 предназначены для сварки энергооборудования из сталей 12ХМ, 12МХ, 15ХМ, 12Х1МФ, эксплуатирующегося при температуре не выше 585 °С. Наплавленный металл легирован хромом и молибденом.

Электроды ЦЛ-45 предназначены для сварки энергооборудования из сталей 12Х1МФ, 15Х1МФ и аналогичных, эксплуатирующегося при температуре не выше 565 °С. Наплавленный металл легирован хромом, молибденом и ванадием. Электроды ЦЛ-48 предназначены для сварки энергетического оборудования из стали 16ГНМА и других марганцово-никель-молибденовых сталей, эксплуатирующегося при температуре не выше 400 °С. Наплавленный металл легирован никелем, молибденом и ванадием.

Электроды ЦЛ-57 предназначены для сварки энергетического оборудования из стали 10Х9МФБ и ей аналогичных, эксплуатирующегося при температуре не выше 350 °С. Наплавленный металл легирован хромом, молибденом и ванадием. Электроды ЦЛ-59 предназначены для сварки энергетического оборудования из стали марки 10ГН2МФА, подвергающегося нормализации или закалке с отпуском, эксплуатирующегося при температуре не выше 350 °С. Наплавленный металл легирован никелем и молибденом.

Читайте также: