Осциллограммы на затворах сварочного инвертора

Обновлено: 04.10.2024

Склеивайте клеем БФ-2, намазывайте тонким слоем и тут же стягивайте парой прочных одноразовых хомутиков. Есть такие длинные, шириной в 5-6 мм. Поставьте на тёплое, не более 90-100 градусов (полотенцесушитель в квартире). Клеевой зазор на работе аппарата никак не скажется, просто незначительно увеличится немагнитный зазор, уже имеющийся в сердечнике транса технологически.
Всё же, после ремонта проконтролируйте осциллограммы на затворах и стоках ключей, а также на выходе аппарата.

Хорошо, попробую заклеить. На аппарате где лопнул сердечник ,в обрыве один из резисторов на 15 Ом по затвору, видимо вышла из строя сборка ключей ,переходы сток-исток целые, на затворах меандр есть, а на выходе ничего


Это не говорит о неисправности самих транзисторов. Выпаивайте их и проверяйте каждый по отдельности (способов проверки в И-нете полно). Если ключи исправны, ищите неисправность в питании чоппера (+310V).

Я и не писал за неисправность ключей, разговор за сборку вцелом.транзисторы обычно так не умирают. Разберу модуль , а там видно будет.


Так сразу и написали бы МОДУЛЬ, а то фраза "сборка ключей" не понятна. Ведь IGBT модуль - это не просто сборка ключей. А вот под сборкой транзисторов (ключей), здесь называют весь блок силовых транзисторов, входящих в чоппер, а по простому - "баян". Ваша фраза ввела в заблуждение потому, что мне приходилось ремонтировать много WT-180S (Кратон), у которых чоппер построен на сборке дискретных IGBT.
С модулем не парьтесь - дохлое дело и потеря драгоценного времени. Лучше сразу переделывайте на дискретные, в теме об этом писали, и есть ссылка на подробную инструкцию.

Я ведь писал,что ремонтируемый аппарат соответствует схеме выложенной îldusom , на ней как раз и используется этот модуль, если бы мой аппарат был собран по другому варианту т.е на 4 ключах, было бы попроще

Осциллограммы явно не годятся, проверьте компоненты драйвера, и, если там всё в порядке, однозначно виноват ТГР. Такая форма сигнала на нём - явный признак дефекта сердечника. Измерьте кривули на его первичной обмотке, если они будут иметь такой же вид, ремонтируйте ТГР. Если сердечник у него типа Ш, постарайтесь разобрать его аккуратно, не повредив обмотки, и вставить новый сердечник. Лучшим для этих целей будет EPCOS N87. Клеить половинки между собой не нужно, просто стяните их потуже бумажной малярной лентой, а потом, после проверки индуктивности (должна быть не менее 550 мкГн), зафиксируйте снаружи эпоксидным компаундом (60% эпоксидки + 40% цемента).
Вроде бы всё, удачи.

Кривули и на первичке ТГР имеют соответствующий ненормальный вид. Постараюсь по возможности измерить индуктивность, но пока прибор для замеров не под рукой. Есть опыт успешной замены сердечника ТГР в аппаратах TELWIN TECNICA 164 именно по вашим рекомендациям на данный аппарат. Феррит я заказывал через интернет в Чип и Дип. Но у WT-180S он получается немного больше - 25х10х6, а в Чипе я такого типоразмера не нашёл. Был бы признателен за ссылку на другой магазин, где они есть в наличии. Или как вариант брать большего размера, скажем 25х13х7, и подгонять под существующий каркас катушки. Вот только всё равно смущает один факт, что на всех двух аппаратах у всех четырёх ТГР-ов абсолютно одинаковые "ненормальные" кривули осциллограмм. Хотелось бы для примера увидеть осциллограммы затворов ключей данного рабочего аппарата и смирится наконец с фактом что все ТГР убиты.

Попробуйте первичку перевернуть на ТГР. Начало и конец. Можно просто дорожки порезать. Либо припаять с другой стороны платы.
Кривули реально не те. Либо Вы как то измеряете не так.
Размеры ТГР можно и другие подогнать. На той же 164 Технике я от других китайцев ставлю. И больших размеров. Отлично всё идёт. Только контакты развести правильно. ТГР потом и залить чем нить можно на месте, что бы не болтался. Но в основном мы сами мотаем. Давно уже закупили партию ферритов.

erebus, поищите в И-нете книжку В.Я.Володина "Как отремонтировать сварочные аппараты своими руками". В ней хорошо описаны мостовые инверторы, там есть и осциллограммы.
Вполне вероятно, что оба сварочника, попавшие к Вам, работали в одинаково плохих условиях, или изготовлены в одном подвале, где ТГР-ы ставили исходя не из их качества, а из цены на них. Дешёвые сердечники имеют одну особенность - теряют маг. проницаемость при малейшем нагреве (уже при 90-100 градусах). А сердечники можно подобрать по размеру от трансов из тех же БП АТ и АТХ, их сейчас кучи валяются в разных магазинчиках типа Секонд-PC. Я в Краснодаре, в таком магазинчике, взял десяток фирменных (не китайских, а настоящих "тяжёлых") АТХ по 50 руб за штуку. Там же взял и десяток мощных бесперебойников(рабочих, но без батарей)фирм АРС и IPPON, по 100 руб за штуку (последнее просто для информации). Кладёте транс в ковшик или кастрюлю с холодной водой, положив на дно сложенную в несколько слоёв тряпочку, ставите на огонь, доводите до кипения, кипятите минут пять - десять, достаёте транс из кастрюли и руками, одетыми в перчатки, разнимаете половинки сердечника. Не забудьте перед кипячением, убрать изоленту с сердечника.

dersp, спасибо за указание на весьма полезную книгу. Направление в работе с аппаратом определил - однозначный ремонт ТГР и востановление управляющего сигнала к нормальному состоянию. Ход и результаты работ обязательно выложу в данной теме.

вопрос по картинка? Это нормально?
или тгр замена.
Шим работает, только регулировка происходит в первой трети резистора на панели. Это нормально?
Сейчас перелываю с модуля на дискретные элементы по схеме из форума.
Прошу камнями не кидать. сварочниками не занимался.

Часовой пояс: UTC + 4 часа

Кто сейчас на конференции

Осциллограммы


Осциллограммы на контрольных точках основных блоков сварочных инверторов. Управляющие импульсы на затворах IGBT транзисторов, выходные сигналы плат управления и других узлов инверторных сварочных аппаратов.

BLUEWELD PRESTIGE 170/1 осциллограмма на входе оптрона 2-3 вывод

Осциллограммы BLUEWELD PRESTIGE 170/1

Осциллограммы сварочного инвертора BLUEWELD PRESTIGE 170/1. В инверторе сгорел блок питания на VIPer20A но, как выяснилось позже, убитыми оказались: вентилятор … Читать дальше…

РЕСАНТА САИ 250 GPV242 30503443 V1.3 осциллограмма затвор-эмиттер без нагрузки.

Осциллограммы РЕСАНТА САИ 250 GPV242 V1.3

Осциллограммы сварочного инвертора РЕСАНТА САИ 250 GPV242 V1.3. В инверторе сгорели IGBT транзисторы и защитные диоды в результате замыкания между … Читать дальше…

EUROLUX IWM 220 SHV146 осциллограмма затвор-эмиттер нагрузка 10nf

Осциллограммы EUROLUX IWM 220 SHV146

Осциллограммы сварочного инвертора EUROLUX IWM 220 SHV146. В инверторе сгорел силовой блок. Осциллограммы были сняты во время ремонта, ссылка на … Читать дальше…

Осциллограмма на 6 ножке UC2845B

Осциллограммы BLUEWELD PRESTIGE 164

Осциллограммы сварочного инвертора BLUEWELD PRESTIGE 164. В этом инверторе сгорели силовые транзисторы и трансформатор гальванической развязки, что-то другое в них … Читать дальше…

Осциллограмма FUBAG IN 160 PCB 63961 IND1 на десятом выводе

Осциллограммы FUBAG IN 160 PCB 63961 IND1

Осциллограммы сварочного инвертора FUBAG IN 160 PCB 63961 IND1. В инверторе сгорел блок питания на микросхеме NCP1055B. В таких блоках … Читать дальше…

Осциллограммы сварочного инвертора АРИА-ИНВЕРТОР SW 260

Осциллограммы АРИА-ИНВЕРТОР SW 260

Осциллограммы сварочного инвертора АРИА-ИНВЕРТОР SW 260. Неисправность нет тока сварки, от электрода двоечки на токе 130 ампер еле искорки сыпются. … Читать дальше…

Осциллограмма КАЛИБР MICRO СВИ 205

Осциллограммы КАЛИБР MICRO СВИ 205

Осциллограммы сварочного инвертора КАЛИБР MICRO СВИ 205. В этом инверторе сгорела силовая часть, а вместе с ней много других деталюшек, … Читать дальше…

Осциллограмма ЦИКЛОН ВДИ 241

Осциллограммы ЦИКЛОН ВДИ 241

Осциллограммы сварочного инвертора ЦИКЛОН ВДИ 241. История этого сварочника самая обычная, принесли с комментариями: варили-варили и почему-то вырубился автомат. При … Читать дальше…

Осциллограммы FUBAG IN 160 PCB 64171 IND11

Осциллограммы сварочного инвертора FUBAG IN 160 PCB 64171 IND11. Как всегда с инверторами FUBAG: включается но не варит, совсем не … Читать дальше…

Осциллограмма СЯОГАН WX 189 первичка ТГР

Осциллограммы СЯОГАН WX 189

Осциллограммы сварочного инвертора СЯОГАН WX 189. В аппарате умерли транзисторы RJH60F5, досталось немного и трансформатору гальванической развязки (ТГР). В него, … Читать дальше…

Последний пост

Просмотры

  • Сварочный инвертор РЕСАНТА САИ 190 К SH105 (9 014)
  • Сварочный инвертор TELWIN TECNICA 164 (7 403)
  • Сварочный инвертор FOXWELD МАСТЕР 202 (6 364)
  • Сварочный инвертор РЕСАНТА САИ 250 ПРОФ GP95 V3.0 (6 265)
  • Сварочный инвертор РЕСАНТА САИ 250 GP44 V2.0 (5 760)

Комментарии

  • Администратор к записи Ремонт BESTWELD TIGER 210
  • kca к записи Ремонт BESTWELD TIGER 210
  • Администратор к записи Ремонт EUROLUX IWM 220 SHV146 — замена GT50JR22
  • SkynetB к записи Ремонт EUROLUX IWM 220 SHV146 — замена GT50JR22
  • РЕСАНТА САИ 190 К SH105 схема инструкции к записи Ремонт РЕСАНТА САИ 190 К SH105 — замена GT50JR22

Облако меток


Найдите нас

О сайте

Ремонт сварочных инверторов, телевизоров, мониторов и другой бытовой электроники в Липецке.

Адрес г. Липецк, пр. Победы 5 Часы Понедельник— Воскресенье: 10:00–22:00

Сварочный инвертор своими руками

Вашему вниманию представлена схема сварочного инвертора, который вы можете собрать своими руками. Максимальный потребляемый ток - 32 ампера, 220 вольт. Ток сварки - около 250 ампер, что позволяет без проблем варить электродом 5-кой, длина дуги 1 см, переходящим больше 1 см в низкотемпературную плазму. КПД источника на уровне магазинных, а может и лучше (имеется в виду инверторные).

На рисунке 1 приведена схема блока питания для сварочного.

Трансформатор намотан на феррите Ш7х7 или 8х8
Первичка имеет 100 витков провода ПЭВ 0.3мм
Вторичка 2 имеет 15 витков провода ПЭВ 1мм
Вторичка 3 имеет 15 витков ПЭВ 0.2мм
Вторичка 4 и 5 по 20 витков провода ПЭВ 0.35мм
Все обмотки необходимо мотать во всю ширину каркаса, это дает ощутимо более стабильное напряжение.

На рисунке 2 - схема сварочника. Частота - 41 кГц, но можно попробовать и 55 кГц. Трансформатор на 55кгц тогда 9 витков на 3 витка, для увеличения ПВ трансформатора.

Трансформатор на 41кгц - два комплекта Ш20х28 2000нм, зазор 0.05мм, газета прокладка, 12вит х 4вит, 10кв мм х 30 кв мм, медной лентой (жесть) в бумаге. Обмотки трансформатора сделаны из медной жести толщиной 0.25 мм шириной 40мм обернутые для изоляции в бумагу от кассового аппарата. Вторичка делается из трех слоев жести (бутерброд) разделенных между собой фторопластовой лентой, для изоляции между собой, для лучшей проводимости высоко- частотных токов, контактные концы вторички на выходе трансформатора спаяны вместе.

Дроссель L2 намотан на сердечнике Ш20х28, феррит 2000нм, 5 витков, 25 кв.мм, зазор 0.15 - 0.5мм (два слоя бумаги от принтера). Токовый трансформатор – датчик тока два кольца К30х18х7 первичка продетый провод через кольцо, вторичка 85 витков провод толщиной 0.5мм.

Сборка сварочного

Намотка трансформатора

Намотку трансформатора нужно делать с помощью медной жести толщиной 0.3мм и шириной 40мм, ее нужно обернуть термобумагой от кассового аппарата толщиной 0.05мм, эта бумага прочная и не так рвется как обычная при намотке трансформатора.

Вы скажите, а почему не намотать обычным толстым проводом, а нельзя потому что этот трансформатор работает на высокочастотных токах и эти токи вытесняются на поверхность проводника и середину толстого провода не задействует, что приводит к нагреву, называется это явление Скин эффект!

И с ним надо бороться, просто надо делать проводник с большой поверхностью, вот тонкая медная жесть этим и обладает она имеет большую поверхность по которой идет ток, а вторичная обмотка должна состоять из бутерброда трех медных лент разделенных фторопластовой пленкой, она тоньше и обернуты все эти слои в термобумагу. Эта бумага обладает свойством темнеть при нагреве, нам это не надо и плохо, от этого не будет пускай так и останется главное, что не рвется.

Можно намотать обмотки проводом ПЭВ сечением 0.5…0.7мм состоящих из нескольких десятков жил, но это хуже, так как провода круглые и состыкуются между собой с воздушными зазорами, которые замедляют теплообмен и имеют меньшую общую площадь сечения проводов вместе взятых в сравнении с жестью на 30%, которая может влезть окна ферритового сердечника.

У трансформатора греется не феррит, а обмотка поэтому нужно следовать этим рекомендациям.

Трансформатор и вся конструкция должны обдуваться внутри корпуса вентилятором на 220 вольт 0.13 ампера или больше.

Конструкция

Для охлаждения всех мощных компонентов хорошо использовать радиаторы с вентиляторами от старых компьютеров Pentium 4 и Athlon 64. Мне эти радиаторы достались из компьютерного магазина делающего модернизацию, всего по 3…4$ за штуку.

Силовой косой мост нужно делать на двух таких радиаторах, верхняя часть моста на одном, нижняя часть на другом. Прикрутить на эти радиаторы диоды моста HFA30 и HFA25 через слюдяную прокладку. IRG4PC50W нужно прикручивать без слюды через теплопроводящую пасту КТП8.

Выводы диодов и транзисторов нужно прикрутить на встречу друг другу на обоих радиаторах, а между выводами и двумя радиаторами вставить плату, соединяющею цепи питания 300вольт с деталями моста.

На схеме не указано нужно на эту плату в питание 300V припаять 12…14 штук конденсаторов по 0.15мк 630 вольт. Это нужно, чтобы выбросы трансформатора уходили в цепь питания, ликвидируя резонансные выбросы тока силовых ключей от трансформатора.

Остальная часть моста соединяется между собой навесным монтажом проводниками не большой длины.

Настройка

Подать питание на ШИМ 15вольт и хотя бы на один вентилятор для разряда емкости С6 контролирующую время срабатывания реле.

Реле К1 нужно для замыкания резистора R11, после того, когда зарядятся конденсаторы С9…12 через резистор R11 который уменьшает всплеск тока при включении сварочного в сеть 220вольт.

Без резистора R11 на прямую, при включении получился бы большой БАХ во время зарядки емкости 3000мк 400V, для этого эта мера и нужна.

Проверить срабатывание реле замыкающие резистор R11 через 2…10 секунд после подачи питания на плату ШИМ.

Проверить плату ШИМ на присутствие прямоугольных импульсов идущих к оптронам HCPL3120 после срабатывания обоих реле К1 и К2.

Ширина импульсов должна быть шириной относительно нулевой паузе 44% нулевая 66%

Проверить драйвера на оптронах и усилителях ведущих прямоугольный сигнал амплитудой 15вольт убедится в том, что напряжение на IGBT затворах не превышает 16вольт.

Подать питание 15 Вольт на мост для проверки его работы на правильность изготовления моста.

Ток потребления при этом не должен превышать 100мА на холостом ходу.

Убедится в правильной фразировке обмоток силового трансформатора и трансформатора тока с помощью двух лучевого осциллографа .

Один луч осциллографа на первичке, второй на вторичке, чтобы фазы импульсов были одинаковые, разница только в напряжении обмоток.

Подать на мост питание от силовых конденсаторов С9…С12 через лампочку 220вольт 150..200ватт предварительно установив частоту ШИМ 55кГц подключить осциллограф на коллектор эмиттер нижнего IGBT транзистора посмотреть на форму сигнала, чтобы не было всплесков напряжения выше 330 вольт как обычно.

Начать понижать тактовую частоту ШИМ до появления на нижнем ключе IGBT маленького загиба говорящем о перенасыщении трансформатора, записать эту частоту на которой произошел загиб поделить ее на 2 и результат прибавить к частоте перенасыщения, например перенасыщение 30кГц делим на 2 = 15 и 30+15=45, 45 это и есть рабочая частота трансформатора и ШИМа.

Ток потребления моста должен быть около 150ма и лампочка должна еле светиться, если она светится очень ярко, это говорит о пробое обмоток трансформатора или не правильно собранном мосте.

Подключить к выходу сварочного провода длиной не мене 2 метров для создания добавочной индуктивности выхода.

Подать питание на мост уже через чайник 2200ватт, а на лампочку установить силу тока на ШИМ минимум R3 ближе к резистору R5, замкнуть выход сварочного проконтролировать напряжение на нижнем ключе моста, чтобы было не более 360вольт по осциллографу, при этом не должно быть ни какого шума от трансформатора. Если он есть - убедиться в правильной фазировке трансформатора -датчика тока пропустить провод в обратную сторону через кольцо.

Если шум остался, то нужно расположить плату ШИМ и драйвера на оптронах подальше от источников помех в основном силовой трансформатор и дроссель L2 и силовые проводники.

Еще при сборке моста драйвера нужно устанавливать рядом с радиаторами моста над IGBT транзисторами и не ближе к резисторам R24 R25 на 3 сантиметра. Соединения выхода драйвера и затвора IGBT должны быть короткие. Проводники идущие от ШИМ к оптронам не должны проходить рядом с источниками помех и должны быть как можно короче.

Все сигнальные провода от токового трансформатора и идущие к оптронам от ШИМ должны быть скрученные, чтобы понизить уровень помех и должны быть как можно короче.

Дальше начинаем повышать ток сварочного с помощью резистора R3 ближе к резистору R4 выход сварочного замкнут на ключе нижнего IGBT, ширина импульса чуть увеличивается, что свидетельствует о работе ШИМ. Ток больше - ширина больше, ток меньше - ширина меньше.

Ни какого шума быть не должно иначе выйдут из строя IGBT.

Добавлять ток и слушать, смотреть осциллограф на превышение напряжения нижнего ключа, чтобы не выше 500вольт, максимум 550 вольт в выбросе, но обычно 340 вольт.

Дойти до тока, где ширина резко становиться максимальной говорящим, что чайник не может дать максимальный ток.

Все, теперь на прямую без чайника идем от минимума до максимума, смотреть осциллограф и слушать, чтобы было тихо. Дойти до максимального тока, ширина должна увеличиться, выбросы в норме, не более 340вольт обычно.

Начинать варить, в начале 10 секунд. Проверяем радиаторы, потом 20 секунд, тоже холодные и 1 минуту трансформатор теплый, спалить 2 длинных электрода 4мм трансформатор горечеватый

Радиаторы диодов 150ebu02 заметно нагрелись после трех электродов, варить уже тяжело, человек устает, хотя варится классно, трансформатор горяченький, да и так уже не кто не варит. Вентилятор, через 2 минуты трансформатор доводит до теплого состояния и можно варить снова до опупения.

Ниже вы можете скачать печатные платы в формате LAY и др. файлы

Осциллограммы на затворах сварочного инвертора



Часовой пояс: UTC + 3 часа

анализ осциллограмм на затворах IGBT транзисторов

Помогите понять осциллограммы работы двух разных сварочников, снятых с затворов IGBT-транзисторов относительно их эмиттеров при работе аппарата на холостом ходу.
Интересуют моменты помеченные красным кружком. Что это за колебания , должны ли они быть, и почему на первом их видно, а на втором аппарате их почти нет. Импульс почти прямоугольный. Аппараты исправны. Оба сварочника работают на одинаковой частоте чуть менее 50 кГц. Параметры напряжения и длительности клетки осциллографа отображены в левом верхнем углу скриншота.

Схемы могут быть разными, но кажется, что аппарат с малой амплитудой
на затворе должен скоро прекратить работать (может. питания на раскачке не хватает?).

Там, где видны колебания это Ресанта САИ 220 GP, а там где импульс прямоугольный это SD-Master Tecknic 200. Схемы у них почти одинаковые. Шим собран на 3845 контроллере. На обоих аппаратах менял силовые ключи и диоды в высоковольтной части.
Аппараты варят. При чем, тот что с колебаниями в управляющем импульсе, варит на 5 с плюсом. Пусть это мое субъективное мнение. И сварной сказал то же самое. Ресанта варит с легкостью. А другому как бы немного не хватает. Но варит без затыков. И я еще заметил что уровень напряжения отличается в 2 раза. На ресанте размах амплитуды гораздо выше.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

без схемы управления транзисторами все осциллограммы и обсуждения будут бессмысленны. что там стоит, ТГР или оптика, или вообще бутстрапный драйвер? у разных драйверов свои особенности и подводные камни.

Компэл стал дистрибьютором компании POWER FLASH, производящей широкий спектр популярных батареек. POWER FLASH производит солевые и щелочные (алкалиновые) цилиндрические батарейки, а также серию литий-диоксидмарганцевых батареек. POWER FLASH выступает OEM-производителем для крупных японских и европейских производителей батареек. Батарейки POWER FLASH предназначены для самого широкого спектра применений – от бытового до промышленного.

_________________
"То, что я понял, - прекрасно, из этого я заключаю, что остальное, что я не понял, - тоже прекрасно". Сократ.

Высокое качество при конкурентной стоимости позволяет DC/DC-преобразователям MORNSUN конкурировать с аналогами ведущих мировых производителей. Продукция данного бренда, такая как семейство UWTH1D, может с успехом применяться в железнодорожных приложениях. Для телекоммуникационного оборудования подходят DC/DC-преобразователи семейств VCB и VCF, для систем распределенного электропитания – малогабаритные импульсные PoL-стабилизаторы напряжения семейства K78, а для автоматизированных системах производства и робототехники, незаменима серия KUB. Есть и уникальные решения, например, миниатюрный DC/DC-конвертер B0505ST16-W5 в корпусе микросхемы, предназначенный для медицинских приборов.

ТГР есть в обоих.
Вот, выложу схемы обоих аппаратов в PDF для сравнения.

На аппарате SD-Master стояли ключи K30H603. Их выбило все шесть штук. Я таких не нашёл у нас в магазинах. Вместо них, влепил 4шт. FGH60N60 без каких либо переделок.

Там история такая, что один сварной выпалил за раз три аппарата на объекте. При чём, сразу. В течении нескольких минут. Просто жёг их один за одним. На длинном составном удлинителе составленного из всякого хлама и без заземления. И аппараты умирали не в момент дуги. А на холостом ходу. Минусовой держак, я так понимаю, был подключен к железке имеющей контакт с землёй.

Проблемные ТГР сварочных инверторов,
изготовление ТГР на примере ДИОЛД АСИ-140 М

Есть определенные серии сварочных инверторов , в которых типичной "болезнью" является трансформатор гальванической развязки ТГР . Его малый ресурс можно связать с некачественным магнитопроводом (он как раз и теряет свои свойства) , малыми габаритными размерами (не имеет запаса ппо индуктивности и работает близко к максимальной габаритной мощности) и ко всему прочему "проблемные" ТГР залиты эпоксидной смолой , что мешает охлаждению, а тепло значительно ускоряет процесс потери свойств магнитопровода.
В общем само явление значительной потери свойств магнитопровода приводящее к неисправностям достаточно редкое, так как большинство производителей делают значительный запас по индуктивности, учитывая потери свойств магнитопроводов в процессе эксплуатации. В электронике гораздо чаще можно встретить к примеру межвитковой пробой, но как уже было сказано выше для целого ряда бюджетных маломощных аппаратов потеря свойств магнитопровода настоящая "болячка", некоторые из таких аппаратов ProfHelper DaVinci, Prestige , AikenWeld Ranger, DeFort DWI и обсуждаемый Диолд .
Так что-же происходит при потере свойств магнитопровода ? Давайте посмотрим схему драйвера ключей аппарата Диолд АСИ-140


Сигнал от ШИМ контроллера коммутируемый MOSFET транзистором средней мощности поступает на трансформатор Т2 , который и выполняет роль гальванической развязки между верхним, нижним плечом и низковольтной частью схемы , в момент когда магнитопровод потерял значительную часть своих свойств , индуктивность обмоток падает , а потери в трансформаторе возрастают . Учитывая то что нагрузка трансформатора имеет емкостный характер, а именно емкость затворов IGBT транзисторов, сигнал после "подсевшего" ТГР начинает терять в амплитуде, а главное начинают растягивать фронта (длительность нарастания и спада импульса ), и пошла цепочка последовательностей. Растянутые фронта - увеличивают время открытия и закрытия силового ключа , это в свою очередь дают перегрев кристалла полупроводника транзистора , так как время пока транзистор находится между полностью открытом и полностью закрытом состоянии практически вся мощность рассеивается на транзисторе. В итоге транзисторы перегреваются, а в какой-то момент включение на столько замедляется что мощность превышает мощность рассеивания на транзисторе и происходит тепловой пробой кристалла, тут ни какая тепловая защита уже не спасет , так как транзистор попросту не успевает передать все выделенное тепло на радиатор.
Те кому все же сложно представить этот режим , представьте что вы приседаете, по команде "делай раз" вы полностью сели, по команде "делай два" - полностью встали, и в первом и во втором положении вы особо не напряжены, а теперь попробуйте все это проделать очень медленно , медленно вставать и садится - будет в разы тяжелее, а если принять положение "полтора" - будете тратить силы по максимуму . Так и с транзисторами , не любят они режим "полтора " !
Ниже несколько примеров, неправильных форм сигналов, с такой формой управляющего сигнала сварочный инвертор сможет работать, только без нагрузки в режиме холостого хода или с очень слабой нагрузкой.


Но к сожалению на практике не все так красиво как в теории , чаще всего пробой силовых ключей происходит именно когда сердечник ТГР еще не сильно утерял свои свойства , а сам аппарат был перегружен. Поэтому при ремонте осциллограммы кажутся вполне приемлемыми, но замеры мы веть делаем быз сетевого напряжения, поэтому ТГР нагружен только емкостью затвор-эмиттер (Сзэ) но есть еще емкость затвор-коллектор (Сзк) которая гораздо меньше и ее зачастую просто не учитывают, а напрасно!

Дело в том что емкость затвор-эмиттер (Сзэ) хоть и гораздо больше чем емкость затвор-коллектор (Сзк) но заряжается она до напряжения управления затвором , часто это от -10В до +15В , а вот емкость затвор-коллектор (Сзк) заряжается до напряжения затвор - коллектор , это порядка 280. 320В , и разряжается до нуля при открытии транзистора , следовательно это емкости для заряда до такого большого напряжения тоже требуется определенное время . Вот и получается что при включении сварочного инвертора от сети, нагрузка на ТГР больше чем при тестах от блока питания на столе, и форма сигнала естественно отличается не в лучшую сторону.
Поэтому большинство мастеров кто уже не первый раз столкнулся с подобными аппаратами стараются по возможности сразу менять Трансформатор Гальванической Развязки , так как если это не сделать возвраты по гарантии после ремонта таких аппаратов - обычное дело. Конечно я имею ввиду честных мастеров которые добросовестно относятся к своей работе и дают на нее гарантию.
С сутью проблемы мы разобрались , давайте перейдем к изготовлению ТГР на примере Диолд АСИ-140. Перед этим пару слов о взаимозаменяемости , на всех перечисленных выше аппаратах стоят схожие ТГР которые при желании можно заменить друг другом НО соблюдая фазировку ! Так как печатные платы у всех сварочных разные , конфигурация выводов у трансформаторов выполнена по разному и просто вытянуть ТГР из одного сварочного и в ставить в другую модель не всегда возможно.
Разбирать, разматывать старый ТГР залитый эпоксидной смолой пересчитывать его витки, смотреть направление намотки и т.д. уж совсем не хочется. У нас есть схема где указаны начало обмоток , но можно обойтись и без нее . Например мы знаем что сдвиг по фазе у нас 0 о то есть амплитуда ШИМ на входе совпадает по времени с амплитудой на выходе, так же знаем схему включения силового трансформатора инвертора - это "Косой мост" или как пишут в учебниках ассиметричный мост , это значит что силовые ключи должны работать синфазно, то есть закрываться и открываться одновременно , поэтому начало-конец обмоток ТГР нижнего и верхнего ключа тоже должны быть одинаково намотаны, в одном направлении. Получается за начало всех трех обмоток мы берем "горячий конец " как на схеме - помечено точкой, можно взять и "холодный конец" (общий) но обязательно у всех трех обмоток начало должно быть одинаково .


Теперь направление обмотки - здесь опять же мотать можно в любую сторону но обязательно одинаково все три обмотки, начали мотать первичку по часовой стрелке, значит и остальные должны быть намотаны так же.
Магнитопровод я выбрал ЕЕ25 материал РС40 - просто потому что такой был под рукой. Пробовал мотать на кольце, но результат и сам процес намотки на кольцо мне не понравился. Магнитопровод конечно можно использовать и больше, если позволяет место, но не советую брать меньше ЕЕ19 иначе через время могут проявится те же "болячки" что и у родного ТГР. Схема выводов трансформатора гальванической развязки для Диолд АСИ-140 соответствует рисунку ниже.


Сначала намотана обмотка нижнего плеча (Н1,К1) , затем обмотка возбуждения (Н2,К2) и последней обмотка верхнего ключа , такое решение сделано только потому что между обмотками нижнего и верхнего плеча достаточно большой потенциал и если обмотки намотаны рядом да еще и плохо изолированы - пробой дело времени. Разумеется о намотке в два или в три провода речи идти не может - слишком большой риск пробоя, конечно если использовать провод МГТФ это можно сделать но такой провод не поместится на этом сердечнике.
В интернете уже достаточно много статей по перемотке ТГР и я признаюсь не стал рассчитывать количество витков, а просто подобрал исходя из чужого опыта.
Оптимально оказалось l=28вит. ll=27вит. lll=28вит. провод использовал диаметром 0,4мм ПЭВ-1 или нечто похожее на него. Направление намотки на рисунке ниже.


Из рисунка думаю все понятно - вид снизу, между слоями изолировал термоскотчем в два слоя, особое внимание к выводам, они не должны касаться следующих обмоток.
После намотки и изоляции склеиваем сердечник , хотя у ТГР зазора в сердечнике быть не должно , все же было замечено что если вставить альбомный лист между сердечниками , сигнал немного четче , хотя и практически не заметно. Полноценным зазором лист бумаги конечно не назовешь, но я его прокладываю.
Сравним что получилось в сравнении с штатным ТГР:


Даже с первого взгляда понятно что новый трансформатор имеет свободный доступ воздуха и не будет так накапливать в себе тепло как штатный буквально заключенный в "шубу" из эпоксидной смолы, а тепло как я писал выше вызывает деградацию материала сердечника.
Ставим ТГР на место и проверяем с питанием от лабораторного блока питания.


В качестве нагрузки на ТГР во время проверки можно временно подставить силовые ключи или использовать их эквивалент - конденсаторы на 4700 пф включенные между затвором и эмиттером, по одному вместо каждого транзистора . Как видим форма сигнала получилась хорошая.
При подключении схемы к блоку питания стоит обратить внимание на ток потребления, он не должен сильно отличатся от тока потребления с родным ТГР, к примеру в моем случае схема с родным трансформатором потребляла 125мА, с перемотанным уже 140мА , разница мизерная всего 15мА, а вот когда я экспериментировал с кольцом используя провод МГТФ получил потребление в 320мА - а это уже лишняя нагрузка транзистор коммутирующий ТГР (по схеме Q9) и на не без того слабый блок питания инвертора, выполненный в виде дополнительной обмотки от силового трансформатора инвертора. По этой причине провод МГТФ я не стал использовать и ферритовые кольза тоже отложил в сторонку.




Вернемся к эпюрам , максимальное напряжение +15В минимальное -10В такая разность позволяет четко открывать и быстро закрывать IGBT транзисторы. На последнем фото осцилографа можно видеть "плавно" нарастающие и спадающие франта, ничего в мире не делается мгновенно и это как раз время заряда емкости затвора и ее разряда, в данном случае одна клеточка на экране осциллографа это 800нс , время нарастания (Rise Timе) 560нс что равняется 0,00000056 секунды или 0,56 мкс или 0,00056 мс, так что вполне не плохой результат во времени для заряда емкости затворов 4х ключей.
Ну и конечно фото как установлен ТРГ на плате, пока без одного радиатора.


Всем кто осилил статью целиком - спасибо за внимание ! Вопросы, замечания и пожелания пишите в комментариях.

Читайте также: