Настройка режима автоматической сварки

Обновлено: 17.05.2024

Сварка под флюсом – это способ сварки деталей из высоколегированной марганцевой, никелевой или фторидной стали, при котором сварочная ванна и шов защищены от окисления слоем флюса в виде порошка или гранул.

Процесс формирования шва протекает в газовой полости под слоем непрерывно подаваемого флюса. Кроме функции защиты от окисления, флюс также легирует формируемый шов марганцем и кремнием, повышая его прочность и формируя соединение с высокой степенью однородности.

ГОСТ на сварку флюсом 8713-79 устанавливает размеры и типы сварных соединений, а также способы наложения шва под флюсом.

Виды флюсов и их особенности

По способу изготовления флюсы бывают:

Плавленые флюсы изготавливают из шлакообразующих марганцевых руд и кварцевого песка путем размалывания, смешивания и расплавления с последующим гранулированием. Такие флюсы экономичны и хорошо подходят для сварки деталей из низколегированной стали.

Керамические (неплавленные) флюсы изготавливают из окислителей и солей амфотерных металлов, которые измельчают, смешивают с жидким стеклом до однородного состояния, после чего гранулируют и прокаливают.

сварка под флюсом

Примерная стоимость керамических флюсов на Яндекс.маркет

Керамические флюсы имеют мелкодисперсную порошкообразную структуру, они применяются для сваривания сложных высоколегированных стальных сплавов, при этом состав флюса подбирается под конкретную марку свариваемой стали.

По химическому составу флюсы бывают:

Солевые флюсы содержат соли фторидов и хлоридов, применяются для электросварки титана и стали, легированной никелем и хромом. Оксидные флюсы содержат оксиды активных металлов и кремния, применяются для сварки низкоуглеродистой стали. Смешанные флюсы содержат оксиды и соли металлов в различных пропорциях, применяются для сваривания многокомпонентных сплавов или деталей из разных металлов.

Описание технологии процесса

Существует три основных способа сварки под флюсом:

При автоматической сварке траектория и скорость движения электрода, а также скорость подачи проволоки регулируется управляющим процессором, рабочие участвуют только в качестве контролеров процесса для экстренного отключения сварочного агрегата.

Полуавтоматическая сварка под флюсом предполагает, что скорость подачи проволоки, сила тока сварки и угол наклона электрода к линии сварки регулируются автоматически, а ведение дуги осуществляется сварщиком вручную – через рукоятку или дистанционное управление. Полуавтоматический сварочный агрегат позволяет вручную изменять отдельные параметры тока непосредственно во время процесса сварки.

Сварка под флюсом вручную применяется в небольших агрегатах, где система подачи флюса встроена в неплавящийся электрод, при этом сварщик регулирует направление движения, угол наклона и скорость хода электрода в ручном режиме, специальными кнопками управляя подачей флюса и силой тока сварки.

Общий порядок действий при сварке под флюсом:

  1. С поверхностей деталей снимается оксидная пленка.
  2. Детали закрепляются на сварочной плите.
  3. Выбираются настройки и режим сварочного аппарата.
  4. Заполняется резервуар для флюса.
  5. Устанавливается бухта наплавной проволоки, конец которой заправляется в электрод.
  6. Происходит процесс сваривания.
  7. После остывания деталей собирается неизрасходованный флюс, и шов очищается от шлака.

Важно следить за расходованием проволоки и флюса, чтобы не допустить работы электрода вхолостую и повреждения деталей.

Оборудование для сварки

Для сварки флюсом потребуются стационарные условия и оборудование:

Сварочные плиты выполняются на бетонном основании из жаростойких материалов с возможностью закрепления деталей. Проволока берется из материала свариваемых деталей, толщина от 0,3 до 12 мм. Электрод изготавливается из вольфрамового сплава с керамической оплеткой.

Система подачи флюса представляет собой резервуар и шланг, конец которого отстоит от электрода на 10-30 см. Диаметр шланга подачи флюса должен позволять гранулам свободно сыпаться перед электродом.

Схема процесса автоматической сварки под слоем флюса

Автоматическая и полуавтоматическая сварка под флюсом контролируется программным обеспечением, регулирующим направление и скорость движения электрода вдоль линии сваривания.

Выбор режима сварки

В зависимости от толщины и металла свариваемых деталей выбирается режим сварки под флюсом. Для каждого режима существует свой диапазон напряжения, силы тока сварки и диаметр проволоки. Скорость формирования шва колеблется в пределах от 6 до 100 метров в час.

Если толщина свариваемых деталей от 2 до 10 мм, то выбирается режим сварки на стальной подкладке под стыком деталей. Режим на флюсовой подушке подходит для сварки деталей толщиной 10-25 мм, а сварка деталей толщиной 16-70 мм выполняется в режиме предварительной ручной проварки нижней части шва.

С увеличением толщины свариваемых деталей растет диаметр проволочного электрода и сварочный ток, но уменьшается скорость формирования сварного шва.

Сила тока сварки (А) зависит от толщины проволоки (мм) следующим образом:

Напряжение сварки существенно увеличивается только при толщине деталей свыше 25 мм.

Достоинства и недостатки

К преимуществам сварки под флюсом относятся:

  • высокая степень автоматизации процесса;
  • возможность проведения сварки под большой силой тока;
  • высокая скорость сварки;
  • качественный шов без окислов и раковин;
  • возможность увеличения сварной ванны для более качественного провара.

Системы автоподачи флюса и сохранение постоянного расстояния от электрода до шва позволяет сваривать сложные детали с минимальным участием рабочих. Защитный слой флюса не дает расплавленному металлу разбрызгиваться, что позволяет производить сварку под высокими токами, многократно увеличивая скорость формирования и качество шва.

Однородность шва достигается за счет изоляции сварной ванны от кислорода воздуха, а также из-за легирования шва компонентами флюса, которые можно подобрать специально для материала свариваемых деталей. Также сварка под флюсом дает возможность использования одновременно двух электродов, расположенных на расстоянии 10-20 мм друг от друга и питаемых от одного источника тока – это позволяет сделать больше сварную ванну под флюсом, увеличив таким образом скорость сварки и степень однородности готового изделия.

К недостаткам сварки под флюсом относят трудности контроля процесса и технологическую сложность. Агрегаты для сварки под флюсом занимают большие площади и требуют обслуживания квалифицированными кадрами. Сварной шов формируется под слоем флюса и у сварщика нет возможности контролировать качество шва в режиме реального времени. Избежать брака можно путем дополнения агрегата ультразвуковыми или лазерными системами контроля наличия дефектов.

Выбор режимов автоматической сварки под слоем флюса. Отличие параметров сварки низкоуглеродистых сталей, меди и титана

Выбор режима автоматической сварки под слоем флюса зависит от наименования основного металла, его толщины и формы разделки кромок. Выделяют 4 основных регулируемых параметра:

  • диаметр сварочной электродной проволоки;
  • сила и род тока, его полярность;
  • скорость перемещения дуги;
  • напряжение источника сварки.

Также имеются дополнительные параметры, влияющие на определение режима сварки:

  • состав (марка) и физико-химические свойства используемого флюса;
  • вылет проволоки из токоподводящего наконечника;
  • угол наклонения электрода к оси шва.

Порядок расчета режимов

В конструкторской документации задаются толщина свариваемых деталей, тип и форма разделки сварных швов по ГОСТ для соответствующих видов металла и его марок. Технология выполнения работ определяет параметры режима сварки и операции по подготовке свариваемых комок.

Используются следующие формулы для расчета параметров сварки:

Q=(I * U * 60) * к / V, где:

  • Q – удельная тепловая энергия (кДж/мм);
  • I – сварочный ток (А);
  • U – напряжение на дуге (В);
  • V – скорость сварки (мм/мин.);
  • к – коэффициент полезного тепловложения (для сварки под флюсом К = 0,9).

Коэффициент формы сечения шва рекомендуется в диапазоне 1…1,5. F=S / h, где:

Режимы автоматической сварки различных металлов под слоем флюса

Рекомендуемые (ориентировочные) режимы стыковых соединений.

медь М1
титан ВТ 1-0
сталь Ст. 20

Табличные режимы сварки являются ориентировочными. Точные параметры режима определяются при сварке опытных соединений на контрольных планках. Это особенно актуально для автоматической сварки под флюсом, так как зона плавления не поддается визуальному контролю во время ведения процесса.

Сварочный ток (I)

Сила тока в сварочной дуге оказывает существенное влияние на глубину провара. Выбор этого параметра зависит от вида металла, его толщины и формы разделки свариваемых кромок.

Полярность тока влияет на перераспределение тепловой энергии между плавящимся электродом и основным металлом. Прямая полярность применяется для увеличения доли наплавляемого металла в металле шва, но отрицательно влияет на устойчивость горения дуги и разбрызгивание сварочной ванны.

Как правило, для сварки под флюсом большинства металлов (за исключением алюминия) применяется подключение сварочного источника с обратной полярностью.

Скорость сварки (V)

Выбор оптимальной скорости сварки обеспечивает правильную форму сечения шва, влияет на время нахождения ванны в жидком виде и протекание тепловых и металлургических процессов при сварке. Оказывает обратное влияние на тепловые вложения и погонную энергию.

Схема процесса автоматической сварки под своем флюса

Изменение скорости сварки приводит к изменению коэффициента формы сечения сварного шва, его глубины и ширины.

Напряжение сварочного тока (U)

Увеличение напряжения ведет к увеличению контактного пятна сварочной дуги на поверхности металла и, соответственно, к увеличению ширины шва. При низком напряжении формируется вогнутый валик без усиления и образуются подрезы по линии сплавления. Повышенное напряжение приводит к образованию высокого усиления шва с узкой зоной проплавления.

Диаметр электрода (проволоки), (∅)

При установленном токе существует обратно пропорциональная зависимость плотности тока от диаметра проволоки.

Чем меньше диаметр электрода, тем выше плотность тока. С повышением плотности тока коэффициент формы шва стремится к уменьшению.

сварка под флюсом

Примерная стоимость проволоки для автоматической сварки под своем флюса на Яндекс.маркет

Влияние дополнительных настроек режима сварки на шов

Для правильного формирования сварного шва необходимо соблюдать соответствие параметров процесса сварки конструкции сварного соединения. Важность правильной настройки особенно актуальна для сварки химически активных при высоких температурах металлов и сплавов. Не следует пренебрегать опытными работами при настройке режима.

Влияние параметров дуги

Напряжение сварочной дуги растет при увеличении ее длины. Это оказывает влияние на образование дугового разряда и стабильность процесса горения.

Повышенное напряжение ведет к росту контактного пятна на поверхности металла и расширению шва.

Влияние угла наклона электрода

Позиционирование электрода относительно поверхности детали оказывает влияние на глубину провара и размеры сварочной ванны. Обычно применяют перпендикулярное расположение электрода к плоскости сварки.

Влияние вылета электрода из токоподающего наконечника

Увеличение вылета приводит к дополнительному нагреву сварочной проволоки, её ускоренному расплавлению и повышению доли электродного металла в металле сварного шва. Оптимальный вылет электродной проволоки в зависимости от ее диаметра указан в таблице.

Диаметр проволоки, мм 2-2,5 3-4 5
Вылет из наконечника, мм 14-16 17-19 20-22

Режимы полуавтоматической сварки

Режимы полуавтоматической сварки

Качественное изделие на выходе можно получить, только грамотно настроив режимы полуавтоматической сварки. И если опытные специалисты не испытывают с этим никаких проблем, то у новичков подобная задача может вызвать определенные трудности.

Впрочем, не все так печально. В подавляющем большинстве случаев все решается с помощью «шпаргалок» – специальных таблиц, которые содержат необходимые данные. Хотя и практика, и теоретические знания в этом деле также имеют огромное значение.

Принципы работы полуавтоматической сварки

Полуавтоматическая сварка является разновидностью дуговой и отличается от нее тем, что процесс осуществляется за счет автоматизации подачи электродной проволоки в сварочную ванну и одновременного воздействия на нее защитного газа. Остальные операции выполняются вручную. Используемый при сварке газ предназначается для полной защиты нагретых и расплавленных основных материалов и электродов от воздействия воздуха, который может не только замедлить процесс, но и полностью его остановить.

При сварке металлов ключевой задачей является поддержание определенного температурного режима. Недостаточный прогрев шва не сможет обеспечить качественного расплавления кромок свариваемых заготовок и смешивания их между собой и с присадочным материалом. При завышении температуры происходит кипение и испарение металла, что является причиной возникновения химических реакций с атмосферными газами. Усложняет ситуацию и то, что для некоторых металлов и сплавов такие процессы могут начать происходить еще при температурах, ниже необходимых для формирования качественного сварочного шва.

Рекомендуем статьи по металлообработке

При использовании разных типов сварочного оборудования такую проблему решают по-разному. У рассматриваемой нами сегодня полуавтоматической сварки, которую еще называют MIG/MAG, имеется два технологических отличительных момента. Первым является то, что защитный газ подается непосредственно в зону плавления, а вторым – установка оснащена автоматической подстройкой для регулирования скорости подачи присадочного материала и изменения силы сварочного тока.

Принципы работы полуавтоматической сварки

Подача сварочной проволоки осуществляется при помощи протяжного механизма, для которого перед выполнением операции необходимо рассчитать режимы полуавтоматической сварки, учитывая правильное соотношение скорости и температуры плавления, чтобы обеспечить равномерное заполнение шва и высокую производительность работ.

Функцию защитной среды могут выполнять активные газы (водород, азот или кислород) либо инертные – аргон или гелий. В промышленном производстве преимущественно используется смесь углекислоты и аргона в пропорции 1:4, что вполне достаточно для выполнения стандартных процессов. При сварке специфических материалов, к примеру, дюралей, латуней или инструментальных высоколегированных сталей, приходится варьировать соотношением состава смеси.

Несмотря на то, что расходные материалы (сварочная проволока и газ) стоят дорого, освоение именно полуавтоматической сварки является наилучшим вариантом для новичков по двум причинам. Первый плюс заключается в простоте выполнения сварочного шва, для этого стоит лишь ознакомиться со справочной документацией и по ней выставить требуемые технологические параметры инвертора для конкретного вида сварочного соединения.

Ко второму плюсу относится эргономичность, то есть полный визуальный контроль состояния шва, возможность использования любого пространственного положения и, что самое главное, выполнимость сварного шва даже на очень тонкостенных деталях.

Отрицательным моментом можно считать разве что привязанность к определенной рабочей территории, хотя если использовать газовые баллоны меньшей емкости, то мобильность значительно увеличивается.

5 основных параметров настройки сварочного оборудования

Для точного подбора режимов полуавтоматической сварки в среде защитных газов необходимо знать их основу. Есть определенные параметры настройки такого оборудования. Ознакомившись с ними и применив на практике, любой сварщик сможет произвести правильную наладку без посторонней помощи.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

1. Марка материала сварочной проволоки и ее диаметр.

Прежде чем приступить к работе, необходимо определиться с тем, какого диаметра нужно использовать проволоку для выполнения работ. Такой параметр варьируется в пределах от 0,5 до 3 мм. При расчете режимов полуавтоматической сварки необходимо учитывать такой показатель.

5 основных параметров настройки сварочного оборудования

Кроме того, для правильного подбора диаметра проволоки существуют следующие определенные рекомендации, которые необходимо принимать во внимание:

  • Выбор диаметра присадочной проволоки следует производить с учетом толщины свариваемой металлической заготовки.
  • Стоит брать в расчет, что при каждом диаметральном размере проявляются определенные характеристики. Как замечено большинством сварщиков, при использовании проволоки небольшого диаметра наблюдается стабильное горение дуги и небольшое разбрызгиванием металла.
  • Чем больше диаметр проволоки, тем выше должна быть сила тока.
  • Следует учитывать марку сварочной проволоки.
  • Сваривание заготовок из низколегированных и низкоуглеродистых сталей производится с помощью проволоки и добавления раскислителей. В ее составе должны присутствовать элементы марганца и кремния.
  • При обработке высоколегированных и легированных сталей в среде защитных газов материал проволоки и детали, предназначенной для сваривания, должен быть тем же.

Независимо от того, какие выбраны режимы работы полуавтоматической сварки в среде защитных газов, всегда следует правильно подбирать необходимый диаметр присадочной проволоки, от этого зависит качество и прочность сварного соединения.

2. Полярность, сила и род сварочного тока.

В параметры режима полуавтоматической сварки включена правильная настройка тока, который используется при сваривании и обработке металлических изделий. В стандартном приборе такого типа допускается ручная регулировка показателей полярности, силы и рода сварочного тока, каждый из которых несет в себе определенные критерии.

Например, при увеличении силы тока при сварке увеличивается глубина провара. А сама сила тока увеличивается пропорционально диаметру электрода. Помимо всего, не следует выпускать из вида свойства используемого для сварки металла.

Следует принимать во внимание такие показатели, как род тока и полярность. Как правило, процесс полуавтоматической сварки производится в среде защитных газов, но следует корректировать показатели обратной полярности и постоянного тока. Прямую полярность применяют очень редко, поскольку данные параметры сварки полуавтоматом не обеспечивают устойчивой дуги, что ухудшает качество сварного соединения. Но есть и исключения – для сварки алюминиевых материалов довольно часто используют переменный ток.

Иногда, особенно начинающие сварщики, игнорируют один важный показатель – напряжение сварочной дуги. А от этого параметра больше всего зависит глубина проварки металла и площадь сварного шва. Установка слишком высокого напряжения может стать причиной сильного разбрызгивания расплавленного металла во время процесса сварки и появления пор в соединении. При таких параметрах газовые смеси не обеспечат в достаточной мере защиту сварочной ванны. Для правильной настройки напряжения дуги следует ориентироваться на значения силы тока.

5 основных параметров настройки сварочного оборудования

3. Скорость подачи сварочной проволоки.

Рассчитывая режимы полуавтоматической сварки в углекислом газе, следует учитывать показатель скорости подачи проволоки, который существенно влияет на качество сварочного шва.

Главные особенности такого параметра:

  • необходимый диапазон значений скоростных показателей подачи проволоки регламентируется в соответствии с ГОСТами;
  • такой параметр может подбираться в процессе выполнения операции, но всегда следует учитывать особенности структуры металла и толщину заготовки;
  • толстостенные металлические детали необходимо сваривать быстрее, причем соединение должно быть более тонким;
  • сварку следует производить без излишней спешки, в противном случае электрод выйдет из области защитной газовой смеси, что может привести к окислению при его взаимодействии с кислородом;
  • выполнение шва на маленькой скорости будет причиной образования непрочного пористого шва.

4. Отходящие газы.

Режимы полуавтоматической сварки предполагают использование газовых смесей, предназначенных для защиты области сварки от окисления кислородом. В технологии указывается, что возможно применение разных газов. Но на практике в основном используют для этих целей СО2 (углекислый газ) по ГОСТу 8050-85. Его основными критериями при выборе являются доступность и невысокая стоимость. Поставку такого газа осуществляют в металлических прочных баллонах.

При заправке углекислотных баллонов обязательно нужно учитывать максимально допустимое давление. Параметр рабочего давления должен быть в пределах от 60 до 70 кгс/см². На баллонах должна быть нанесена надпись «СО2» или «Углекислота», выполненная краской желтого цвета.

Параметры рабочих давлений углекислоты при сварке полуавтоматом отражены в технической документации и в ГОСТах, предназначенных для приборов полуавтоматической сварки с использованием защитных газов.

При сварочных работах на полуавтоматах кроме углекислоты применяются и другие газы и газовые смеси, обладающие характерными свойствами:

  • Аргон. Имеет широкое применение в различных производственных отраслях. Однако преимущественно его используют для проведения аргонодуговых сварочных процессов. Это инертный газ, значит, с его помощью можно сваривать тугоплавкие и химически активные металлы.
  • Гелий. Также является инертным газом, часто используется при работах, связанных с полуавтоматическим сварочным оборудованием. Позволяет обеспечивать выполнение широких и прочных сварных швов.
  • Смеси углекислоты, гелия и аргона.

5 основных параметров настройки сварочного оборудования

5. Угол наклона электрода.

Режимы полуавтоматической сварки в среде защитных газов включают в себя важный критерий угла наклона электрода. Начинающие сварщики часто совершают ошибку, игнорируя правильное удержание электрода под определенным углом к плоскости сваривания. Это считается недопустимым при работе со сварочным оборудованием.

От используемого при работе угла наклона электрода будет зависеть качество сварного соединения и глубина проварки металлической структуры.

Применяют два варианта наклона электрода – с задним углом и уклоном вперед. У каждого способа есть положительные и отрицательные стороны. При сваривании углом вперед электрод проводится под углом от 30° до 60°. При таком положении расплавленная электродная обмазка образует сверху шлаковый слой, и это стоит учитывать.

При переднем наклоне движение электрода происходит после сварочной ванны, тем самым он защищает ее от взаимодействия с вредными газовыми смесями. Часть шлака, который попадает впереди соединения, отложится с обеих сторон сварного стыка. При интенсивном выделении шлака наклон уменьшается.

При проведении электрода углом назад сварочную зону видно хуже, зато улучшается видимость состояние кромок. Такой способ обеспечивает небольшую глубину проварки.

Таблицы режимов полуавтоматической сварки

Удержание электрода с передним углом является наиболее подходящим для тонких металлов. А использование заднего угла позволит произвести сварку металлических изделий любой толщины.

Таблицы режимов полуавтоматической сварки

Как упоминалось выше, опыт и знания сварщиков со стажем позволит им, не задумываясь, выставить правильные режимы сварки. Но как быть тем, кто только недавно начал осваивать эту специальность? Существуют особые таблицы настройки режимов для каждого вида сварки. Но не всегда следует пользоваться готовыми данными, необходимо экспериментировать на практике и не бояться применять накопленный опыт и знания.

Таблица № 1. Предпочтительные параметры настройки формирования стыкового шва в нижнем пространственном положении, а также для сварки низкоуглеродистых и низколегированных сталей в среде защитного газа (углекислого газа, смеси углекислоты с кислородом и углекислого газа с аргоном) с применением тока обратной полярности.

Таблица № 1

Таблица № 2. Рекомендуемые режимы полуавтоматической сварки для формирования поворотно-стыковых соединений с использованием углекислоты, смеси углекислоты и аргона; аргона с углекислотой и кислородом, применительно к току обратной полярности.

Таблица № 2

Таблица № 3. Предпочтительные режимы полуавтоматической сварки для формирования нахлесточного шва с применением углекислого газа или смеси углекислоты с аргоном с током обратной полярности.

Таблица № 3

Таблица № 4. Предпочтительные параметры режима полуавтоматической сварки для углеродистых сталей в вертикальном пространственном положении на обратной полярности при использовании углекислого газа или смеси углекислоты с аргоном.

Таблица № 4

Таблица № 5. Предпочтительные режимы полуавтоматической сварки для горизонтального соединения с использованием обратной полярности с защитным углекислым газом.

Таблица № 5

Таблица № 6. Рекомендуемые режимы полуавтоматической сварки для формирования потолочных швов на обратной полярности с применением углекислого газа.

Таблица № 6

Таблица № 7. Рекомендации выставления параметров сварки-полуавтомат в среде углекислого газа при работе с углеродистыми сталями.

Таблица № 7

В завершение необходимо дать один совет. При неосознанном копировании усредненных параметров настроек оборудования, приведенных в таблицах и справочной технической литературе, могут встретиться и некоторые неточности и даже опечатки. Для сварщика важно не только слепо дублировать рекомендации, но и подходить к выполнению каждой конкретной задачи творчески, с необходимой скрупулезностью и повышенным вниманием к мелочам. Это и будет являться гарантией качественного выполнения работы.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Режимы и параметры сварки

Режимы и параметры сварки

Режимы и параметры сварки изменяются при выполнении сварочных работ в зависимости от типа заготовок, толщины и свойств металла. При соблюдении рекомендуемых норм сварной шов будет качественным, а само соединение надежным.

Параметры сварки соблюдать несложно, для отдельных видов разработаны готовые таблицы, где учитываются основные факторы. Достаточно изучить их раз, чтобы потом варить как по накатанной. Что это за параметры и в чем их различие, читайте в нашем материале.

Основные параметры режима сварки

Режимом сварки называют основные характеристики сварочного процесса, благодаря которым получаются сварные соединения заданных параметров, форм и размеров. В данном случае этими характеристиками могут быть: плотность тока в электроде, сила варочного тока, скорость варочного процесса, марка и грануляция флюса, напряжение дуги, расход защитного газа.

Для того чтобы определить, какой режим сварки необходим, требуется определить толщину и тип конструкции, а также состав металлов. На основании полученных данных выставляют нужный режим. Существует две группы факторов, от которых зависит качество сварки: основные и второстепенные.

Количество энергии, способ ее передачи на поверхность металла – это зависит от основных параметров режима сварки. К ним относятся:

  • сила тока, род и полярность;
  • калибр электрода;
  • число подходов;
  • скорость движения по шву;
  • напряжение и длина сварочной дуги.

Каждый из параметров очень важен, именно от них зависит формирование шва. Если изменить какой-либо показатель, можно получить соединение лучшего качества. Коротко проанализируем некоторые пункты.

От силы тока зависит, с какой интенсивностью расплавится материал. Производительность сварки напрямую зависит от этого показателя. Качество пострадает, если установить большую силу тока, используя малый диаметр электрода, и наоборот. Если низкая подаче тока, то сварная дуга может обрываться, появляются непровары.

Полярность тока – это направление движения энергии от катода до анода и наоборот. Одновременно с направлением тока выбирают, какой использовать – постоянный или переменный. Для получения более глубокого шва необходимо варить деталь постоянным током с обратной полярностью.

Для лучшей прочности необходимо, чтобы расплавленный материал своевременно и равномерно заполнял шов.

К второстепенным параметрам можно отнести:

  • температуру деталей;
  • вылет электрода;
  • толщину покрытия электрода;
  • форму кромок;
  • качество подготовленной поверхности;
  • положение заготовок.

Отношение силы тока к толщине электрода при сварке

Электроды подбирают в зависимости от толщины свариваемого шва и метода сварки. Они могут быть в соотношении 1:1. Так, для шва толщиной 3-4 мм подойдет электрод размером 3 мм. Многопрофильные детали сваривают постепенно. Начинают в основном с электрода в 4 мм.

Отношение силы тока к толщине электрода при сварке

Если не сделать расчет в начале работы и взять электрод диаметром меньше, то шов не будет заполнен полностью, что повлечет за собой непрочное соединение.

При выборе электрода нужно обратиться к таблицам для определения силы тока. Для диаметра 3 мм необходимая сила тока – 65–100 А. если вам предстоит вертикальный шов, то минимальное значение его диаметра должно составлять не менее 4 мм. Следует помнить, что при горизонтальной сварке силу тока необходимо понизить на 15–20 %.

Величина сварочного тока рассчитывается по формуле:

I – сила сварочного тока в амперах;

d – диаметр электрода в миллиметрах.

При вертикальной сварке силу тока убавляют на 10 %, в потолочных швах убавляют до 20 % от полученной величины. Из данной таблицы можно выбрать коэффициент К:

Диаметр электрода, ммК, А/мм
1-2 25–30
3-4 35–40
5-6 45–50

Выбор диаметра электрода при сварке металлов

Для более правильного выбора электрода необходимо уточнить следующие показатели: толщину свариваемого изделия, расположение шва (горизонтальный, вертикальный, потолочный), форму разделки кромок и вид соединения. Главным показателем является толщина металла, а остальные факторы служат для более точной корректировки.

Выбор диаметра электрода при сварке металлов

В данной таблице вы можете выбрать необходимый вам диаметр электрода, исходя из ваших показателей:

Толщина свариваемого металлаДиаметр электрода
1,5 1,6
2 2
3 3
4-5 3-4
6–8 4
9–12 4-5
13–15 5
16–20 5 и более

Корневой слой можно выполнить электродами диаметром от 2,5-3 мм. Для этого кромки должны быть разделаны. Потолочные швы чаще всего делают электродами диаметром 3-3,2 мм. Табличные данные идеально подходят для горизонтальных швов.

Параметры длины дуги

В сварке напряжение дуги является важнейшим параметром, которое определяет ее длину. Если сказать проще, то это расстояние от конца электрода до предмета. Этот показатель напрямую зависит от электрода и представлен в таблицах. Качественной считается работа, в которой на протяжение всего шва нет ни одного недовара. В данной профессии важен опыт, только профессионал способен проследить за таким тонким нюансом.

Рекомендуем статьи:

Горение становится устойчивым, если увеличить напряжение дуги. При такой варке вероятность попадания воздуха в зону шва увеличивается, случается выгорание элементов, содержащихся в проволоке, вследствие чего образуются поры. Процесс зажигания дуги включает в себя три этапа: короткое замыкание электрода на заготовку, после чего электрод отводится на 3–6 мм и возникает устойчивый дуговой разряд.

Выбор полярности и типа тока

Сварочные аппараты способны перевести бытовой переменный ток в постоянный. Важно не перепутать полярность. Она подразумевает подключение детали к «+», а электрода к «-». Специалист выбирает параметр режима, опираясь на свойства детали.

Выбор полярности и типа тока

Для сварки чугунных деталей подойдет прямая полярность. Она же подходит для среднеуглеродистой стали толщиной 5 мм.

При соединении низкоуглеродистой стали и тонколистовых конструкций выбирают обратную полярность.

Наклон электрода и заготовок при сварке

Важно учесть угол наклона электрода при работе с полуавтоматом, выполнить правильный расчет режимов сварки. В такой работе стержень по отношению ко шву должен отклониться от нормы на 10°. От расположения стержней к стыку зависит глубина и ширина соединения.

Соединение расширяется, а глубинные показатели уменьшаются при условии, если сваривание происходит под углом вперед, благодаря чему дуга нагоняет волну расплава перед собой, через которую и выполняют расплавление металла.

Расплав перейдет в конец варочной зоны, если выбрать режим с углом наклона назад. Электрическая дуга оказывает прямое влияние на соединяемые изделия. Благодаря чему увеличивается глубина проплавления стыка и уменьшается ширина шва.

Для качественного заполнения шва рекомендуется делать наклон детали под углом 8–10°. Иначе расплавленный металл может стекать или останутся непровары. При сварке труб изменить их угол невозможно, поэтому сварку производят сверху вниз.

Параметры режима сварки в среде защитных газов

Режим сварки определяют в зависимости от диаметра проволоки и силы сварочного тока. Специалисты увеличивают расход газа для улучшения газовой защиты, снижают скорость сварки, при работе используют защитные экраны.

Выбор полярности и типа тока

При сварке в зону горения подается газ. Он вытесняет воздух из зоны горения дуги, тем самым защищает сварочную ванну от попадания кислорода и азота воздуха. Процесс разделяют на сварку в активных (СО2, Н2, О2, и др.) и инертных (He, Ar, Ar+He и др.) газах.

В сварке можно использовать плавящиеся и неплавящиеся электроды. В большей степени специалисты работают с плавящимися электродами. Такой способ является бюджетным при сварке углеродистых и низколегированных сталей, поэтому он занимает одно из первых мест по объему производства среди механизированных способов сварки плавлением. При использовании проволоки:

  • диаметром до 1 мм, а силы тока от 60 до 160 А, расход газа должен быть до 8 л в минуту.
  • диаметром до 1,2 мм, а силы тока от 100 до 250 А, расход газа должен быть до 9–12 л в минуту.
  • диаметром до 1,4 мм, а силы тока от 120 до 320 А, расход газа должен быть до 12–15 л в минуту.
  • диаметром до 1,6 мм, а силы тока от 249 до 380 А, расход газа должен быть до 15–18 л в минуту.
  • диаметром до 2 мм, а силы тока от 280 до 450 А, расход газа должен быть до 18–20 л в минуту.

Таков средний расход газа при сварке полуавтоматом. Есть еще косвенные факторы, которые могут повлиять на дополнительный расход газа, например, если сварка происходит на улице. В этом случае газ будет быстро улетучиваться, тем самым увеличится его расход.

Не стоит забывать и про качество самого газа, ведь если газ разбавлен, вам просто не удастся сохранить показатели в норме, перерасход будет в любом случае.

Влияние скорости сварки

Стоит помнить, что скорость может повлиять на прочностные качества соединения. В процессе сварки расплавленный металл должен заполнить ванну. На выходе должен получиться равномерный переход с образованием нормального покрытия кромок.

Длина шва должна быть больше диаметра применяемого стержня в 1,5-2 раза. Если поторопиться, то металлическая структура не сможет нормально прогреться, прочность ее снизится.

Стандартная сварочная ванна имеет параметры 14 мм в ширину и до 6 мм в глубину. Длина может варьироваться в диапазоне от 10 до 30 мм. Если учитывать вышеуказанные рекомендации и следить за непрерывным, равномерным заполнением сварочной ванны, можно получить качественный шов.

Изучая все важные показатели, можно понять, что такое процесс сварки. Качественное соединение напрямую зависит от правильного определения параметров и выбора необходимых настроек. Все данные играют огромную роль, особенно при изготовлении больших конструкций специального назначения. Ведь так важно, чтобы готовое соединение было износостойким.

Режимы автоматической сварки

Режимы автоматической сварки

Режимы автоматической сварки под флюсом выбираются на основании сила сварочного тока, его рода и полярности, напряжения электрической дуги, скорости сварки, диаметра электродной проволоки, а также скорости, с которой проволока подается в зону сварки.

Не столь важными, но тоже имеющими значимость при выборе режима сварки являются данные о величине вылета электрода, угле наклона электрода и свариваемых кромок, составе флюса для автоматической сварки, виде сварного соединения, а также информация о подготовке металла под сварку. Важно уметь правильно подобрать режим, чтобы сварочный шов получился крепким, а сам процесс был правильно выстроен.

Режимы автоматической сварки и основные параметры

Технические условия (ТУ) для сварки различных изделий содержат всю информацию, необходимую для работы мастера. При отсутствии таких данных специалист подбирает нужный режим сварки, проводя эксперименты на заготовках, выполненных из аналогичного сплава.

Режимы автоматической сварки и основные параметры

Используется несколько различных методов создания соединений. Однако при применении автоматизированного процесса отдают предпочтение электродуговой сварке с защитой флюсом. Специалисты называют ее самой эффективной. В данной статье мы затронем режимы автоматической сварки и расчет основных параметров их проведения.

Примечание. Сварка под флюсом в автоматическом режиме целесообразна, если толщина обрабатываемого изделия (мм) в пределах 5–50.

Основные особенности процесса:

  • Необходимо аккуратно и скрупулезно проводить обработку краев шва. Причина заключается в пористой структуре разъема, из-за чего часто образуются трещины, причем это относится ко всему шву.
  • Проводить сварку следует сразу после обработки краев.
  • Требования к материалам заготовки и электродов достаточно высоки.

Важными параметрами сварки являются:

Глубина провара во многом зависит от величины тока, проходящего через дугу. На нее оказывает влияние состав сплава, толщина заготовки, а также рисунок предстоящей сварки.

Для перераспределения тепла между заготовкой и электродом (плавящимся) чрезвычайно важна полярность электрического тока: прямая используется специалистами для того, чтобы повысить количество наплавляемого материала в шве. Однако она приводит к разбрызгиванию металла из сварочной ванны и снижает стойкость горения дуги.

Режимы автоматической сварки и основные параметры

Но чаще используют обратную полярность. Ее предпочитают для работы под защитой флюсом с большинством металлов, исключение составляет только алюминий.

Правильность формы сечения соединения во многом зависит от того, насколько оптимальным был выбор скорости сварки. Она оказывает прямое влияние на время прохождения сварочных процессов (металлургических и тепловых), а также на срок жидкого состояния ванны. Обратное влияние скорость оказывает на погонную энергию и расход тепла.

С изменением показателя скорости соединения меняются коэффициент формы сечения, ширина и глубина шва.

Напряжение влияет на размер контактного пятна дуги при ее соприкосновении с металлом. Увеличение приводит к его возрастанию. Низкое напряжение приводит к созданию вогнутого валика шва, не имеющего усиления. Кроме того происходит появление подрезов по линии шва. Высокое напряжение способствует узкой зоне проплавки и создает усиление шва.

Плотность тока обратно пропорциональна диаметру электродной проволоки при определенном токе.

Плотность тока увеличивается с уменьшением диаметра электрода. Возрастая, плотность тока уменьшает коэффициент формы соединения.

Пошаговый алгоритм расчета режимов автоматической сварки

Пошаговый алгоритм расчета режимов автоматической сварки

  1. Определяются вводные – какой необходимо создать тип шва, толщина используемого металла, параметры используемого оборудования: его мощность и производительность.
  2. Конструктор создает чертеж шва с расчетом требуемых параметров. Он должен быть выполнен в масштабе и разрезе.
  3. Затем высчитываются размер силы тока, диаметр используемого электрода и скорость, с которой планируется его подавать.
  4. Проводится расчет скорости проведения сварки в автоматическом режиме.
  5. Последним необходимо определить площадь создаваемого провара. В дальнейшем, при выполнении шва, значение данного показателя должно совпадать с образцом на чертеже. Отклонение не может превышать 10 % в обе стороны. Если оно становится больше, то меняются параметры дуги, в первую очередь, напряжение, и скорость работ.

Конструкторская документация должна включать следующие параметры: толщину заготовок, тип разделки швов в соответствии с требованиями ГОСТа к определенным видам и маркам металла, а также их форма. Технологии, которыми планируется пользоваться для проведения работ, оказывают влияние на подготовку краев деталей к соединению и режимы автоматической дуговой сварки.

Используются следующие формулы для расчета параметров сварки:

Q – удельная тепловая энергия (кДж/мм);

I – сварочный ток (А);

U – напряжение на дуге (В);

V – скорость сварки (мм/мин.);

к – коэффициент полезного тепловложения (для сварки под флюсом К = 0,9).

Коэффициент формы сечения шва рекомендуется в диапазоне 1…1,5. F=S / h, где:

h – глубина проплавления.

Надо отметить, что статья содержит только общую информацию, включающую особенности и режимы автоматической сварки под слоем флюса. На работу оказывает влияние сорт (марки) стали, флюс, применяемый для сварки и прочие факторы. Важно также уметь находить и пользоваться таблицами, с помощью которых можно сделать расчет оптимального режима сварки.

Критерии выбора режима автоматической сварки под флюсом

К основным параметрам выбора различных режимов сварки автоматом с защитой флюсом относятся: толщина кромок соединяемых изделий, требования, предъявляемые к геометрии (размерам и формам) швов (они зависят от глубины, на которую проплавляется металл), и ширина соединения.

В ходе выбора режима работы, опираясь на толщину деталей, определяют диаметр проволоки. После чего рассчитывают сварочный ток, исходя уже из диаметра электрода. Затем высчитывается, с какими скоростями следует подавать проволоку в сварную ванну и производить сварку.

Критерии выбора режима автоматической сварки под флюсом

Электродная проволока, используемая для сварки автоматом, должна иметь сплошное сечение, а диаметр может колебаться от 1 до 6 мм. И это при силе тока от 150 до 2000 А. Напряжение дуги – от 22 до 55 В. Данные таблицы, которая приводится ниже, позволяют приблизительно определять режимы автоматической сварки под флюсом:

Свариваемый материал

Толщина металла, мм

Вид шва

Форма кромок

Зазор, мм

Диаметр электрода, мм

Сила тока, А

Напряжение, В при токе:

Скорость сварки, м/ч

переменном

постоянном (обратной полярности)

3

Односторонний

Без разделки

0–1,5

2

250–500

28–30

26–28

48–50

5

0–2

400–450

38–40

10

2–4

700–750

34–38

30–34

Двусторонний

1–3

650–700

32–34

20

5–7

950–1000

40–44

32–36

18–20

750–800

38–42

22–24

30

6–8

16–18

6

V-образная, 60°

250–280

30–32

25–28

350–380

17–20

12

500–550

30–36

Сварка титана и его сплавов

4

340–360

45–55

8

16

590–600

40–50

520–540

40–42

40

800–820

42–44

Влияние выбранного режима автоматической сварки на глубину проплавления и ширину шва

Влияние выбранного режима автоматической сварки на глубину проплавления и ширину шва

    Влияние силы тока и напряжения сварочной дуги.

С возрастанием силы тока увеличиваются и давление дуги, и тепловая мощность. Соответственно, глубже становится проплавка металла. Однако ширина сварного соединения практически не меняется.

При увеличении напряжения дуги ее подвижность также возрастает. Одновременно растет и доля тепла, расходуемого на расплавку флюса. Вместе с тем, шире становится сварное соединение, при этом глубина проплавки меняется мало.

При выборе большего диаметра электрода и неизменной величины тока снижается глубина проплава металла. Ширина соединения при этом возрастает из-за того, что подвижность дуги увеличивается.

Влияние рода сварочного тока и его полярности

При росте скорости сварки уменьшается глубина проплава и ширина соединения. Это происходит потому, что количество расплавляемого металла снижается по сравнению с работой на меньшей скорости.

Одновременно с изменением полярности и рода тока меняются форма и размер соединения. Причина кроется в больших переменах количества тепловой энергии, которая возникает на дуге (ее аноде и катоде). Глубина проплавки снизится от 40 до 50 % при прямой полярности постоянного тока и на 15–20 % – при переменном токе. И это в сравнении с постоянным током обратной полярности.

Следовательно, сварное соединение малой ширины, в котором глубина проплава должна быть достаточно большой (примером может служить стыковой шов или угловое соединение без разделки), следует выполнять с помощью постоянного тока обратной полярности.

Вылет проволоки возрастает вместе с увеличением скоростей подогрева и плавления. Следовательно, увеличивается объем сварной ванны из-за металла электродной проволоки, что создает препятствие плавлению основного металла. Соответственно, глубина проплава снижается. Зная данную особенность, можно в ходе автоматической наплавки увеличить ее производительность.

Иногда (большей частью в процессе той же автоматической наплавки) электрод перемещают с различными амплитудой и частотой поперек кромок. Это сильно меняет как размер, так и форму сварного соединения. Таким образом происходит уменьшение глубины проплава и увеличение ширины шва изделия.

Данный способ сварки снижает возможность прожога в ходе создания стыковых соединений, в которых зазор между кромками достаточно большой. Этого же можно добиться при работе сдвоенным электродом, расположив их поперек движения сварки. При их размещении вдоль сварного движения глубина проплава увеличится.

При наклоне электрода вперед возможно подтекание расплавленного металла в сварную ванну. По этой причине может снизиться глубина проплава и увеличиться ширина соединения. Если же наклонить электрод назад, сварная дуга будет отсекать расплавленный металл от рабочей зоны. Вследствие этого уменьшится глубина проплава и возрастет ширина соединения.

По аналогии с вышесказанным, при сварном соединении, выполняемом на спуск, уменьшается глубина проплава и увеличивается ширина шва. А при соединении на подъем происходит обратный процесс – увеличивается глубина проплава и уменьшается ширина шва.

Читайте также: