При какой температуре допускается производить сварку труб из титановых сплавов

Обновлено: 30.06.2024

Резка на заготовки и подготовка кромок под сварку ведутся механическими способами. Разделительная резка и подготовка кромок толстостенных изделий возможна и газотермическими способами, но с обязательной последующей механической обработкой кромок на глубину не менее 3-5 мм.

Кромки на ширину 15-20 мм зачищают металлическими щетками, шабером и т .п. с последующим обезжириванием.

Если до сварки конструкция подверглась термообработке (вальцовке, ковке, штамповке), то перед сваркой ее поверхности необходимо очистить дробеструйным или гидропескоструйным аппаратом, а затем еще подвергнутъ и химической обработке: рыхлению оксидной пленки, травлению и осветлению.

Режимы химической обработки титана и его сплавов

Рыхление оксидной пленки

Нитрит натрия 150-200 г
Углекислый натрий 500-700 г

Плавиковая кислота 220-300 мл
Азотная кислота 480-550 мл

Азотная кислота 600-750 мл
Плавиковая кислота 85-100 мл

После химической обработки свариваемые кромки промывают на ширину 20 мм бензином и протирают этиловым спиртом или ацетиленом. Сварочную проволоку предварительно подвергают вакуумному отжигу с последующим обезжириванием.

Сварку ведут в приспособлениях или на прихватках, которые выполняют ручной аргонодуговой сваркой W-электродом.Свариваемые поверхности, подготовленные к сварке, нельзя трогать незащищенными руками.

Выбор параметров режима

Сварку осуществляют постоянным током обратной полярности. Режимы выбирают исходя из толщины металла с учетом склонности сплава к росту зерна и термическому циклу. Для уменьшения роста зерна рекомендуются режимы с малой погонной энергией и повышенными скоростями.

Учитывая высокое электрическое сопротивление титана, сварку ведут с малыми вылетами электрода. При сварке на низких токовых режимах возможен непровар корня шва. Во избежание этого корень выполняют ручной аргонодуговой сваркой W-электродом, а остальную разделку - сваркой плавящимся электродом.

Титан и его сплавы с пределом прочности не менее 90 кгс/мм 2

То же более 90 кгс/мм 2

Высокопрочные сплавы типа ВТ14, ВТ22 и др.

Основное пространственное положение - нижнее.

При сварке с глубоким проплавлением на повышенных токовых режимах рекомендуется сварочная смесь гелия и apгона (80%+20%). Для повышения прочности, пластичности и стойкости против образования трещин сварные соединения термически упрочняемых сплавов подвергают последующей термической обработке, режим которой зависит от состава сплава.

Техника сварки

Надежная зашита зоны нагрева при механизированной сварке титана плавящимся электродом в инертных газах сопряжена с рядом трудностей. Поэтому сварку этим способом в большинстве случаев ведут в камерах с контролируемой атмосферой.

Целесообразно применять импульсно-дуговой метод, что обеспечивает возможность сварки в монтажных условиях, повышает производительность по сравнению с ручной сваркой неплавящимся электродом при одновременном снижении погонной энергии в 2-2,5 раза.

Ориентировочные режимы сварки титана и его сплавов

150-200
200-220
300-330

В ряде случаев сварка титана и его сплавов выполняется в вакууме. Преимущество этого способа заключается в обеспечении высокой чистоты металла шва. В нем не остается примесей - газов и неметаллических включений.

Техника и режимы сварки должны обеспечивать устойчивое горение дуги с минимальным разбрызгиванием, что достигается при струйном переносе электродного металла Этот процесс осуществляется при определенном соотношении сварочного тока напряжения на дуге, скорости подачи электродной проволоки и вылета электрода.

Газовая защита

Качественное сварное соединение титановых сплавов получается только при надежной газовой защите сварного шва и участков основного металла, нагретых до 250-300°С.

Существуют три варианта защиты:

  1. струйная с использованием специальных приспособлений
  2. местная в герметичных камерах малого объема
  3. общая в камерах с контролируемой атмосферой (ВКС-1, ВУАС-1, УСБ-1)

Сварка титана в герметичной камере

Дополнительные защитные устройства изготовляют из нержавеющей стали. Внутри имеются рассекатели и газовые линзы. Насадка, прикрепляемая к газовой горелке для защиты кристаллизующейся сварочной ванны, должна быть шириной 40-50 мм и длиной 60-120 мм в зависимости от режима сварки. Для сварки трубчатых конструкций, кольцевых поворотных и неповоротных стыков применяют местные или малогабаритные защитные камеры.

Насадка для сварки титана

Подкладка для защиты корня шва

Качество зашиты определяют по внешнему виду металла шва. Серебристая или соломенного цвета поверхность шва свидетельствует о хорошей защите. Желто-голубой цвет сварного шва указывает на нарушение защиты, хотя в отдельных случаях такие швы считаются допустимыми. Темно-синий или синевато-серый цвет с пятнами серого налета характеризует плохое качество шва.

Технология сварки титана и его сплавов

Высокая химическая активность металла при высокой температуре, особенно в расплавленном состоянии. Поэтому необходима надежная защита от воздуха не только сварочной ванны, но и остывающих участков шва и околошовной зоны, пока их температура не снизится до 250-300°С. Требуется защита и обратной стороны шва даже в том случае, если металл не расплавлялся, а только нагревался выше этой температуры.

Склонность титановых сплавов к росту зерна металла в нагретых до высоких температур участках. Это затрудняет выбор режима сварки - такого, при котором нагрев околошовной зоны был бы минимальным.

Высокая температура плавления титана требует применять концентрированные источники нагрева. Низкая теплопроводность титана приводит к снижению эффективности источника нагрева по сравнению со сваркой сталей.

Поры и холодные трещины сварных соединений титана возникают из-за вредных газовых примесей и водорода. Поэтому необходимо обеспечить чистоту основного металла и сварочных материалов, в том числе присадочной проволоки.

Вблизи точки плавления поверхностное натяжение титана в 1,5 раза выше, чем алюминия, что позволяет формировать корень шва на весу. Однако расплавленный металл обладает низкой вязкостью, и при некачественной сборке деталей могут образоваться прожоги.

ГАЗОВАЯ ЗАЩИТА СВАРОЧНОЙ ВАННЫ

Существуют три варианта защиты:

  • струйная с использованием специальных приспособлений
  • местная в герметичных камерах малого объема
  • общая в камерах с контролируемой атмосферой (ВКС-1, ВУАС-1, УСБ-1)

Местная защита в герметичной камере малого объема

При аргонодуговой сварке титана W-электродом следует применять сварочные горелки с возможно большим газовым соплом, создающим обширную зону защиты. Поток аргона через сопло должен быть ламинарным, что достигается газовыми линзами, установленными внутри сопла. Расход газа в зависимости от режима сварки колеблется от 8 до 20 л/мин. Если сопло горелки не гарантирует надежной защиты, то его дополняют специальной насадкой, коробом или другим приспособлением. Дополнительные защитные устройства изготавливают из нержавеющей стали. Внутри имеются рассекатели и газовые линзы. Насадка, прикрепляемая к газовой горелке для защиты кристаллизующейся сварочной ванны, должна иметь ширину 40-50 мм и длину от 60-120 мм в зависимости от режима сварки. Для сварки трубчатых конструкций, кольцевых поворотных и неповоротных стыков применяют местные или малогабаритные защитные камеры.

Сварка титана с дополнительной насадкой

1- дополнительная насадка; 2 - газовая линза

Качество защиты определяют по внешнему виду металла шва. Серебристая или соломенного цвета поверхность шва свидетельствует о хорошей защите. Желто-голубой цвет указывает на нарушение защиты, хотя в отдельных случаях такие швы считаются допустимыми. Темно-синий или синевато-серый цвет с пятнами серого налета характеризует низкое качество шва.

ГАЗОВАЯ ЗАЩИТА НАГРЕТЫХ УЧАСТКОВ

Специальная подкладка для защиты корня шва

Специальная подкладка для защиты корня шва, нагретого до 250-300°С

Защитные приспособления для тавровых и угловых соединений

Защитные приспособления из нержавеющей стали для тавровых и угловых соединений

ЗАЩИТА ШВА ТРУБОПРОВОДА

Защита шва трубопровода изнутри и снаружи

Защита при приварке фланца

Защита при приварке фланца

Защита при сварке секционных отводов

Защита при сварке секционных отводов

Подготовка к сварке

Резку титана и подготовку кромок под сварку выполняют механическим способом. Для толстостенных изделий пригодны и газотермические способы, но с обязательной последующей механической обработкой кромок на глубину не менее 3-5 мм и на ширину 15-20 мм. После этого кромки зачищают металлическими щетками, шабером и т.п. и обезжиривают. Конструкции, которые перед сваркой испытывали нагрев - при вальцовке, ковке, штамповке и т.д. - должны быть подвергнуты дробеструйной или гидропескоструйной очистке и затем химической обработке: рыхлению оксидной пленки, травлению и осветлению.

Режим химической обработки титана и его сплавов

Раствор

Длительность обработки, мин

Назначение

Состав

Нитрит натрия 150-200 г/л Углекислый натрий 500-700 г/л

Плавиковая кислота 220-300 мл/л Азотная кислота 480-550 мл/л

Азотная кислота 600-750 мл/л Плавиковая кислота 85-100 мл/л

После этого свариваемые кромки промывают бензином на ширину 20 мм и протирают этиловым спиртом или ацетоном.

Сварочную проволоку предварительно подвергают вакуумному отжигу и обезжиривают ацетоном или спиртом. Окисленную часть удаляют кусачками. Поверхности, подготовленные к сварке, нельзя трогать незащищенными руками.

Сварку титана и его сплавов рекомендуется вести в отдельном помещении. Температура воздуха в нем должна быть не ниже + 15°С, а скорость его движения - не более 0,5 м/с.

Сварку выполняют на постоянном токе прямой полярности непрерывно горящей или импульсной дугой. Используют аргон высшего сорта и гелий высокой чистоты.

Сварочный ток выбирают в зависимости от толщины свариваемого изделия и диаметра W-электрода.

Основное пространственное положение шва - нижнее. Ручную сварку ведут без колебательных движений горелкой, короткой дугой, "углом вперед" Проволоку подают непрерывно, угол между ней и горелкой поддерживают около 90°.

Как правило, в качестве присадка используют проволоку того же химического состава, что и основной металл (BTl-00св, ВТ20-1св и т.д.). Для большинства сплавов годится проволока марок СПТ-2 и СП-15.

ГОСТ 27265-87 Проволока сварочная из титана и титановых сплавов. Технические условия



ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПРОВОЛОКА СВАРОЧНАЯ ИЗ ТИТАНА
И ТИТАНОВЫХ СПЛАВОВ
ТЕХНИЧЕСКИЕ УСЛОВИЯ

ГОСТ 27265 - 87

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСТ
27265 - 87

Срок действия с 01.01.89
до 01.01.94

Настоящий стандарт распространяется на сварочную проволоку из титана и титановых сплавов общего назначения.
(Измененная редакция, Изм. № 1, 2).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Проволоку изготовляют в соответствии с требованиями настоящего стандарта по технологической документации, утвержденной в установленном порядке.
1.2. Основные параметры и размеры
1.2.1. Диаметр проволоки и предельные отклонения по нему должны удовлетворять требованиям табл. 1.
Таблица 1

Предельные отклонения по диаметру проволоки, мм

Площадь поперечного сечения, мм 2

(Измененная редакция, Изм. № 2).
Примечание. Предельные отклонения по диаметру проволоки для сплавов ВТ20 - 1св, ВТ20 - 2св, СП15 должны быть:
- 0,10 мм - для диаметров 0,8 - 1,0 мм
- 0,12 мм - для диаметров 1,2 - 1,8 мм
- 0,16 мм - для диаметров 2,0 - 3,5 мм
- 0,20 мм - для диаметров 4,0 - 7,0 мм
(Измененная редакция, Изм. № 2).
1.2.2. В зависимости от марки сплава проволоку изготовляют в пределах размеров, приведенных в табл. 2.
Таблица 2

Диаметр проволоки, мм

От 1,0 до 7,0 включ.

От 1,2 до 7,0 включ.

От 1,6 до 7,0 включ.

От 2,0 до 7,0 включ.
От 0,8 до 2,0 мм включ.

(Измененная редакция, Изм. № 2).

Примеси, %, не более

Сумма прочих приме­сей

Примечания:
1. По требованию потребителя в проволоке из титана марки ВТ1 - 00св массовая доля водорода не должна превышать 0,002 %, в этом случае проволока маркируется маркой ВТ1 - 00свС.
Величина допустимого отклонения массовой доли водорода от значения 0,002 % для марок ВТ1 - 00свС, 2В, ПТ - 7Мсв не должна превышать +0,0004 %.
2. Массовая доля ниобия в сплаве марки СП15 - 2,5 - 4,5 %, рения - 0,05 - 0,10 %.
Введение рения в шихту сплава марки СП15 проводят по требованию потребителя. Массовая доля рения не контролируется.

1.2.1, 1.2.2. (Измененная редакция, Изм. № 1).
1.2.3. Овальность проволоки не должна выводить диаметр проволоки за предельные отклонения по диаметру.
Пример условного обозначения проволоки диаметром 4,0 мм из титанового сплава марки ОТ4 - 1св
Проволока ОТ4 - 1св 4,0 ГОСТ 27265 - 87
1.3. Характеристики
1.3.1. Проволоку изготовляют из титана марки BT1 - 00св в титановых сплавов марок ВТ2св, 2В, ПТ - 7Мсв, ОТ4св, ОТ4 - 1св, СПТ - 2, ВТ6св, ВТ20 - 1св, ВТ20 - 2св с химическим составом в соответствии с табл. 3.
1.3.2. Проволоку изготовляют в травленом и дегазированном состоянии.
1.3.3. Поверхность проволоки должна быть чистой и светлой без цветов побежалости, темных пятен и непротравов. На поверхности проволоки из сплавов марок ВТ20 - 1св и ВТ20 - 2св допускаются мелкие надрывы с темными непротравами.
На поверхности проволоки допускаются мелкие надрывы, риски и закаты глубиной, не превышающей приведенных в табл. 4.
Таблица 4
мм

Глубина залегания дефекта, не более, в проволоке марок

ВТ2св, ВТ6св, СПТ - 2

ВТ20 - 1св, ВТ20 - 2св, СП15

Примечание. Допускается на поверхности проволоки наличие отдельных дефектов глубиной, превышающей нормы на 0,1 мм - при диаметре проволоки до 3,0 мм, 0,2 мм - при диаметре проволоки свыше 3,0 мм.
Количество макрошлифов с указанными превышениями по глубине дефектов при металлографическом контроле не должно превышать 10 % от общего количества макрошлифов контролируемой партии.
(Измененная редакция, Изм. № 1, 2).
1.3.4. Допускается исправление поверхностных дефектов и загрязнений зачисткой их и травлением до дегазации проволоки.
После дегазации допускается зачистка только местных единичных загрязнений.
Допускается волнистость проволоки, связанная с отжигом бухт.
1.3.5. Проволоку наматывают в бухты с наружным диаметром не более 900 мм.
Проволока в бухте не должна иметь слипшихся друг с другом витков и изгибов менее 100°.
Волнистость проволоки, связанная с отжигом бухт, браковочным признаком не является.
(Измененная редакция, Изм. № 1).
1.3.6. Масса бухты проволоки должна быть не более 50 кг.
Если бухта составлена из нескольких кусков, то длина куска должна быть не менее 10 м.
1.3.7. Механические свойства проволоки должны соответствовать требованиям, приведенным в табл. 5.
Таблица 5

Временное сопротивление ?в, МПа (кгс/мм 2 )

Относительное удлинение ?, %, не менее

295 - 470 (30 - 48)

460 - 655 (47 - 67)

490 - 635 (50 - 65)

От 1,4 до 7,0 включ.

440 - 635 (45 - 65)

От 1,0 до 1,4 включ.

590 - 835 (60 - 85)

Св. 1,4 до 3,0 включ.

Св. 3,0 до 7,0 включ.

540 - 785 (55 - 80)

645 - 845 (66 - 86)

665 - 865 (68 - 88)

От 0,8 до 7,0 включ.

635 - 835 (65 - 85)

От 2,5 до 5,0 включ.

Не менее 735 (75)

(Измененная редакция, Изм. № 1, 2).
1.4. Маркировка
1.4.1. К каждой бухте крепится ярлык с указанием:
товарного знака или товарного знака и наименования предприятия - изготовителя;
условного обозначения проволоки;
номера партии и плавки;
клейма технического контроля;
даты выпуска;
обозначения настоящего стандарта.
1.5. Упаковка
1.5.1. Каждая бухта проволоки должна быть плотно перевязана мягкой титановой проволокой не менее чем в трех местах.
Бухта должна быть упакована в чистую бумагу и сверху обернута нетканым материалом. Допускается бухту обертывать полотном, клееным из синтетических волокон, или полиэтиленовой пленкой толщиной от 100 до 200 мкм по ГОСТ 10354 - 82без предварительной упаковки в бумагу.
Упакованная бухта перевязывается шпагатом из синтетических волокон по нормативно - технической документации.
1.5.2. Бухты проволоки, отправляемые одному потребителю, соединяют в транспортные пакеты в соответствии с требованиями ГОСТ 24597 - 81, ГОСТ 21650 - 76, ГОСТ 9078 - 84, ГОСТ 9557 - 87 массой не более 600 кг.
Пакеты увязывают в трех - пяти местах проволокой по ГОСТ 3282 - 74 или лентой по ГОСТ 3560 - 73.
Габаритные размеры пакета не должны превышать 800?1200?1350 мм с закреплением на деревянные бруски размером 0,05?0,05?1,0 м.
1.5.3. Транспортная маркировка бухт проволоки - по ГОСТ 14192 - 96 со следующими дополнительными надписями: наименование полуфабриката, марка сплава, номер партии.
1.5.1 - 1.5.3. (Измененная редакция, Изм. № 1, 2).
1.5.4. При отправке проволоки в районы Крайнего Севера и приравненные к ним местности упаковка должна соответствовать ГОСТ 15846 - 2002.
(Измененная редакция, Изм. № 2).
1.5.5. Упаковка проволоки, предназначенной для экспорта, должна соответствовать требованиям ГОСТ 24634 - 81.

2. ПРИЕМКА

2.1. Проволоку принимают партиями. Партия должна состоять из проволоки одной марки титана или титанового сплава, одной плавки, одного диаметра и должна быть оформлена одним документом о качестве, содержащим:
товарный знак или наименование и товарный знак предприятия - изготовителя;
наименование потребителя;
марку титана или титанового сплава;
диаметр проволоки;
номер партии и номер плавки;
результаты испытаний;
дату дегазации;
массу нетто партии;
дату отгрузки;
обозначение настоящего стандарта.
Допускается составлять партию из проволоки нескольких плавок, при этом каждая плавка должна быть проверена на соответствие требованиям настоящего стандарта.
2.2. Проверке качества поверхности и размеров проволоки должна быть подвергнута каждая бухта.
2.3. Проверке механических свойств на растяжение подвергают каждую бухту.
В случае обрыва или разрезки бухт в процессе изготовления на несколько отдельных концов длиной не менее 10 м испытаниям подвергают любой конец бухты.
2.4. Для определения химического состава - основных компонентов и регламентированных примесей - отбирают две бухты от партии.
Изготовитель определяет химический состав основных компонентов и регламентированных примесей (кроме водорода и кислорода) на каждой плавке.
Массовая доля элементов, входящих в графу «сумма прочих примесей» (см. табл. 3) не контролируется.
Допускается изготовителю химический состав компонентов и регламентированных примесей устанавливать в соответствии с документом о качестве предприятия - изготовителя слитков.
2.4.1. Контроль массовой доли водорода проводится на двух бухтах от садки, кислорода - на двух бухтах от партии.
2.4.2. При получении неудовлетворительных результатов испытаний на водород и кислород бухты, не выдержавшие испытаний, бракуются и партия переходит на сплошной контроль по этому показателю.
2.5. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей по нему проводят повторные испытания на удвоенной выборке, взятой с того же конца бухты.

3. МЕТОДЫ ИСПЫТАНИЙ

3.1. Отбор и подготовку проб для определения химического состава сварочной проволоки проводят по ГОСТ 24231 - 80.
Химический состав титана и титановых сплавов определяют химическим методом по ГОСТ 25086 - 87, ГОСТ 19863.1 - 91 - ГОСТ 19863.13 - 91 или спектральным методом по ГОСТ 23902 - 79.
При наличии разногласий химический состав определяют по ГОСТ 19863.1 - 91 - ГОСТ 19863.13 - 91.
(Измененная редакция, Изм. № 1, 2).
3.1.1. Массовую долю водорода определяют методом вакуум - нагрева по ГОСТ 24956 - 81.
Контроль проводят на двух образцах, вырезанных из верхней и нижней бухт каждой садки.
3.1.2. Массовую долю кислорода определяют по ГОСТ 28052 - 97.
Контроль проводят на двух образцах, вырезанных из контролируемых бухт.
(Измененная редакция, Изм. № 1, 2).
3.2. Измерение диаметра проволоки проводят микрометром по ГОСТ 6507 - 90 или другим мерительным инструментом, обеспечивающим необходимую точность измерения.
(Измененная редакция, Изм. № 1).
3.3. Осмотр поверхности проволоки на отсутствие цветов побежалости должен проводиться без применения увеличительных приборов.
Контроль качества дегазации проводится взятием проб на содержание водорода и кислорода.
3.3.1. Зачистку проволоки проводят в продольном направлении шабером или шлифовальной шкуркой на тканевой основе по ГОСТ 5009 - 82 или бумажной основе по ГОСТ 6456 - 82 зернистостью не крупнее 6.
3.4. Контроль глубины залегания поверхностных дефектов проводят металлографическим способом по нормативно - технической документации на макрошлифах.
Контроль проволоки диаметром от 1,4 до 2,0 мм включительно из титановых сплавов марок 2В и ПТ - 7Мсв проводят на микрошлифах.
Контроль глубины залегания поверхностных дефектов проволоки диаметром до 2,0 мм включительно из титана марки ВТ1 - 00св и проволоки диаметром до 1,2 мм включительно из титановых сплавов не проводится и гарантируется предприятием - изготовителем.
Количество образцов, отобранных из бухт, для изготовления шлифов должно соответствовать требованиям табл. 6.
Таблица 6

Сварка титана

Титан — удивительный металл. Он отличается уникальным сочетанием свойств: легкость, прочность, коррозионная стойкость. Кроме того, титан не отторгается тканями человеческого организма. Из титана изготавливают детали самолетов и подводных лодок, элитные велосипеды и протезы. Однако обработка титана, а особенно — его сварка сопряжена с определенными трудностями. Для их преодоления ученые и инженеры разработали и успешно применяют специальные способы сварки титана и его сплавов.

Сварка титана

Особенности сварки титана и сплавов на его основе

Титан и его сплавы обладают температурой плавления от 1468 до 1830 ° С. Металл обладает высокой жаропрочностью (до 500 °С ) и высокой коррозионной стойкостью. Эти сплавы можно закалять, если добавить в качестве легирующих присадок хром, марганец или ванадий. При этом пластичность материала падает.

Однако при нагреве до 400 ° С поверхностные слои металла становятся химически активными и стремятся прореагировать с доступными окислителями, прежде всего — кислородом и азотом воздуха. Кроме того, при нагреве свыше 800 °С сплавы проявляют склонность к росту зернистости и пористости. Сварка титана должна происходить в условиях отсутствия газов — окислителей.

Способы сварки титана и его сплавов

Учитывая физико-химические свойства, титан и титановые сплавы сваривают только электродуговой сваркой.

Основные способы сварки титана:

  • в газовой среде, с бескислородным флюсовым порошком АН-11;
  • электрошлаковый для толстых листов, под флюсом АН-Т2;
  • контактный в атмосфере защитных газов.

Сварка аргоном

В ходе работы требуется защищать от окислителей не только рабочую зону, но и оборотную сторону соединения. Поэтому технология сварки титана предусматривает работу в изолированном объеме, заполненном газовой смесью на основе аргона. Дополнительную защиту осуществляют, используя подкладки или сваривая детали встык.

Подготовительные операции

Для получения прочного и долговечного шва необходимо подготовить свариваемые поверхности. Прежде всего, следует удалить пленку из окислов. Для этого детали тщательно зачищают и обезжиривают с двух сторон на расстояние в 20 см от линии шва. Проводить очистку и обезжиривание следует в защитных перчатках, предотвращающих попадание потожировых пятен с рук.

Далее поверхности в течение 10 минут обрабатывают травильным составом — 35 частей соляной кислоты, 65 частей воды и 50 граммов фторида натрия. Раствор нагревают до 60-70 °С.

Следом наступает очередь механической обработки — шлифовки металлическими щетками и наждачкой №12 до полного удаления заусенцев и трещинок. Аналогично следует обработать и присадочную проволоку. Теперь можно приступать непосредственно к сварке титана и его сплавов.

Технология и режимы сварки

Ручную сварку титана и его сплавов проводят электродами из вольфрама постоянным током обратной полярности. В ходе работ применяют оснастку и дополнительные приспособления, обеспечивающие защиту рабочей зоны и нагретой области, прилегающей к шву, и значительных отрезком остывающего шовного материала. Это специальные удлиненные насадки с соплами для подачи инертных газов, козырьки, перфорированные подкладные пластины с подачей газа и т.д. При соединении трубопроводов трубы заполняют защитным газом изнутри.

Ручная дуговая сварка

Ручная аргонодуговая сварка чаще всего применяется при изготовлении уникальных изделий или в мелкосерийном производстве, а также при выполнении работ высокой сложности, на которые не получается запрограммировать автомат.

Ручная дуговая сварка

Ручная дуговая сварка

При толщине листа до 3 мм зазор следует выставлять от полмиллиметра до полутора, и сваривать можно без добавления присадочной проволоки. При использовании 1,5-миллиметрового электрода и 2-миллиетровой присадочной проволоки сварочный ток для листов толщиной 2 миллиметра выбирают около 100 ампер, а для листов в 3-4 мм — ток увеличивают до 140 ампер.

Электрод ведут прямо, без колебаний, а наклонен он должен быть вперед по ходу шва. Если используется присадочная проволока, то она должна подаваться непрерывно, а электрод ставится перпендикулярно к заготовке.

После завершения шва и отключения электродуги требуется подавать защитные газы еще как минимум полторы — две минуты, чтобы дать возможность последнему участку шва и околошовной зоны остыть до 400 °С. Такая защита препятствует образованию окислов. Окислившийся шов легко отличим по цвету:

  • высококачественный шов — желтый (соломенный);
  • окислившийся – серо- черный, с переходом в синеву.

Автоматическая сварка

Автоматическая сварка проводится электродами из вольфрама с применением постоянного тока.

Если используется неплавкий электрод, то рекомендуется применять прямую полярность. Рекомендованный диаметр сопел горелки, подающих защитный газ, должен быть в пределах 12-15 мм.

Розжиг и гашение дуги выполняют не на самой детали, а на расположенных рядом с началом шва планках. Это связано с тем, что в начале и конце работы дуги в ходе переходных процессов возможны броски напряжения, могущие вызвать проплавление основной детали.

Режимы аргонодуговой сварки титана

При сварке титана аргоном работают с металлом толщиной от 0,8 до 3 миллиметров.

Параметры сварки зависят от толщины листа:

Режимы сварки титана под флюсом

При этом методе линия шва посыпается толстым слоем флюсового порошка. Облако инертных газов образуется по мере сгорания флюсового порошка в пламени электродуги и прикрывает как сварочную ванну, так и околошовное пространство.

Схема сварки под флюсом

Схема сварки под флюсом

Метод позволяет работать с более толстыми деталями – до 5 мм для стыковых и угловых соединений, а при сварке внахлест — только до 3 мм. Ток при этом используется от 250 до 330 ампер, рабочее напряжение — 24-38 вольт. Данный метод обеспечивает повышенную скорость сварки — от 40 до 50 метров в час (почти метр в минуту).

Электрошлаковая сварка титановых сплавов

Этот способ применяется реже, но позволяет достигнуть высокой эффективности при соединении заготовок из титановых сплавов с добавлением алюминия и олова. Метод весьма энергоемкий, применяются трехфазные сварочные источники. Сварочные токи достигают полутора тысяч ампер.

Применяются пластинчатые электроды сечением 12×60 мм. Они позволяют получить высококачественный шов, причем шовный материал по своим основным механическим параметрам близок к материалу деталей.

Электрошлаковая сварка

При работе данным методом не рекомендуется использовать плавкие электроды из легированных сплавов, ввиду чрезмерного насыщения прессованного материала сварочными газами.

Контактная сварка титана

При контактной сварке электроды не используются для разжигания дуги, их назначение — только подвести электрический ток к рабочей зоне. Дуга разжигается непосредственно между небольшими зонами деталей, сближаемых между собой под давлением электродов. Метод применяется для сварки относительно тонких листов проката в ходе изготовления сосудов, корпусов и т.п.

Контактная сварка бывает:

  • стыковая;
  • точечная;
  • шовная, или роликовая;
  • конденсаторная

По данным исследований, наилучшая скорость оплавления при работе с крупными заготовками должна составлять 2-3 мм/с. Повышение скорости вызывает понижение прочностных характеристик шва, несмотря на аргонную защитную атмосферу.

В ходе подготовки к сварочным работам кромки заготовок следует отфрезеровать или зачистить абразивными материалами. Необходимо также тщательно обезжирить как линию шва, так и околошовную зону до 20 см. Поскольку титан имеет низкую теплопроводность, он склонен перегреваться. Поэтому значение осадки устанавливается на 10-20% выше, чем для конструкционных сталей.

Режимы стыковой сварки титана

Сварочные режимы определяются, прежде всего, площадью сечения свариваемых заготовок. Метод позволяет сваривать детали сечением от 150 до 10 000 мм 2 . При этом остальные характеристики варьируются в зависимости от сечения:

Точечная сварка титана

Этот метод позволяет получить негерметичное соединение листового металла до 4 мм толщины. Она широко применяется для корпусов механизмов и защитных кожухом, для сборки различных опорных рамок и т.п. Электрод должен быть достаточно прочным, чтобы выдерживать большое усилие сжатия листов. Для сварки протяженных швов с целью повышения производительности используется несколько электродов, расположенных с тем же шагом, что и точки шва.

Точечная сварка

Режимы точечной сварки титана определяются толщиной проката:

Шовная роликовая сварка титана

данный способ используется для создания герметичных сварных соединений. Используются электроды в виде силовых роликов, которые катятся вдоль лини шва и сжимают листы заготовок друг с другом. На них периодически подают мощные импульсы тока с тем расчетом, чтобы зоны проплавления, имеющие овальную форму, перекрывали друг друга на 10-15% . Цепочка таких точек сварки и образует непрерывный герметичный шов. Метод позволяет сваривать листы толщиной от 0,2 до 3 мм и весьма популярен при изготовлении герметичных емкостей сосудов низкого давления, таких, как топливные баки, сильфоны и т.п.

Режимы конденсаторной стыковой сварки титановых труб

Конденсаторный метод является подвидом шовной сварки и отличается от него тем, что энергия электрического импульса запасается в батарее, составленной из мощных конденсаторов, и управляющим модулем периодически подается на электроды. Трубные заготовки диаметром до 23 мм с толщиной стенки до 1,5 мм получается сваривать даже без защитной атмосферы, поскольку мощный импульс выжигает окислители в зоне сварки.

Режим сварки также определяется диаметром трубы и толщиной ее стенки. Емкость конденсаторной батареи колеблется от 5 000 до 7000 микрофарад, напряжение импульса — от 800 до 2100 вольт, усилие сжатия — от 8 до 24 кН.

Очень важно соблюдать дистанцию вылета труб из вкладышей (от 1 до 1,8мм), поскольку при его превышении более 2,2 мм происходит смещение торцов и неполный провар шва.

Возможные дефекты при сварке

Одним из наиболее часто встречающихся дефектов является повышенная пористость шва. Он возникает за счет поглощения шовным материалом пузырьков водорода, попадающего в сварочную ванну. Чтобы избежать пористости, следует:

  • тщательно зачистить и обезжирить рабочие поверхности;
  • обеспечить достаточную защиту сварочной ванны и зоны остывающего металла.

Распространено также образование окисного слоя, переходящего от линии шва к сплошному металлу заготовок. Избежать этого позволяет поддержание защитного газового облака до остывания шва до температуры 400 °С.

Правила сварки титановых сплавов

Титан — редкоземельный металл серебристого цвета, с характерным отливом. Используется как основа для создания различных сплавов с высокими прочностными характеристиками.

В чистом виде из-за низкой температуры плавления (640 °C) применяется очень редко, поэтому в обиходе под титановыми изделиями подразумевают обычно изделия из его сплавов. Особенность физических свойств потребует специфического подхода при сварке титана.

Титановые сплавы

Сплавы титана имеют температуру плавления от 1470 до 1825 °C, в зависимости от марки. Они обладают выгодным сочетанием легкости (благодаря малой плотности) и высокой прочности, поэтому часто применяются для изготовления таких конструкций, как велосипедные рамы и детали скоростных автомобилей. Сварка титановых сплавов — сложный технологический процесс, поскольку эти материалы имеют ряд специфических свойств.


Далее под словом «титан» будут подразумеваться именно сплавы титана с легирующими присадками — хромом, железом, молибденом, ванадием, вольфрамом и другими.

Свойства материала

У титана есть несколько особых свойств, которыми обусловлена сложность сварки конструкций из этого металла. В их числе:

  • невысокая теплопроводность;
  • склонность к самовозгоранию при нагреве до 400 °C и контакте с кислородом;
  • окисление под воздействием углекислоты;
  • образование нитридных соединений при нагреве до 600 °C и прямом контакте с азотом, твердых, но хрупких;
  • склонность к поглощению водорода при нагреве до 250 °C;
  • изменение структуры (увеличение зерна) при нагреве свыше 880 °C.

Для титана критично повышение температуры уже свыше 400-500 °C. При таком нагреве у него резко повышается химическая активность, и титан начинает взаимодействовать с атмосферным воздухом, который оказывает на шов сварки губительное воздействие.

При этом могут образовываться гидриды, нитриды, карбиды и другие соединения, которые нарушают прочность сварного шва. Существенное нарушение технологии, несоблюдение требований ГОСТ может привести к тому, что приваренная деталь просто отвалится от легкого удара.

Если сварка проводилась в соответствии с нормативами, то прочность шва будет находиться в пределах 0,6 — 0,8 от прочности свариваемого металла.

На сварку и сварные соединения из титана распространяется ГОСТ Р ИСО под номером 5817-2009. Он устанавливает уровни качества при сварке разных металлов — стали, титана и никеля, в том числе их сплавов и определяет максимально допустимые уровни дефектов готового изделия.

Как подготавливают детали


Для сварки титана необходимо полностью изолировать свариваемые поверхности от атмосферы, поэтому, как правило, используют автоматическую или полуавтоматическую сварку.

Ручная сварка титана возможна, но только если используется специальная сварочная горелка с керамическим соплом, через которую на свариваемые участки подается под давлением инертный газ — аргон, который вытесняет воздух.

При этом обратная сторона шва должна быть изолирована от атмосферы плотно прилегающими стальными либо медными накладками. Для обеспечения наилучшего качества шва используют перфорированные накладки, в отверстия которых подается аргон.

В случае полуавтоматической или автоматической сварки она проводится в специальной капсуле, заполненной аргоном либо гелием. Сварка титановых труб может производиться без помещения трубы в защитную газовую среду целиком, но при этом сама труба должна быть герметизирована и заполнена аргоном изнутри.

Другим важным нюансом является зачистка и обезжиривание свариваемых поверхностей на 20 мм от линии стыка. Необходимо удалить оксидную пленку, которая всегда присутствует на поверхности титанового изделия.

Работать необходимо в перчатках, поскольку руки, даже чистые, могут оставить на кромке потожировые следы, которые приведут к ухудшению сварного шва.

Перед сваркой титан дополнительно подвергают травлению с использованием смеси соляной кислоты с водой и фторидом натрия — 350 мл HCl, 650 мл дистиллированной воды, 50 г фторида натрия. Температура травления — 60-65 °C, время — около 10 минут.

После травления титан подвергают тщательной шлифовке. Для механической обработки используют наждачную бумагу до № 12, проволочные щетки, шаберы. Необходимо удостовериться, что края свариваемых деталей ровные, на них отсутствуют заусенцы и трещины. Точно так же зачищается и присадочная проволока. Только после этого можно приступать к сварке титана.

Какие методы применяют


Для сварки титана можно использовать как «холодный» метод, так метод дугового флюса либо плазменно-дуговую сварку.

Но самым популярным считается метод сварки титана аргоном, то есть плавлением в изолированной аргоновой среде, который был частично описан выше. Детали крупного сечения соединяют методом электрошлаковой сварки.

Многое зависит от вида сплава. Титан марки ВТ1-ВТ5 сваривается очень хорошо, хотя не подлежит закалке. Сплавы ВТ15 — ВТ22 свариваются значительно хуже, образуя крупнозернистый шов низкой прочности, но при этом закалка может повысить его прочность. Остальные виды титановых сплавов — промежуточные.

Возможны следующие виды контактной сварки:

  • стыковая;
  • точечная;
  • роликовая;
  • конденсаторная стыковая (для труб).

При аргоновой сварке с флюсом применяется бескислородный флюс АН-11 или АН-Т2.

Ручной процесс

Сварка сплавов с титаном (в общем случае) производится постоянным током, полярность прямая. Ток зависит от толщины соединяемых деталей, калибра электрода и диаметра присадочной проволоки, изменяется в диапазоне 90-200 А.

Чем выше толщина металла, тем больший подается ток. Так, детали толщиной 2 мм соединяются при токе 90 А, 3-4 мм — 130-140 А, 10 мм — 160-200 А. Рекомендуется использовать минимальный ток из возможных. Напряжение всегда одинаково — 10-15 В.

Электроды

Используются неплавящиеся электроды из вольфрама, которые перед началом работы затачиваются под углом 30-45 °C (как у карандаша). Чем больше угол заточки, тем меньше глубина проплавления.


При интенсивном использовании электрод нужно будет снова заточить, как только он затупится. Рекомендуются электроды, содержащие оксид лантана, так как их несущая способность на 50% выше, чем у изделий из чистого вольфрама. Благодаря этому сварной шов будет менее загрязнен вольфрамом, чище, а значит — прочнее.

Проволока

Присадочная проволока — это проволока из титана соответствующего сплава, она подбирается конкретно к свариваемым деталям по специальным таблицам. Проволоку стоит отжигать под вакуумом для удаления водорода, который может присутствовать в сплаве, и в любом случае необходимо зачищать от окислов. Зачищенная проволока хранится в герметичной тубе не более 5 дней.

Если сваривают металл толщиной не более 1,5 мм стыковым методом, то применять проволоку необязательно. Шов без присадки будет даже прочнее.

Особенности технологии

При сварке выдерживается постоянная скорость движения электрода и обеспечивается непрерывная подача присадки. Скорость электрода должна составлять пример 2-2,5 мм/сек. Необходимо выдерживать высокую точность движений, избегать колебаний и уводов электрода в сторону. Электрод должен касаться шва как бы снизу вверх, сварка идет «вперед углом».

Во время всего процесса и около минуты после отключения горелки на свежий шов необходимо продолжать подавать защитный газ, пока температура шва не опустится ниже 400 °C.

В зоне сварки аргон расходуется со скоростью 5-8 литров в минуту, на оборотной стороне шва — 2 литра в минуту.


При сварке титановых труб их концы герметизируются, а инертный газ — аргон, реже гелий — закачивается внутрь при помощи специального насоса.

В домашних условиях, при отсутствии такого оборудования сварить титановые трубы невозможно. Исключение — конденсаторная стыковая сварка труб из титана марки ВТ1-ВТ2, диаметром не более 23 мм и толщиной стенок не более 1,5 мм.

Их можно сваривать вне защитной газовой среды, но только конденсаторным способом, при высоком зарядном напряжении — 850-2100 В.

Контроль качества

Получившийся шов должен иметь ровный серебристый цвет и не иметь никаких трещин и пор. Если шов получился желтоватым — качество сварки среднее, но удовлетворительное.

Любые другие цвета — серый, коричневый, ярко-золотистый, даже голубой и фиолетовый с переливами — говорят о том, что технология сварки была нарушена, и материал шва содержит ненужные примеси, образовавшиеся при контакте раскаленного титана с атмосферным воздухом. Такое соединение непрочно и может разрушиться при малейшем усилии.

Читайте также: