Генератор углекислого газа для сварки

Обновлено: 30.06.2024

Углекислый газ не является редким и получают его как побочный продукт, что положительно сказывается на его стоимости. Поэтому он является самым дешевым газом, применяемым для защиты, металла сварного шва в процессе сварки. Кратко о способах производства углекислоты говорилось в статье о свойствах углекислого газа и теперь настало время рассмотреть их более подробно.

Содержание

В промышленном масштабе углекислый газ получают следующими способами:

  1. из известняка, в котором содержится до 40% СО2, кокса или антрацита до 18% CO2 путем их обжига в специальных печах;
  2. на установках, работающих по сернокислому методу за счет реакций взаимодействия серной кислоты с эмульсией мела;
  3. из газов, образующихся при брожении спирта, пива, расщепления жиров;
  4. из дымовых газов промышленных котельных, сжигающих уголь, природный газ и другое топливо. Дымовой газ содержит 12-20% СО2;
  5. из отходящих газов химических производств, в первую очередь синтетического аммиака и метанола. Отходящие газы содержат примерно 90% СО2.

На данный момент наиболее распространенным способом производства углекислоты является – получение из газов при брожении.

Получение углекислого газа из газов при брожении

Отходящий газ при брожении представляет собой почти чистый углекислый газ и является дешевым побочным продуктом производства.

На гидролизных заводах при брожении дрожжей с опилками выделяются газы, содержащие 99% CO2.

1 - бродильный чан; 2 - газгольдер; 3 - промывочная башня; 4 - предварительный компрессор; 5 - трубчатый холодильник; 6 - маслоотделитель; 7 - башня; 8 - башня; 9 - двухступенчатый компрессор; 10 - холодильник; 11 - маслоотделитель; 12 - цистерна.

Схема получения углекислого газа на гидролизных заводах

Газ из бродильного чана 1 подается насосами, а при наличии достаточного давления поступает самостоятельно в газгольдер 2, где происходит отделение от него твердых частиц. Затем газ поступает в промывочную башню 3, заполненную коксом или керамическими кольцами, где он омывается встречным потоком воды и окончательно освобождается от твердых частиц и растворимых в воде примесей. После промывки газ поступает в предварительный компрессор 4, где он сжимается до давления 400-550 кПа.

Так как при сжатии температура углекислого газа повышается до 90-100°С, то после компрессора газ поступает в трубчатый холодильник 5, где охлаждается до 15°С. Затем углекислота направляется в маслоотделитель 6, где отделяется масло, попавшее в газ при сжатии. После этого углекислый газ подвергается очистке водными растворами окислителей (KMnO4, K2Cr2P7, гипохромитом) в башне 7, а затем осушке активированным углем или силикагелем в башне 8.

После очистки и осушки углекислота поступает в двухступенчатый компрессор 9. На ступени I происходит сжатие его до 1-1,2 МПа. Затем углекислый газ поступает в холодильник 10, где охлаждается со 100 до 15°C, проходит маслоотделитель 11 и поступает на II ступень компрессора, где сжимается до 6-7 МПа, превращается в жидкую двуокись углерода и собирается в цистерну 12, из которой производится заправка стандартных баллонов или других емкостей (танков).

Принципиально процесс производства углекислого газа другими методами ничем не отличается от вышеуказанного: сначала газ очищается, потом производят осушку, а на последнем этапе охлаждение и сжатие для превращения в жидкость, поскольку в данном виде его удобно хранить и транспортировать.

Способы получения углекислого газа

Подогреватель, расходомер, осушитель газа для сварки

Подогреватель, расходомер и осушитель применяют при полуавтоматической сварке или как её еще называют MIG и MAG. Расходомер необходим для учета и установке оптимального расхода газа или сварочной смеси.

Поскольку углекислый газ в баллоне находится в жидком состоянии, при отборе из баллона происходит процесс испарения и превращение в газ, который уже поступает в сварочную горелку полуавтомата. В результате перехода из жидкого состояния в газообразное резко уменьшается температура газа и происходит процесс замерзания влаги в каналах редуктора и их заполнение льдом. Во избежание данного негативного эффекта применяют подогреватели газа, которые устанавливают между вентилем баллона и редуктором или расходомером. Но и этого иногда недостаточно так как из углекислоты необходимо удалить лишнюю влагу и для этого применяют осушители газа.

Расходомер газа для сварки

Расходомеры газа используют поплавкового и дроссельного типа. Расходомеры поплавкового типа или ротаметры состоят из стеклянной трубки с внутренним коническим каналом. Трубка расположена вертикально широким концом кверху. Внутри трубки помещен поплавок, который свободно в ней перемещается. Газ подводят к нижнему концу трубки и отводят от верхнего. При прохождении по трубке газ поднимает поплавок до тех пор, пока зазор между поплавком и стенкой трубки не достигнет такой величины, при которой напор струи газа уравновесит вес поплавка. Чем больше расход газа, тем выше поднимается поплавок.

Расходомер поплавкового типа

Расходомер поплавкового типа

Каждый расходомер снабжен индивидуальным градировочным графиком, на котором отражена зависимость между делениями шкалы на трубке и расходом воздуха. Переделы расходов, измеряемых ротаметром, изменяют путем смены веса поплавка, изготовляя его из эбонита, дюралюминия, коррозионностойкой стали или других материалов.

Расходомер дроссельного типа устроен на принципе изменения перепада давления в камере до и после дросселирующей диафрагмы с отверстием малого размера. При прохождении газа через малое отверстие до и после диафрагмы устанавливается различное давление в зависимости от расхода газа. По этому перепаду давления судят о расходе. На каждый расходомер и газ строят индивидуальный график. Пределы измерения расходов изменяют, меняя диаметр отверстия в диафрагме. На этом принципе построены расходомеры редукторов У-30 и ДЗД-1-59М, которые позволяют измерять расход газа в пределах 2,5-55 л/мин.

Осушитель газа для сварки

Осушители газа для сварки применяют при использовании влажной углекислоты СО2. Осушители бывают:

Осушитель высокого давления устанавливают до понижающего редуктора. Осушитель газа имеет малые размеры и требует частой замены влагопоглотителя. Осушитель низкого давления имеет значительные размеры, его устанавливают после понижающего редуктора, он не требует частой замены влагопоглотителя. Такой осушитель одновременно является ресивером газа и повышает равномерность подачи газа. В качестве влагопоглотителя в осушителях газа используют силикагель и алюмогель, реже медный купорос и хлористый кальций. Силикагель и медный купорос, насыщенные влагой, поддаются восстановлению путем прокалки при температуре 250-300°С.

Подогреватель газа для полуавтоматической сварки

Подогреватель газа

Подогреватель газа углекислого газа является электрическим устройством и предназначен для подогрева углекислоты в целях защиты газовых каналов от замерзания. Он устанавливается перед понижающим редуктором. В целях безопасности подогреватели газа обычно делают с питанием от сети низкого напряжения 20 - 36 В и, как правило, подключаются к соответствующему разъему источника питания сварочного полуавтомата. Во избежание перегрева газового редуктора его следует отделить от подогревателя переходной трубкой длинной не менее 100 мм. Газ проходя через подогреватель газа нагревается до температуры 10-15°С.

Газовый клапан

Газовый клапан используют для экономии защитного газа или газовой смеси. Клапан целесообразно устанавливать по возможности ближе к сварочной горелке. В настоящие время наибольшие распространение получили электромагнитные газовые клапаны. В полуавтоматах находят применение газовые клапаны, встроенные в ручку держателя. Газовый клапан необходимо включать так, чтобы были обеспеченны предварительная или одновременная с зажиганием дуги подача защитного газа, а также его подача после обрыва дуги до полного затвердевания кратера шва. Желательно иметь возможность также включать подачу газа без включения сварки, что необходимо при настройке сварочной установки.

Смесители газов

Смесители газов предназначены для получения смесей газов в случае, когда нет возможности использовать заранее подготовленную сварочную смесь нужного состава.

Пара слов о сварочных смесях (Ar+CO2) + генератор углекислоты своими руками от сварщиков-экспериментаторов

smes-1

Про сварку в газовых смесях ходят легенды. Вот, например, если варить в смеси Ar-75%+CO2-25%, то и брызги исчезают совсем и электродного присадочного материала расходуется меньше: писаки на разношерстных сайтах о сварке утверждают со знанием дела о 3-5% экономии! Если варить много, приличная, однако, экономия получается. Плюс ко всему вместо мелкокапельного металлопереноса образуется фактически струйный перенос металла с электродной проволоки в сварочную ванну, что делает шов плотнее и, очевидно, прочнее. При больших объемах сварки с СО2 обмерзает редуктор и не работает, так что приходится использовать всякие дополнительные приспособления – подогреватели углекислого газа. Так же при сварке в углекислоте наблюдается сильно разбрызгивание. А со смесью этого не происходит. И баллон приходится менять реже.

В общем, смесь «рулит», не смотря на то, что СО2 дешевле и не так чувствительна к подготовке сварочных кромок.

В связи с чем вопрос: действительно ли использование сварочных смесей на основе Ar так эффективно или все-таки лучше варить СО2?

Лично мне очевидно, что процентное соотношение Ar + СО2 газовой смеси выбирают в зависимости от толщины металла, количества легирующих элементов в нем и с учетом требований по механической прочности шва. В целом, играясь этим соотношением можно улучшить или ухудшить свойства сварного соединения.

Конечно, сколько сварщиков, столько мнений, а истина находится где-то посередине. Первое, что, очевидно, нужно учитывать, это тип вашего полуавтомата. Если он рассчитан только на MAG –сварку в активном газе – углекислоте, то использование смеси с высоким содержанием в ней аргона приведет к возникновению проблем с клапаном. Поэтому для сварки в смесях логично выбирать инвертор MIG.

Теперь по сути проблемы…

Может показаться, что смесь применять вообще не стоит, так как есть здесь определенный маркетиноговый ход, позволяющий накрутить цену за счет манипуляций с процентным соотношением разностоимостных газов в баллоне. В итоге получается, что за суррогат аргона и углекислоты нужно платить так же, как за первосортный аргон. Здесь дело обстоит примерно как с бензином. Был 76-й и 92-й бензин. В итоге придумали нечто среднее между этими двумя марками 80-й. В итоге сами знаете, что получилось.

С другой стороны профессиональные сварщики знают, что действительно смесь эффективна при сварке коррозионостойких сталей, оцинкованного металла, хотя по всем теоретическим канонам сварка в чистом аргоне этих же марок и покрытий качество швов должна только улучшить. Но на практике все происходит иначе.. В промышленности готовят смесь Ar-95-98%+CO2-2-5%. Но очевидно, что на характер плавления влияют все факторы процесса:

  • марка стали ( сварка нержавеющей стали 20Х13 может отличаться от ст. 12Х18Н10Т и т.д.)
  • марка присадочной проволоки
  • режимы сварки.

Исходя из этого становится понятно, почему смесь, которая одному сварщику подходит идеально, для другого дает неудовлетворительный результат. С нашей точки зрения, однозначного ответа в какой пропорции лучше варить здесь нет. Ее надо подбирать индивидуально в каждом конкретном случае в зависимости от исходных данных.

Аргон применяют при сварке легированных/высоколегированных и жаропрочных сталей, алюминия, титана.

Если же вы занимаетесь кузовным ремонтом, другими словами сваркой низкоуглеродистых сталей, которые применяют в автопроме – здесь однозначно нужно применять углекислоту. Хотя, если будете варить «чернягу» аргоном разницы не почувствуете (разве что в цене за баллон?). Почему так, прояснит следующая статья.

Генератор углекислоты для сварки своими руками

Но немного отвлечемся от серьезной темы…

В каждой шутке есть доля шутки, а остальное правда…

cocacola5pb3

Оказывается, приличный шов, ничем не уступающий по качеству шву, сваренному в смеси аргона с углекислотой, можно получить при сварке на Кока-Коле (Coca Cola). Вспоминаем, что только не делали с этой самой Кока-Колой: и пили, и ели ее, и как средство от ржавчины использовали, ведь «богатый» состав этого чудо-напитка содержит много чего, даже немножко ортофосфорной кислоты. Ее добавляют как усилитель вкуса, или «Третий вкус», изобретенный японцами в «стране восходящего солнца» – этот самый «вкус» более интенсивно всасывается и ощущается вкусовыми рецепторами. Не забываем при этом, что ортофосфорная кислота применяется еще много где в химической промышленности и, в частности, в ваннах электрополировки вместе с хлористым ангидридом и прочими хим. веществами. Электрополировка, напомним, в промышленности служит для придания изделиям из нержавейки товарного вида .

Так вот, оказалось, что у Кока-Колы обнаружился еще один «талант»: ее можно применять в качестве защитной среды при сварке полуавтоматом низкоуглеродистых и низколегированных сталей проволокой св.08Г2С.

Рецепт приготовления защитной среды прост:

  • Кока-Кола – 0,5 л
  • Уксус -1,25 мл
  • Сода пищевая – 100 г
  • Лимонная кислота – 20г.

Получается вот такая смесь в предложенных пропорциях и генератор диоксида углерода по совместительству.

А далее, как в сказке: чем дальше, тем страшней…

Берем мерную кружку, засыпаем в нее лимонную кислоту, затем соду, перемешиваем. Предварительно подготавливаем два куска газетной бумаги и высыпаем содержимое нашей кружки аккуратной дорожкой на них. Аккуратно сворачиваем газеты в трубочки так, чтобы содержимое осталось внутри, и скручиваем торцы трубочек так, чтобы содержимое никуда не высыпалось.

Берем пластиковую бутылку и наливаем в нее 0,5 л Кока-Колы, добавляем уксус и пару подготовленных трубочек. Накручиваем трубку для подачи газа в сварочную горелку на бутылку – и вуаля, газовая защитная атмосфера своими руками готова к применению. Проверка шва, выполненного на кока-коле, дала положительный результат.

Вывод: если у вас кончился баллон с газом посреди ночи и варить все-равно надо, а в хозяйстве есть Кола и то, что на кухне у жены под рукой должно всегда найтись – вы будете спасены, сможете закончить работу до утра и при этом не оставите разочарованными ваших заказчиков.

Углекислый газ, он же углекислота, он же двуокись углерода…

Формула углекислого газа

Углекислый газ бесцветный газ с едва ощутимым запахом не ядовит, тяжелее воздуха. Углекислый газ широко распространен в природе. Растворяется в воде, образуя угольную кислоту Н2CO3, придает ей кислый вкус. В воздухе содержится около 0,03% углекислого газа. Плотность в 1,524 раза больше плотности воздуха и равна 0,001976 г/см 3 (при нулевой температуре и давлении 101,3 кПа). Потенциал ионизации 14,3В. Химическая формула – CO2.

Как получилось так, что у данного газа столько много терминов неизвестно, но в сварочном производстве, согласно ГОСТ 2601, используется термин «углекислый газ». В «Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением» принят термин «углекислота», а в ГОСТ 8050 - «двуокись углерода». Поэтому далее мы будем оперировать всеми этими понятиями.

Плотность двуокиси углерода зависит от давления, температуры и агрегатного состояния, в котором она находится. При атмосферном давлении и температуре -78,5°С углекислый газ, минуя жидкое состояние, превращается в белую снегообразную массу «сухой лед».

Под давлением 528 кПа и при температуре -56,6°С углекислота может находиться во всех трех состояниях (так называемая тройная точка).

Двуокись углерода термически устойчива, диссоциирует на окись углерода и кислород только при температуре выше 2000°С.

Жидкая двуокись углерода

Жидкая двуокись углерода бесцветная жидкость без запаха, плотность которой сильно изменяется с изменением температуры. Она существует при комнатной температуре лишь при давлении более 5,85 МПа. Плотность жидкой углекислоты 0,771 г/см 3 (20°С). При температуре ниже +11°С она тяжелее воды, а выше +11°С - легче.

Жидкая двуокись углерода превращается в газ при подводе к ней теплоты.

При нормальных условиях (20°С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа.

Впервые жидкую двуокись углерода получили в 1823 г. Гемфри Дэви (Humphry Davy) и Майкл Фарадей (Michael Faraday).

Сухой лед

Твердая двуокись углерода (сухой лед) по внешнему виду напоминает снег и лед. Содержание углекислого газа, получаемого из брикета сухого льда, высокое - 99,93-99,99%. Содержание влаги в пределах 0,06-0,13%. Сухой лед, находясь на открытом воздухе, интенсивно испаряется, поэтому для его хранения и транспортировки используют контейнеры. Получение углекислого газа из сухого льда производится в специальных испарителях. Твердая двуокись углерода (сухой лед), поставляемая по ГОСТ 12162.

При чрезмерно быстром отборе газа, понижении давления в баллоне и недостаточном подводе теплоты углекислота охлаждается, скорость ее испарения снижается и при достижении «тройной точки» она превращается в сухой лед, который забивает отверстие в понижающем редукторе, и дальнейший отбор газа прекращается. При нагреве сухой лед непосредственно превращается в углекислый газ, минуя жидкое состояние. Для испарения сухого льда необходимо подвести значительно больше теплоты, чем для испарения жидкой двуокиси углерода - поэтому если в баллоне образовался сухой лед, то испаряется он медленно.

История открытия углекислого газа

Углекислый газ – это первый газ, который был описан как дискретное вещество. В семнадцатом веке, фламандский химик Ян Баптист ван Гельмонт (Jan Baptist van Helmont) заметил, что после сжигания угля в закрытом сосуде масса пепла была намного меньше массы сжигаемого угля. Он объяснял это тем, что уголь трансформируется в невидимую массу, которую он назвал «газ».

Свойства углекислого газа были изучены намного позже в 1750г. шотландским физиком Джозефом Блэком (Joseph Black).

Он обнаружил, что известняк (карбонат кальция CaCO3) при нагреве или взаимодействии с кислотами, выделяет газ, который он назвал «связанный воздух». Оказалось, что «связанный воздух» плотнее воздуха и не поддерживает горение.

Пропуская «связанный воздух» т.е. углекислый газ CO2 через водный раствор извести Ca(OH)2 на дно осаждается карбонат кальция CaCO3.

Джозеф Блэк использовал этот опыт для доказательства того, что углекислый газ выделяется в результате дыхания животных.

В статье "Как получить углекислый газ" рассказано все в мельчайших подробностях, здесь лишь скажем, что основными способами получения являются:

  • из известняка;
  • из газов при брожении спирта;
  • из газов котельных;
  • из газов производств химической отрасли.

Применение углекислого газа

Двуокись углерода чаще всего применяют:

  • для создания защитной среды при сварке полуавтоматом;
  • в производстве газированных напитков;
  • охлаждение, замораживание и хранения пищевых продуктов;
  • для систем пожаротушения;
  • очистка сухим льдом от загрязнений поверхности изделий.

Применение углекислоты для сварки

Плотность углекислого газа достаточно высока, что позволяет обеспечивать защиту реакционного пространства дуги от соприкосновения с газами воздуха и предупреждает азотирование металла шва при относительно небольших расходах углекислоты в струе. Низкий потенциал ионизации и теплопроводность способствуют образованию горячей зоны в центре столба дуги и как следствие более глубокое проплавление и меньшую ширину шва. Углекислый газ является активным газом, т.е. в процессе сварки он взаимодействует с металлом шва и оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие.

Молекула углекислого газа CO2, попадая в зону сварочной дуги распадается на атомарный кислород О и угарный газ СО. В результате происходит выгорание легирующих элементов металла сварочной ванны и окисление основного металла (возникает окалина, шлак и дым). Реакция окисления расплавленного металла сварного шва имеет следующий вид:

Fe + CO2 = FeO + CO

Ранее препятствием для применения углекислоты в качестве защитной среды являлось образование большого количества дефектов в сварных швах (преимущественно пор). Поры при сварке возникают в результате кипения затвердевающего металла сварочной ванны от выделения окиси углерода (СО) из-за недостаточной его раскисленности. При этом поверхность сварного шва сильно окислена и имеет большое количество шлака ввиду окисляющей атмосферы внутри сварочной дуги. Помимо неудовлетворительного эстетического вида, при необходимости дальнейшего нанесения защитного покрытия потребуется дополнительная операция зачистки поверхности.

При высоких температурах углекислый газ диссоциирует с образованием весьма активного свободного, одноатомного кислорода:

Окисление металла шва выделяющимся при сварке из углекислого газа свободным кислородом нейтрализуется содержанием дополнительного количества легирующих элементов с большим сродством к кислороду, чаще всего кремнием и марганцем (сверх того количества, которое требуется для легирования металла шва) или вводимыми в зону сварки флюсами (сварка порошковой проволокой).

Как двуокись, так и окись углерода практически не растворимы в твердом и расплавленном металле. Свободный активный кислород окисляет элементы, присутствующие в сварочной ванне, в зависимости от их сродства к кислороду и концентрации по уравнению:

Мэ + O = МэO, где Мэ - металл (марганец, алюминий или др.).

Кроме того, и сам углекислый газ реагирует с этими элементами. В результате этих реакций при сварке в углекислоте наблюдается значительное выгорание алюминия, титана и циркония, и менее интенсивное - кремния, марганца, хрома, ванадия и др.

Особенно энергично окисление примесей происходит при полуавтоматической сварке. Это связано с тем, что при сварке плавящимся электродом взаимодействие расплавленного металла с газом происходит при пребывании капли на конце электрода и в сварочной ванне, а при сварке вольфрамовым электродом - только в ванне. Как известно, взаимодействие газа с металлом в дуговом промежутке происходит значительно интенсивнее вследствие высокой температуры и большей поверхности контактирования металла с газом. Для компенсации выгорания легирующих элементов в сварном шве, необходимо применять сварочную проволоку с повышенным содержанием раскислителей (кремния и марганца).

Уже давно известна зависимость, чем больше сила сварочного тока, тем больше размер капель расплавленного металла. В свою очередь увеличение размера капель электродного металла увеличивает разбрызгивание.

В настоящее время ввиду большого разбрызгивания металла сварочной ванны при сварке в углекислоте все чаще применяют сварочные смеси с аргоном. Производители сварочного оборудования не остались в стороне от данной проблемы и предусматривают специальный режим на сварочных полуавтоматах, при котором уменьшается эффект разбрызгивания. Еще один путь решения данного вопроса – это использование специальных спреев или жидкостей, которые не позволяют прикипать брызгам к металлу свариваемой детали. В любом случае применение любого из данных методов с лихвой окупит затраты времени и расходных материалов на удаление брызг путем механической зачистки.

При сварке тонких деталей применением оптимальных режимов сварки возможно добиться короткозамкнутого переноса электродного металла и тем самым получить минимальное разбрызгивание. Например, при использовании сварочной проволоки ? 1 мм, силе сварочного тока 150 А и напряжения дуги 16-23 В происходит перенос металла небольшими каплями за счет поверхностного натяжения.

Для MAG сварки толстостенных конструкций целесообразно применение проволоки большого диаметра и, следовательно увеличение силы сварочного тока, увеличение разбрызгивания, что ведет к уменьшению скорости наплавки электродного металла. Для уменьшения разбрызгивания уменьшают скорость подачи сварочной проволоки. Поэтому применение чистой углекислоты оказывает негативное влияние на производительность сварки и качества сварного шва. Углекислоту в качестве защитного газа рационально применять при сварке порошковой проволокой (FCAW) углеродистых сталей поскольку обеспечивается короткозамкнутый перенос и хорошее качество сварного шва.

Ввиду химической активности углекислого газа по отношению к вольфраму сварку в этом газе ведут только плавящимся электродом.

При выборе защитного газа стоит учитывать не только его стоимость, но и влияние потерь на разбрызгивание, последующую зачистку и общую трудоемкость процесса.

Вредность и опасность углекислого газа

Двуокись углерода нетоксична и невзрывоопасна. При концентрациях более 5% (92 г/м 3 ) углекислый газ оказывает вредное влияние на здоровье человека, так как он тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м 3 (0,5%).

Хранение и транспортировка углекислого газа

Углекислый газ поставляется по ГОСТ 8050. Для получения качественных швов используют газообразную и сжиженную двуокись углерода высшего и первого сортов.

Углекислоту транспортируют и хранят в стальных баллонах по ГОСТ 949 или цистернах большой емкости в жидком состоянии с последующей газификацией на заводе, с централизованным снабжением сварочных постов через рампы.

В стандартный баллон с водяной емкостью 40 л заливается 25 кг жидкой углекислоты, которая при нормальном давлении занимает 67,5% объема баллона и дает при испарении 12,5 м 3 углекислого газа.

В верхней части баллона вместе с газообразной углекислотой скапливается воздух. Вода, как более тяжелая, чем жидкая двуокись углерода, собирается в нижней части баллона.

Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 10. 15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров, ухудшая при сварке качество шва.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой двуокиси углерода газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого при отборе углекислого газа перед редуктором устанавливают подогреватель газа. Окончательное удаление влаги после редуктора производится специальным осушителем, наполненным стеклянной ватой и хлористым кальцием, силикогелием, медным купоросом или другими поглотителями влаги.

Баллон окрашен в черный цвет, с надписью желтыми буквами «УГЛЕКИСЛОТА».

Читайте также: