Дуговая сварка и резка

Обновлено: 02.05.2024

Этот вид резки (оплавления) металла электрической дугой применяют при отсутствии оборудования для других более эффективных способов или для отрезания небольших кусков металла, а также поверхностной выплавки небольших дефектов. Процесс резки осуществляется теплом дуги, горящей между обрабатываемым металлом и электродом. В качестве электродов при ручной резке применяют угольные и вольфрамовые электроды, однако предпочтительней использовать специальные стальные электроды с тугоплавким покрытием повышенной толщины. Угольные электроды науглероживают разрезанные кромки металла и не обеспечивают удовлетворительную поверхность реза. Для вольфрамовых электродов требуется инертный газ, -поэтому процесс резки сильно усложняется и удорожается.

Покрытые электроды, разработанные ИЭС им. Е. О. Патона, марки АНР-2М обеспечивают высокую производительность резки углеродистых, легированных, высоколегированных нержавеющих сталей и чугуна. Поверхность реза получается достаточно гладкой, и шлаковая корка легко отделяется. Такие электроды применяют для разделительной резки арматуры железобетона, выплавки корня шва, удаления дефектов и излишков литья и других целей. Разделительная резка электродами АНР-2М наиболее удобна при наклонном положении разрезаемой детали для лучшего стекания расплавляемого металла. Поверхностная резка удобней в вертикальном положении, но возможна и во всех пространственных положениях. Обычно процесс резки начинают в верхней части элемента и ведут его сверху вниз, применяя постоянный ток обратной полярности. Рекомендуемые режимы резки электродами АНР-2М приведены в табл. Производительность резки углеродистой, низколегированной стали и чугуна 12—13,5 кг/ч, высоколегированной нержавеющей стали 18—20 кг/ч.

Режимы резки электродами АНР-2М


Дуговая подводная резка металлов

Подводная резка металлов необходима при ремонте судов, подводной части металлических конструкций портовых гидротехнических и других сооружений. Находясь под водой, рабочий-резчик стеснен в своих движениях, так как кроме сопротивления воды и состояния невесомости он одет в специальное водолазное снаряжение. Видимость ограничена, особенно во время резки, когда выделяется значительное количество оксидов железа, образующих бурый раствор в воде, мешающий ориентированию резчика и обзору разрезаемой конструкции. Для резки под водой используют водородно-кислородные и бензинокислородные резаки, однако применяют также электрокислородную резку металлов. Для резки используют полые (трубчатые) стальные, угольные, графитизированные электроды (рис. 23.9). В осевой канал угольного или графитизированного электрода вставляют тонкую медную или кварцевую трубку, а сам электрод покрывают металлической оболочкой, на которую наносят водонепроницаемый слой покрытия. В качестве металлического электрода используют тонкую цельнотянутую стальную трубку диаметром 5—8 мм с каналом 2—3 мм, покрытую специальной ионизирующей обмазкой и водонепроницаемой пленкой. Электроды длиной 450 мм закрепляют в специальной держатель-резак, подводящий электрический ток и кислород к трубке. Иногда применяют карборундовый электрод.


Рис. 23.9. Электроды для подводной дуговой резки а — электрод из стальной трубки; б — электрод угольный или графитовый; в — электрод карборундовый, 1 — стальная трубка; 2 — внутренний канал трубки, 5 — покрытие; 4 — угольный или графитизированный электрод; 5 — тонкая мелкая или кварцевая трубка; 6 — металлическая оболочка; 7 — карборундовый электрод; 8 — продольный канал в электроде

В связи с подводной работой у резака должна быть очень надежная изоляция. Электрокислородную резку можно выполнять на глубине до 100 м. Расход кислорода примерно 6—10м 3 /ч, расход металлических электродов примерно 1 электрод в 1 мин. Угольного электрода в металлической оболочке длиной 250 мм хватает на 10—12 мин, а карборундового длиной 250 мм и диаметром 12—15 мм — на 15—20 мин. Для резки применяют постоянный ток прямой полярности, не превышающий 400 А.


Рис. 23.10. Подводная кислороднодуговая резка с опиранием наконечником покрытия электрода на изделие

При резке вначале подают режущий кислород, а затем зажигают дугу и осуществляют процесс резания. Наиболее просто и эффективно вести резку начиная с края разрезаемой детали и в дальнейшем опираясь чехольчиком электрода на металл, наклоняя при этом электрод на 10—15° в сторону перемещения (рис. 23.10). При прекращении резки или смене э!ектрода необходимо сперва оборвать дугу, а затем выключить подачу кислорода. Ввиду плохой видимости следует процесс резки вести по временно прикрепляемой к детали линейке или шаблону, являющемуся ориентиром для движения электрода.

Дуговая сварка и резка

Дуговая сварка и резка

В 1802 г. акад. В. В. Петров открыл явление дугового разряда. В 1882 г. русский изобретатель Н. Н. Бенардос предложил применить электрическую дугу для сварки металлов угольным электродом. В 1888 г. горный инженер Н. Г. Славянов заменил графитовый электрод металлическим. В настоящее время около 99 % работ, выполняемых дуговой сваркой, производится по способу Славянова. Дуговая сварка по распространению занимает первое место среди других видов сварки. Ее используют при производстве всех видов подвижного состава железнодорожного транспорта, морских и речных судов, котлов, автомобилей, подъемнотранспортных сооружений, трубопроводов для газов, жидкостей и сыпучих материалов, металлических конструкций и арматуры зданий, промышленных сооружений, мостов, узлов и деталей электрических, сельскохозяйственных и других машин и механизмов.

К числу металлов, свариваемых электрической дугой, относятся почти все конструкционные стали, серый и ковкий чугуны, медь, алюминий, никель, титан и их сплавы и другие металлы и сплавы.

Сварка по способу Бенардоса

. Сварка производится графитовым электродом с присадочным металлом от прутка или без него; сварка этим способом имеет ограниченное применение. Ею пользуются для соединения с отбортовкой тонких стальных заготовок, где не требуется присадочный металл, для цветных металлов и чугуна, а также для наплавки порошковых твердых сплавов. Обычно применяют постоянный ток, причем для устойчивости дуги и лучшего прогрева стыка при сварке пользуются прямой полярностью: заготовку включают анодом (+), а электрод — катодом (—).

Сварка по способу Славянова

. При сварке применяют металлический электрод в виде проволоки. Дуга возбуждается между электродом и основным металлом и плавит их оба, причем образуется общая ванночка, где перемешивается весь расплавленный металл. Электродная проволока выпускается диаметром от 0,3 до 12 мм. Для сварки углеродистой стали применяют проволоку марок Св08А, Св08ГС, Св10Г2, для сварки легированной стали различных марок — легированную проволоку марок Св08ГС, Св18ХГС, СвЮХМФТ, Св12ХПНМФ, Св12Х13, Св09Х16Н25М6АФ и др.

При ручной сварке пользуются электродами, покрытыми обмазкой. Обмазки бывают стабилизирующими, защитными и легирующими.

По толщине покрытия электроды бывают с тонкими, средними, толстыми и особо толстыми покрытиями. Тонкие покрытия являются стабилизирующими; они состоят из мела и жидкого стекла. Находящийся в составе мела кальций выделяется в плазме дуги, ионизирует ее, тем самым способствует устойчивости горения дуги.

Средние, толстые и особо толстые покрытия обеспечивают устойчивость горения дуги, а также защиту и легирование металла. Состав этих обмазок подбирается так, чтобы вокруг дуги создавалась газовая среда, защищающая металл электрода, стекающий в дуге, и металл ванночки от окисления и растворения в нем газов. По мере плавления электродов обмазка шлакуется и шлак равномерно покрывает шов, защищая металл от окисления и насыщения азотом. Кроме того, шлак замедляет охлаждение металла, что способствует выделению растворенных газов и уплотнению шва. В случае надобности в обмазку добавляют ферросплавы для легирования. Таким образом, в состав этих покрытий входят ионизирующие (например, мел), газообразующие (мука), шлакообразующие (полевой шпат) вещества, а также раскислители (ферромарганец) и легирующие компоненты. Во всех случаях, когда сварная конструкция должна выдерживать большие нагрузки, применяют электроды с толстыми и особо толстыми покрытиями, обеспечивающими прочность и вязкость шва, не уступающие основному металлу.

Электрические параметры дуги могут изменяться в широких пределах: применяют токи от 1 до 3000 А при напряжении от 10 до 50 В; мощность дуги — от 0,01 до 150 кВт. Такой диапазон мощности дуги позволяет использовать ее для сварки как мельчайших, так и больших и тяжелых изделий.

Аппаратура для сварки

. Дуговая сварка возможна на постоянном и переменном токах. Дуга на постоянном токе устойчивее, но расход электроэнергии выше. Для питания дуги постоянным током применяют генераторы и выпрямители.

Сварочные аппараты и генераторы делят на однопостовые — для питания одной дуги и многопостовые — для питания нескольких дуг. Для сварки используют стандартное напряжение тока (220, 380, 500 В).

Схема включения сварочного аппарата

Рисунок 44 Схема включения сварочного аппарата

На рис. 44 приведена схема включения сварочного аппарата переменного тока. Первичная обмотка П трансформатора 4 подключается к сети; ко вторичной обмотке В низкого напряжения (55—65 В) подключается регулятор тока (дроссель) 3. ток регулируется изменением индуктивного сопротивления дросселя: часть 2 сердечника может перемещаться с помощью винта от вращения рукоятки 1, при этом изменяется воздушный зазор с, а также регулируется сварочный ток.

Сварочные генераторы постоянного тока приводятся в действие электродвигателем или двигателем внутреннего сгорания.

Автоматизация электродуговой сварки. При ручной сварке сварщик должен поддерживать дугу, подавать электрод по мере его расходования и передвигать дугу вдоль шва. Автоматизация этих приемов приводит к автоматической сварке. Сущность способа автоматической дуговой сварки под флюсом состоит в следующем.

Автоматическая сварка

Рисунок 45 Автоматическая сварка

Сварочная головка 5 (рис. 45) подает в зону дуги электродную проволоку 3 из кассеты 6. Для питания дуги, образующейся между основным металлом 2 и электродной проволокой, обычно пользуются переменным током. По мере образования шва 9 головка 5, а с ней и дуга автоматически перемещаются вдоль разделки 1. Вместе с головкой перемещается и бункер 4, из которого в разделку шва перед дугой засыпают гранулированный флюс. Таким образом, сварка протекает под слоем флюса, защищающего наплавляемый металл от воздуха. Часть флюса расплавляется от соприкосновения с дугой и при остывании образует корку 8, покрывающую шов. Сыпучий флюс, оставшийся поверх корки, отсасывается в бункер через сопло и шланг 7. Автоматическая сварка под слоем флюса в 5—10 раз производительнее ручной сварки.

Дуговая сварка в среде защитных газов. Дуговая сварка в среде защитных газов — углекислом, аргоне или гелии — обеспечивает лучшую, чем при сварке покрытыми электродами или под слоем флюса, защиту от воздействия кислорода и азота воздуха, лучшее использование тепла дуги. Вместе с тем сварка в среде защитных газов не заменяет названные способы сварки, а применяется в машино и приборостроении там, где эти способы не дают необходимых результатов.

Для сварки в струе углекислого газа применяют горелкидержатели (рис. 46).

Горелка держатель

Рисунок 46 Горелка держатель

Дуга 4 горит между заготовкой 5 и электродной проволокой 1, которая автоматически подается с постоянной скоростью. Подвод тока к проволоке обеспечивается через контактные сапожки 2. Сварка выполняется на переменном или постоянном токе. Углекислый газ в зону сварки подается через сопло 3; к горелке он поступает от баллона. Образующийся при сварке оксид железа раскисляется марганцем и кремнием, которые в повышенном количестве содержатся в электродной проволоке. Сварку в углекислом газе широко применяют для углеродистой стали, заварки дефектов стальных отливок, наплавки и восстановления изношенных деталей.

Сварка в инертных газах (аргоне, гелии или их смесях) применяется для коррозионностойких сталей, титана, алюминия, меди, никеля, их сплавов и сплавов магния. Сварка выполняется плавящимся или неплавящимся электродом, постоянным или переменным током. Общая схема установки для сварки плавящимся электродом аналогична установке при сварке в углекислом газе; электродная проволока применяется того же состава, что и основной металл. В качестве неплавящегося электрода используют вольфрамовую проволоку, которую устанавливают в горелку. Для заполнения разделки кромок в зону дуги вводят присадочный металл.

Дуговая резка. Резкой с использованием дуги разделяют металл не выжиганием, а расплавлением. Этот способ применяют для резки углеродистой и легированной сталей, чугуна, алюминия, меди и их сплавов, отделения литниковой системы от отливок и т. д. Дуговая резка производится угольным или металлическим электродом. Автоматическая дуговая резка под флюсом применяется для разделки листов коррозионностойкой стали.

Воздушнодуговая резка производится угольным или графитовым электродом, который закрепляется в резаке или режущей головке. В контактносопловой части резака (головки) имеются отверстия, через которые струи воздуха выдувают расплавленный металл из реза.

Ручная электродуговая резка металла: особенности, способы и технологический процесс проведения работ

Электродуговая резка уникальна тем, что при таком способе происходит плавка металла в месте, где нужно сделать разрез. Во время работы расплавленный металл убирается силой давления дуги или стекает от собственного веса.

Особенности электродуговой резки металла

Электродуговая резка обычно проводится вручную. Для работы рекомендуется использовать стальные электроды, имеющие толстое тугоплавкое покрытие, но могут также применяться вольфрамовые и угольные электроды.

Для данного метода резки металла не нужно иметь специальное оборудование. Работу можно вести в труднодоступных местах и в любом пространственном положении конструкции.

Однако при разделении металла электрической дугой не удаётся достичь высокого качества. Невозможно обеспечить ровность кромок деталей и в большом количестве имеется выделение шлака. Поэтому для дальнейшего использования полученных металлических частей необходима их механическая обработка. Производительность такого способа остаётся низкой.

Нужно уделять особое внимание технике безопасности. Сварщик должен быть тщательно защищен от попадания капель металла и шлака. Стоит предусмотреть, куда будет стекать расплавленный металл, чтобы избежать возгорания.

Сфера применения

Электродуговую резку применяют исключительно в том случае, если нет необходимого оборудования для резки газом.

Таким методом избавляются от небольших излишеств металлических заготовок и исправляют дефекты путём их поверхностной выплавки. Дуговой резке электродом поддаются цветные изделия, высоколегированные стали, а также чугун и различные сплавы.

Применяемые способы

Электрическую дугу активно используют не только при сварке, но и при резке металла. Существует несколько разновидностей дуговой резки металлических деталей: ручная дуговая резка плавящимся и неплавящимся электродами, а также воздушно- и кислородно-дуговая резка.

Дуговая резка неплавящимся электродом

При данном способе работа проводится как на переменном, так и на постоянном токе прямой полярности. Сила тока должна составлять 400-800 А. При этом используются угольные и графитовые электроды.

Данный метод имеет не столь широкое применение. Его используют для разбора металлического лома крупных размеров, проделывания отверстий и выжигания заклёпок, а также при демонтаже ненужных металлоконструкций.

Разрез осуществляется путём плавления металла в необходимой зоне, а не путём его сгорания. Благодаря этому качеству, появляется возможность работать с материалами, которые не поддаются резке газом, такими, как чугун или высоколегированные стали.

Данный метод не отличается высокой точностью проведения работы: ширина самого разреза большая, а кромки остаются неровными. Если использовать электроды с прямоугольным сечением, то удастся немного улучшить результат работы.

Дуговая резка плавящимся электродом

Этот метод позволяет достичь большей точности и чистоты, а сам разрез выходит более узким в отличие от предыдущего метода. Для резки применяют те же электроды и того же диаметра, что для сварки, повысив при этом силу тока на 20-30%. Проводя подобную работу в бытовых условиях, можно использовать простые электроды, но для улучшения процесса работы рекомендуется приобрести специальные электроды с особым покрытием.

Существует два вида составов покрытия. Первый: марганцевая руда (98%) и поташ (2%). Второй: марганцевая руда (94%), каолин (3%), мрамор (3%). Благодаря такому покрытию, увеличивается устойчивость дуги, внутренний стержень плавится медленнее и обеспечивается его изоляция от стенок реза. Расплавленный металл окисляется, благодаря особым компонентам, содержащимся в покрытии, это позволяет ускорить процесс резки.

Производство вышеописанных электродов осуществляется из проволоки диаметром от 3 до 12 мм и длиной до 300 мм. Толщина особого покрытия должна составлять 1-1,5 мм. Расчёт силы тока производится из следующего соотношения: 55-65 А на 1 мм диаметра используемого электрода.

Воздушно- и кислородно-дуговая резка

Такой способ разделения металлических частей отличается от предыдущих тем, что расплавленный электрической дугой металл сразу выдувается струёй сжатого воздуха или чистого кислорода. Обычно этот метод применяют с целью избавления от дефектов места сварки и разделения заготовок из нержавеющей стали толщиной не более 20 мм.

Из-за подачи кислорода происходит частичное выгорание металла, сопровождающееся выделением дополнительного тепла, что позволяет значительно ускорить процесс плавки. Данный метод применяется, если необходимо выполнить короткий разрез на любой строительной конструкции.

Разделение осуществляют графитовым или стальным электродом при постоянном токе с использованием специальных резаков. Электрод должен быть не тоньше 4-5 мм, имеющий покрытие ОММ-5, ЦМ-7 или ОСЗ-3. Сила тока может доходить до 250А и позволяет резать металл до 50 мм толщины. Сжатый воздух подаётся сбоку с силой давления 0,4-0,5 МПа. Средний расход кислорода варьируется от 100 до 160 л/мин.

Резка металла

Схема воздушно-дуговой резки металла

Если использовать резак типа РГД, тогда электрододержатель держат в правой руке, а сам резак в левой. Как только металл начинает плавиться, на него подаётся струя воздуха и выдувает его.

§ 11. Ручная дуговая сварка и резка

Ручную дуговую сварку производят электротоком, который через электрододержатель и сварочный провод подводится к электроду от источника тока и по второму проводу — к свариваемому металлу. Когда сварщик касается электродом поверхности металла, между электродом и металлом возникает короткое замыкание, в результате чего в точках контакта плотность тока достигает больших значений, выделяется большое количество теплоты и металл мгновенно расплавляется, образуя жидкую перемычку между свариваемым металлом и электродом. При отводе электрода от поверхности металла на некоторое расстояние возникает электрическая дуга.

Ручная дуговая сварка обеспечивает большую производительность труда по сравнению с газовой, в процессе сварки используют более простое и безопасное оборудование (рис. 38).


Рис. 38. Ручная дуговая сварка:
а — переменным током; б — постоянным током; 1 — провода; 2 —дроссель; 3 — трансформатор; 4 — предохранители; 5 — рубильники; 6 — электрическая сеть; 7 — реостат; 8 — электродвигатель; 9 — генератор; 10 — зажим; 11 — трубопровод; 12 — электрододержатель

Подготовка к дуговой сварке состоит в очистке концов труб и поверхностей деталей на расстоянии 25—30 мм и разделке кромок. Затем соединяемые трубы фиксируют одну относительно другой с помощью приспособлений так, чтобы смещение их кромок при толщине стенки трубы до 5 мм было не более 1 мм, а зазор между торцами труб — не более 1,5—2,0 мм.

Дуговую сварку можно выполнять переменным или постоянным током. Постоянный ток обеспечивает высокое качество сварки. Сварка переменным током экономична и удобна.

При сварке переменным током ток от сети переменного тока напряжением 220, 380 В подается к сварочному трансформатору, который понижает напряжение до величины, необходимой для возбуждения и устойчивого горения дуги (напряжением 60—80 В), и по сварочным проводам через зажим и электрододержатель подводится к свариваемой детали (рис. 39а).


Рис. 39. Электросварочное оборудование:
а — трансформатор; б — преобразователь; 1,2 — катушки; 3 — сердечник; 4 — рукоятка; 5 — винт; 6 — генератор; 7 — реостат; 8 — зажимы; 9 — вольтметр; 10 — электродвигатель

Сварочный трансформатор состоит из сердечника, на вертикальных стержнях которого размещаются катушки первичной и вторичной обмоток. Подвижные катушки вторичных обмоток соединены с регулировочным винтом, при вращении которого рукояткой 4 катушки вторичной обмотки сближаются с катушками первичной обмотки. При этом сварочный ток будет увеличиваться. При удалении катушек одна от другой сварочный ток уменьшается. Сварочный ток можно также регулировать включением в сварочную цепь дросселя или последовательным включением обмоток сварочного трансформатора.

При сварке постоянным током ток от сети переменного тока напряжением 220, 380 В поступает к сварочному преобразователю или выпрямителю. Преобразователь состоит из электродвигателя и генератора постоянного тока, соединенных общим валом. Генератор вырабатывает постоянный ток напряжением 25—27 В. Сварочный ток регулируется реостатом.

Передвижной сварочный преобразователь ПСТ-500 представляет собой однокорпусную конструкцию, объединяющую электродвигатель и генератор (рис. 39б). В верхней части корпуса установлены реостат, зажимы для подключения сварочных проводов и вольтметр. Сварочные выпрямители ВД-306, ВД-502 характеризуются высоким КПД, меньшей массой, чем преобразователи, и широкими пределами регулирования.

Если электрическая сеть отсутствует, используют сварочные агрегаты АДД-309, АД-304, в которых генератор приводится во вращение двигателем внутреннего сгорания.

Для ручной дуговой сварки применяют металлические электроды — стальные стержни круглого сечения с нанесенным покрытием. Электроды изготовляют из стальной углеродистой, легированной, высоколегированной проволоки. Электроды классифицируют по назначению — для сварки углеродистых и низколегированных конструкционных сталей, легированных конструкционных и теплоустойчивых сталей, высоколегированных сталей; по виду покрытия — с основным, рутиловым, кислым, целлюлозным и др., характеру шлака, механическим свойствам металла.

Покрытие электродов защищает расплавленный металл от кислорода и азота воздуха, стабилизирует горение дуги, очищает металл от вредных примесей и добавляет в него элементы, улучшающие свойства сварного шва (легирующие добавки).

Для защиты зоны сварки также используют углекислый газ, азот, аргон и другие инертные газы, находящиеся под большим давлением в баллонах.

Для ручной дуговой сварки труб обычно применяют электроды Э42 и Э42А, которые хранят в упаковках в сухих помещениях.

Ручную дуговую сварку выполняют так. После подготовки труб выбирают режим сварки, устанавливают сварочное оборудование и режим работы, зажигают дугу и выполняют шов. При выборе режима ручной сварки определяют диаметр электрода и величину сварочного тока. Диаметр электрода зависит от толщины металла, типа соединения, шва и т. д. При сварке встык металла толщиной до 4 мм в нижнем положении диаметр электрода берут равным толщине металла, при большей толщине применяют электроды диаметром 4—6 мм. Сварку труб со стенками толщиной до 5,5 мм можно вести электродом диаметром 3 мм.

В многослойных и угловых швах первый слой выполняют электродом 2—4 мм, а последующие слои — электродом большего диаметра, что обеспечивает более высокое качество шва. Вертикальные и потолочные швы обычно выполняют электродом диаметром не более 4 мм.

Сварочный ток принимают равным 35—60 А на 1 мм диаметра электродов. При меньшем значении тока происходит неустойчивое горение дуги, непровар, что ведет к небольшой производительности; при чрезмерно большом значении перегревается электрод, разбрызгивается металл, ухудшается формообразование шва и получается непровар.

Вертикальные и горизонтальные швы выполняют при сварочном токе, меньшем на 5—10%, чем нижние швы, а потолочные швы — на 10—15%. Это не позволяет жидкому металлу вытекать из сварочной ванны.

Скорость сварки и напряжение на дуге рабочий устанавливает в процессе работы в зависимости от вида сварного соединения, марки стали трубы и электрода, положения шва в пространстве. При увеличении скорости сварки глубина провара и ширина шва понижаются. При увеличении длины дуги глубина провара и ширина шва увеличиваются.

При установке сварочного оборудования сварочный трансформатор или генератор размещают около места сварки и подключают его к сети, присоединяют провода с помощью зажима к свариваемым деталям и закрепляют выбранный электрод в электрододержателе.

Дугу между электродом с защитным покрытием и свариваемыми деталями зажигают в два этапа: коротким замыканием конца электрода на свариваемую деталь и последующим отрывом его на расстояние, равное диаметру электрода с покрытием. Зажигание дуги можно произвести касанием в одной точке (впритык) и скольжением (чирканьем). При втором способе металл разогревается в нескольких точках при движении электрода по поверхности детали. Это облегчает зажигание дуги. Первый способ чаще используют при сварке в узких и неудобных местах.

После зажигания дуги основной и электродный металлы начинают плавиться, образуя ванну расплавленного металла. Сварщик подает электрод в дугу со скоростью, равной скорости плавления электрода, что позволяет поддерживать постоянную длину дуги. От правильно выбранной длины дуги зависят качество сварного шва и производительность сварки. Нормальной считают длину дуги, равную 0,5—1,1 диаметра стержня электрода. Увеличение длины дуги, которая зависит от марки электрода и положения шва в пространстве, снижает ее устойчивое горение, глубину плавления основного металла, повышает потери на угар и разбрызгивание электрода.

Электрод можно передвигать в любом направлении. Он должен быть наклонен к оси шва так, чтобы металл свариваемого изделия проплавлялся на наибольшую глубину и правильно формировался шов. При выполнении нижних швов угол наклона электрода должен быть 75° от вертикали в сторону ведения шва — углом назад.

Для получения шва нужной ширины производят поперечные колебательные движения электрода, по лошнсй линии — используют яля получения плавных валиков при сварке толстых деталей встык без скоса кромок в нижнем положении, когда прожог свариваемой детали невозможен; полумесяцем, обращенным концами к направлению сварки или к наплавляемому шву, применяют для стыковых швов со скосом кромок и угловых швов с катетом менее 6 мм при любом положении шва и использовании электродов диаметром до 4 мм; треугольником — используют при выполнении стыковых соединений со скосом кромок и угловых швов с катетом более 6 мм при любом положении шва.

Сварные швы могут быть одно- и многослойными, как и при газовой сварке. Заполнение шва производят «напроход», когда электрод продвигают вдоль шва с начала до конца в одном направлении и обратно ступенчатым способом, разбивая шов на короткие участки, которые последовательно заваривают. После окончания сварки нельзя обрывать дугу и оставлять на поверхности металла шва углубление (кратер). Для его устранения в конце шва прекращают поступательное движение электрода и медленно отводят его от шва, удлиняя дугу до ее обрыва. При сварке низкоуглеродистых сталей кратер заполняют электродным металлом и выводят электрод в сторону на основной металл. Не рекомендуется заваривать кратер несколькими обрывами и зажиганиями дуги ввиду загрязнения металла оксидами.

Сварное соединение труб и деталей ручной дуговой сваркой производят аналогично соединениям газовой сваркой. При сварке оцинкованных стальных труб используют электроды диаметром не более 3 мм с рутиловым или фтористокальциевым покрытием.

Ручную сварку стыков труб покрытыми электродами применяют при наложении корневого шва без подкладных колец, а также при изготовлении и монтаже трубопроводов в неудобных для механизированной дуговой сварки условиях: стыки коленообразного гнутого трубопровода и трубопровода, проходящего в здании, соединения секций в длинные петли, приварка фланцев, заглушек и т. д. Корневой шов выполняют электродами диаметром 1,6—3 мм в зависимости от толщины стенки трубы, а остальные швы — электродами большего диаметра.

При сварке стыка целесообразно выполнять работу в несколько слоев: при толщине свариваемой детали 4— 5 мм в два слоя (не считая корневого), при толщине 10— 12 мм — в четыре слоя электродами диаметром 3—4 мм.

Обычно ручную дуговую сварку стыков трубопроводов выполнлют сверху вниз. Это позволяет вести процесс на большой скорости и с меньшим сечением валика (с меньшим количеством шлака), что особенно важно при работе на морозе, а также снижает время на зачистку шва от шлака и заварку кратера. Эту сварку ведут с использованием электродов марок ОЗС-9, ВСЦ-1, ВСЦ-2, ВСФС-50 и др. Этими же электродами можно выполнять сварку и снизу вверх.

Сварочные работы в закрытых помещениях ведут полуавтоматом «Луч», подключенным к осветительной сети. При сварке используют проволоку марки Св-15ГСТ10ЦА, которая не требует газовой защиты.

Контроль качества шва при дуговой и газовой сварке одинаков.

Резка. Резку разделяют на кислородно-дуговую, воздушно-дуговую и плазменно-дуговую.

Кислородно-дуговая резка основана на расплавлении металла электрической дугой, а затем сжигании металла в струе кислорода. При этом способе резки между трубчатым электродом и обрабатываемым изделием образуется электрическая дуга. Струя кислорода, поступающая из баллона с редуктором в трубчатый электрод, попадает на нагретую поверхность и окисляет металл.

При воздушно-дуговой резке металл по линии реза расплавляется дугой, горящей между изделием и электродом, и удаляется струей сжатого воздуха.

Плазменно-дуговая резка заключается в проплавлении металла мощным дуговым разрядом, локализованным на малом участке поверхности разрезаемого металла, с последующим удалением металла из зоны реза высокоскоростным газовым потоком. Холодный газ, попадающий в горелку (плазмотрон), обтекает электрод в зоне дугового разряда и превращается в плазму — высокотемпературный газ, содержащий большое количество положительно и отрицательно заряженных частиц (ионов, электронов). Плазма истекает через отверстие малого диаметра в сопле в виде яркосветящейся струи с большой скоростью и температурой 20000—30000°С. Плазменно-дуговая резка обеспечивает высокую скорость процесса и позволяет обрабатывать металлы, которые нельзя резать другими способами: медь, алюминий и их сплавы, высоколегированную сталь.

Электродуговая резка и сварка металлов

Резка и сварка металлов — одна из самых часто заказываемых услуг у частных сварщиков и в небольших мастерских. Никого не удивляет тот факт, что для выполнения сварки часто используется технология электродуговой сварки. Но не все знают, что с помощью электрической дуги можно не только варить, но и резать металл.

сварка дуговая

Для сварки и резки металла можно использовать различные способы. В этой статье мы кратко напомним вам, что такое электродуговая сварка, какова технология электродуговой сварки и как резать металл электродуговой сваркой.

Общая информация

Электродуговая сварка — метод соединения металлов, в основе которого лежит использование электрической дуги. Дуга нагревает и плавит металл, позволяя сформировать сварное соединение. Может нагреваться до температуры более 6000 градусов. Этого достаточно для плавления большинства существующих типов металлов.

Электродуговая технология широко используется при сварке и резке металлов. Бывает ручной, полуавтоматической и автоматической.

Ручная электродуговая сварка (она же РДС) — сварка с применением ручного труда и электрода. Сварщик сам держит электрод и направляет его в зону сварки, сам формирует шов и следит за процессом. При полуавтоматической сварке в качестве электрода используется сварочная проволока, которая подается в зону сварки с помощью специального механизма. При этом сварщик все еще сам следит за дугой. А при автоматической сварке и подача проволоки, и движение дуги выполняется с помощью автоматического оборудования.

Технология электродуговой сварки

Технология электродуговой сварки проста. Сварочный аппарат подключается к сети. Один кабель присоединяется к детали, а второй к электродержателю с электродом. Концом электрода постукивают о поверхность металла, возбуждая дугу. Дуга образуется между электродом и свариваемым металлом. Дуга мгновенно начинает отдавать тепло, плавя кромки металла и сам электрод (если он плавящийся). В итоге образовывается сварочная ванна.

В ней смешивается расплавленный электрод и основной металл. Они заполняют стык между двумя деталями, и после остывания образовывается прочное неразъемное соединение. При этом на поверхности шва может образоваться так называемый шлак.

Для выполнения сварки можно использовать плавящиеся и неплавящиеся электроды или проволоку. Выбор зависит от выбранной вами технологии электродуговой сварки. Например, при ручной электродуговой сварке чаще всего используют плавящиеся электроды. А для полуавтоматической сварки — плавящуюся или неплавящуюся проволоку.

Если вы не умеете поддерживать устойчивое горение дуги, то можете использовать в работе специальные электроды или сварочную проволоку. У них в составе должен быть натрий, калий или кальций. Эти элементы стабилизируют дугу за счет своих ионизирующих свойств.

Чтобы защитить сварочную зону от окисления, можно использовать защитный газ. Например, аргон или углекислоту. Такие газы подаются прямо в сварочную ванну, защищая ее от кислорода из атмосферы.

Электродуговая сварка может проводиться как на постоянном, так и на переменном токе. Мы рекомендуем использовать постоянный ток, поскольку металл будет меньше разбрызгиваться и шов получится намного качественнее. Если вы новичок, то работа на постоянном токе просто обязательна.

Электродуговая резка металлов

Резка металла сваркой с применением дуги — один из старейших способов резки. Существует ручная дуговая резка с применением плавящегося или неплавящегося электрода и воздушно- и кислородно-дуговая резка. Давайте подробнее остановимся на каждом из способов.

Резка неплавящимся электродом

Начнем с мало используемого, но все же применяемого метода. Резка неплавящимся электродом. В качестве электрода используют графитовый или угольный стержень, резку выполняют на любом роде тока, но при этом с прямой полярностью. Сила тока не должна превышать 800А. Чтобы разрезать металл его нужно сначала нагреть с помощью дуги, а затем выплавить.

Почему этот метод мало используется? Дело в том, что он применим только в особых случаях. Например, при разделке лома или разборке старых конструкций из металла. Словом, для работы со сложными крупногабаритными проектами. О красоте реза тоже говорить не приходится. Работа получается неровной и неаккуратной. Зато таким методом можно резать любые металлы: от чугуна до цветных металлов.

Резка плавящимся электродом

А вот резка плавящимся электродом — это, пожалуй, самый распространенный метод электродуговой резки. Разрез получается намного аккуратнее и ровнее, чем при использовании предыдущего способа. Чтобы выполнить резку установите повышенную силу тока (на процентов 30 больше, чем при сварке). Можно ориентироваться на толщину электрода. Для стержня толщиной 1 миллиметр установите силу тока примерно 50А. Для стержня 2 миллиметра — 100А. И так далее. Сам металл нужно нагревать с глубоким проплавлением. Такой способ нагрева также называют «метод опирания». Резать можно большинство металлов.

Для выполнения несложного реза в домашних условиях можно использовать любые плавящиеся электроды. Но чтобы достичь лучшего результата используйте специальные электроды для резки металла. Обычно у специальных электродов особое покрытие. Благодаря ему процесс сварки проходит быстрее и проще.

Но несмотря на улучшенное качество реза, он все еще далек от идеала. Если сравнивать такой метод резки металлов с более технологичными, то он проиграет во всем. Начиная от качества реза, заканчивая его эстетическими характеристиками. При этом сам процесс резки очень медленный.

Воздушно-дуговая и кислородно-дуговая резка металла электродуговой сваркой не имеют никаких отличий, кроме одного. При воздушной резке металл сначала плавится от тепла дуги, а затем он выдувается с помощью сжатого воздуха. При кислородной резке технология та же, только вместо воздуха используется поток кислорода.

Такой метод резки используют при работе с листами нержавейки. При этом толщина листа не должна превышать 20 миллиметров. Также такие методы резки используют при удалении дефектных частей у детали.

Чтобы выполнить такую резку нужно установить на сварочном аппарате постоянный ток и подобрать графитовые электроды. Можно также использовать трубчатые электроды. При использовании трубчатых электродов кислород подается через сквозное отверстие в сварочном стержне. Способ эффективный, но трудоемкий. Гораздо проще подать сжатый воздух или струю кислорода напрямую в место разреза.

Вместо заключения

Резка металла электродуговой сваркой — не такая сложная задача, как может показаться на первый взгляд. Главная особенность заключается в том, что вам нужно сначала в совершенстве овладеть сваркой. И лишь после этого заниматься резкой. Если вы не умеете правильно возбуждать дугу, вести шов и делать качественные соединения, то вряд ли получится грамотно разрезать металл.

Также нужно понимать, что вы никогда не получите от данной технологии аккуратного разреза. Электрическая дуга подойдет разве что для быстрой и неприхотливой резки неответственных конструкций.

Читайте также: