Прокалка флюса перед сваркой

Обновлено: 17.05.2024

Примечание. Прокалка электродов может производиться не более трех раз. Число прокалок порошковой проволоки и флюса не ограничивается. Если электроды после трехкратной прокалки показали неудовлетворительные сварочно-технологические свойства, то применение их для сварочных работ, выполняемых по настоящему РД, не допускается.

4.1.4. Электроды с основным покрытием, предназначенные для сварки перлитных сталей, следует использовать в течение 5 суток после прокалки, электроды ЦТ-45 - в течение 10 суток, остальные электроды - в течение 15 суток, если их хранят на складе с соблюдением требований п. 3.10. По истечении указанного срока электроды перед применением необходимо вновь прокалить. В случае хранения электродов в сушильном шкафу при температуре 80 - 115 град. C срок их годности не ограничивается.

4.2. Сварочная проволока

4.2.1. Для ручной и автоматической аргонодуговой сварки неплавящимся электродом, газовой (ацетилено-кислородной) сварки, механизированной в углекислом газе и автоматической сварки под флюсом необходимо применять сварочную проволоку сплошного сечения, удовлетворяющую требованиям ГОСТ 2246. Марку сварочной проволоки следует подбирать по данным табл. 4.4.

Проволока марок Св-08ГА-2, Св-08ХМА-2, Св-08ХМФА-2 изготавливается по ТУ 14-1-4369-87; Св-10Х9НМФА, Св-10Х9ГСНМФ - по ТУ 14-130-275-95 с Изм. 1; Св-04Х20Н10Г2Б - по ТУ 14-1-4591-89. Флюс АН-43 изготавливается по ТУ 14-1-2434.

Проволоку марок Св-08МХ, Св-08ХМ и Св-08ХМФА допускается применять для аргонодуговой сварки только при содержании кремния в проволоке не менее 0,22%.

Проволока марок Св-08ХГСМА, Св-08ХМ и Св-08ХМА-2 применяется для сварки стыков трубопроводов, работающих при температуре среды до 510 град. C включительно, а также для сварки стыков труб поверхностей нагрева и корневого слоя стыков трубопроводов независимо от параметров рабочей среды.

Проволока марки Св-08МХ применяется для сварки корневого слоя стыков трубопроводов, работающих при температуре среды до 510 град. C включительно, и для сварки стыков труб поверхностей нагрева независимо от параметров рабочей среды.

Химический состав сварочной проволоки сплошного сечения по ГОСТ 2246 приведен в табл. П9.1 Приложения 9.

4.2.2. Поверхность проволоки сплошного сечения должна быть чистой, без окалины, ржавчины, масла и грязи. При необходимости ее очищают от ржавчины и грязи пескоструйным аппаратом или травлением в 5%-ном растворе соляной или ингибированной кислоты (3%-ный раствор уротропина в соляной кислоте). Можно очищать проволоку, пропуская ее через специальные механические устройства (в том числе через устройства, заполненные сварочным флюсом, кирпичом, осколками наждачных кругов и войлочными фильтрами). Перед очисткой бухту проволоки рекомендуется отжечь при 150 - 200 град. C в течение 1,5 - 2 часов. Разрешается также очищать проволоку наждачной шкуркой или другим способом до металлического блеска. При очистке проволоки, предназначенной для автоматической сварки, нельзя допускать ее резких перегибов (переломов).

4.2.3. Для механизированной сварки порошковой проволокой следует применять самозащитные порошковые проволоки, изготовленные по ГОСТ 26271 и соответствующим техническим условиям.

Порошковую проволоку необходимо хранить в мотках в специальной таре. Перемотка порошковой проволоки запрещается.

Перед применением порошковая проволока должна быть прокалена по режиму, приведенному в табл. 4.3. После прокалки проволока может быть использована в течение 5 суток, если она хранится в соответствии с требованиями п. 3.10. По истечении указанного срока порошковую проволоку перед применением следует вновь прокалить.

4.3. Флюс для автоматической сварки

4.3.1. Для автоматической сварки под флюсом поворотных стыков труб из углеродистой и низколегированной конструкционной стали следует применять флюс марок, приведенных в табл. 4.4.

4.3.3. Перед применением флюс должен быть прокален по режиму, указанному в табл. 4.3, после чего его можно использовать в течение 15 суток, если хранить в соответствии с требованиями, приведенными в п. 3.10. По истечении указанного срока флюс перед применением следует вновь прокалить.

4.4.2. Для газовой ацетилено-кислородной сварки необходимо использовать газообразный кислород первого или второго сортов по ГОСТ 5583.

В качестве горючего газа следует применять растворенный и газообразный технический ацетилен по ГОСТ 5457, поставляемый потребителю в баллонах или получаемый из карбида кальция, отвечающего требованиям ГОСТ 1460.

4.4.3. Для механизированной сварки в углекислом газе в качестве защитного газа следует применять газообразный и жидкий углекислый газ высшего и первого сортов по ГОСТ 8050.

4.5. Вольфрамовые электроды для аргонодуговой сварки

4.5.2. Для легкого возбуждения дуги и повышения стабильности ее горения конец вольфрамового электрода необходимо затачивать на конус; длина конической части должна составлять 6 - 10, а диаметр притупления 0,2 - 0,5 мм.

5. ПОДГОТОВКА ПРОИЗВОДСТВА

5.1. Требования к квалификации персонала

5.1.1. К сварочным работам при изготовлении, монтаже и ремонте элементов котлов и трубопроводов, на которые распространяется настоящий РД (см. п. 1.4), могут быть допущены сварщики, аттестованные на I уровень профессиональной подготовки в соответствии с ПБ 03-273-99 и имеющие аттестационное удостоверение, в котором указывается, к каким видам работ допущен сварщик (способ сварки, наименование изделий, группа сталей, положение шва в пространстве).

Рекомендации по хранению и использованию флюсов

Сварочные флюсы производства фирмы ЭСАБ изготавливаются из минералов, подвергнутых высокотемпературной прокалке (~1500 °С), что придает флюсам свойства, способствующие их длительному хранению. Флюсы ОК поставляются с содержанием влаги не более 0,05%, определенным при 1000 °С.

Известно, что низкое содержание влаги во флюсе имеет решающее значение для качества сварного соединения. Тем не менее, содержание влаги во флюсе может возрасти при неправильном хранении, использовании или транспортировке и, как следствие этого, резко снижается пластичность и в сварном шве появляются поры.

Чтобы избежать подобных проблем, ЭСАБ разработал следующие рекомендации

  1. Невскрытые пакеты не должны подвергаться прямому воздействию снега и дождя.
  2. Невскрытые пакеты должны храниться в определенных условиях :
    • Температура: 20±10°С.
    • Относительная влажность: не более 70%.
  3. Оставшийся флюс из вскрытых пакетов и из шкафа должен храниться при температуре 150±25°С.

Прокалка флюса и оборудование для хранения

Сварочные флюсы, должны иметь минимальное количество влаги перед использованием.

При вскрытии или повреждении упаковки, влажность флюса может повышаться из-за конденсации. В зависимости от уровня повышенной влажности флюса будет происходить снижение качества выполняемых сварных швов:

  • склонности к образованию трещин.
  • внутренняя пористость.
  • повышение текучести флюса,
  • ухудшение внешнего вида сварного шва и отделяемости шлака.

Для удаления влаги флюс необходимо прокалить в при температуре 260°С - 400 °С. Необходимо довести до этой температуры весь объем прокаливаемого флюса.

Прокалку производить в течение минимум двух часов.

  • Керамические: флюсы: 300°± 25°С, выдержка 2- 4 часа.
  • Плавленые флюсы: 200°± 50°С, выдержка 2- 4 часа
  • Не рекомендуется прокаливать флюс, находящийся в бочках или других упаковках
  • Если прокаленный флюс сразу не применяется, его необходимо хранить до момента использования при температуре 130°± 25°С

Для оптимального хранения флюса ОК используйте бункеры для хранения флюса производства фирмы “ЭСАБ”.

Контейнер для прокалки и хранения флюса ESAB SDF-250

Контейнер для прокалки и хранения флюса ESAB SDF-250 400V AC 50/60Hz

Печь для прокалки и хранения флюса с цифровым термостатом SDF-250

Стационарная прокалка флюса 250 кг SDF - это большие контейнеры для прокалки и хранения флюса.

  • Stationary Drying Flux 250 кг
  • Цифровой термостатом с широким диапазоном регулировок температур хранения.
  • После прокалки температура опускается до рекомендованной предварительно установленной температуры хранения в 130°
  • Вместимость – 250 кг
  • Диапазон температуры прокалки 0-400°C
  • Внизу люк для выгрузки флюса

SDF-250 Контейнер для прокалки и хранения флюса, 400V AC 50/60Hz (SDF-250 Flux Drying Oven, 3ph 400V AC 50/60Hz), артикул 0700100000, - это большие контейнеры для прокалки и хранения сварочного флюса. Печь оснащена колесами для перемещения, а также цифровым термостатом с широким диапазоном температур. После прокалки температура автоматически опускается до рекомендованной предварительно установленной температуры хранения в 130°C.

Информация для заказа SDF-250

Контейнер для прокалки и хранения флюса ESAB SDF-50

Стационарная прокалка флюса 50 кг SDF - это большие контейнеры для прокалки и хранения флюса.

  • Stationary Drying Flux 50 кг
  • Цифровой термостатом с широким диапазоном регулировок температур хранения.
  • После прокалки температура автоматически опускается до рекомендованной предварительно установленной температуры хранения в 130°C
  • Вместимость – 50 кг
  • Диапазон температуры прокалки 0-400°C
  • Внизу люк для выгрузки флюса

SDF-50 Контейнер для прокалки и хранения флюса, 230V AC 50/60Hz (SDF-50 Flux Drying Oven, 3ph 230V AC 50/60Hz), артикул 0700100059, - это большие контейнеры для прокалки и хранения сварочного флюса. Печь оснащена колесами для перемещения, а также цифровым термостатом с широким диапазоном температур. После прокалки температура автоматически опускается до рекомендованной предварительно установленной температуры хранения в 130°C.

Информация для заказа SDF-50

Покупателям

Яндекс-Маркет

Контактная информация

Мы принимаем к оплате:

© ООО "Компания ТНД", 2007-2017, ИНН/ОГРН: 7718634694/ 5077746415852 ИП Фадеев Е.С. ИНН/ОГРНИП 330503108840/314774612600102

Печь для прокалки сварочного флюса

печь для флюса

Сварочные электроды очень гигроскопичны по своей природе. Дело в том, что стержень электрода состоит из металлической проволоки с покрытием из флюса, который представляет собой состав минеральных или обожженных химикатов. Большинство этих смесей, обладающие сродством к воде, делают электрод гигроскопичным по своей природе. Уменьшить количество влаги во флюсах можно при помощи печей для прокаливания.

Почему нужна прокалка?

Будучи гигроскопичными, сварочные электроды должны храниться при контролируемой влажности, этим предотвращается разрушение покрытия. В условиях повышенной влажности качество сварки ухудшается:

  • происходит растрескивание сварного шва;
  • возбуждаются параллельные дуги;
  • имеют место избыточные брызги металла сварного шва;
  • увеличивается количество грата.

Прокаливание заключается в нагреве флюса (или электрода) до высоких температур при ограничении в окружающей среде кислорода или воздуха. При этом происходит термическое разложение влаги.

Основные задачи печи для прокаливания флюса состоят в том, чтобы удалить воду, которая присутствует в виде поглощенной влаги, удалить летучие компоненты, например, диоксид углерода, а остаток влаги связать в нелетучие окислы.

сварка под флюсом

Классификация и виды прокаливающих агрегатов

В зависимости от требований в качестве источника нагрева флюсов можно использовать электричество, газ или масло. Обычно используются три разновидности нагревательного оборудования:

  • в реверберационных печах нагреваемое вещество или объект вступают в прямой контакт с горячими газами, исходящими от источника тепла, но само топливо, в рабочее пространство печи не поступает;
  • в муфельных печах ни топливо, ни газы от источника тепла не вступают в прямой контакт с прокаливаемым материалом, что стабилизирует его химический состав;
  • в печах шахтного типа образец вступает в непосредственный контакт с источником топлива, что может привести к некоторому загрязнению поверхности. Поэтому источник тепла помещается на отдельную решетку. Она обеспечивает доступ к прокаливаемому материалу только газа и пламени.

сушим флюс

При подготовке расходуемых компонентов к сварке важно не только снизить содержание влаги, но и обеспечить постоянство этого показателя при хранении. Чтобы электроды не подвергались вторичному насыщению влагой, их хранят в специальных ёмкостях – термопеналах для электродов. Они поддерживают рабочие характеристики электродов на должном уровне.

печь для прокалки флюса

Устройство и принцип действия прокаливающей печи

В качестве примера рассматривается процесс прокаливающей сушки флюса и электродов в электропечи ЭПСФ 120/400 муфельного типа.

Подлежащий прокалке материал помещается в рабочее пространство печи, которое предварительно прогрето до температур 120 … 150 °C. Время выдержки определяется типом электрода, и может составлять до 6…8 часов. Менее продолжительный прогрев может привести к образованию трещин, вызванных присутствием водорода, особенно при сварке сталей, имеющих предел текучести от 550 МПа и выше.

Если электроды хранились в термопенале, и требуется лишь их повторная сушка, то длительность выдержки сокращается до одного часа, а температура прокалки может быть снижена с 300…400 ° С до 170…200 ° С.

эпсф 120 400

Технические характеристики печи:

  1. Потребляемая мощность, кВА – 8,5.
  2. Напряжение, В – 380.
  3. Наибольшая температура в зоне прокалки, ° С – 400.
  4. Масса одновременно прокаливаемых материалов, кг – до 120.
  5. Габаритные размеры печи, мм — 730×620×1360.

Печь имеет вертикальную компоновку, но выпускаются также аналогичные устройства горизонтального исполнения (например, печь ЭПСЭ 10/400).

Рекомендации сварщикам по хранению и использованию флюсов

Информация для заказа

Печь для прокалки и хранения флюса с цифровым термостатом SDF-50

Сварочные флюсы. Защита сварочной зоны

сварочные флюсы

В процессе газовой и электродуговой сварки высокотемпературная зона обработки чрезвычайно увеличивает свою химическую активность. Следствием являются интенсивное окисление металла, испарение части материала сварочной проволоки, снижение интенсивности металлургических процессов, что препятствует эффективному плавлению. Наконец, с увеличением продолжительности сварки в ванне начинается скапливаться всё больше шлаков. Поэтому такую зону необходимо эффективно изолировать, что и выполняется сварочными флюсами – неметаллическими композициями с определённым набором свойств.

Принцип действия

Типовая сварочная зона при установившейся стадии процесса включает в себя следующие области:

  1. Зону дугового столба с внутренней температурой не менее 4000…5000 °С.
  2. Зону газового пузыря, которая образуется вследствие интенсивного атомарного испарения компонентов в кислородной среде.
  3. Шлаковый расплав, который, будучи легче металла, располагается в верхней части газовой полости.
  4. Слой расплавленного металла в нижней части полости.
  5. Шлаковую корку, которая образует верхнюю, твёрдую границу сварочной зоны.

схема сварки с флюсом

Кроме того, свой вклад в поведение свариваемого металла вносит также сварочная проволока. Таким образом, при всех разновидностях сварки в миниатюре моделируется обычный металлургический процесс получения металла, но без защитного покрытия и чёткой протяжённости, которые в первом случае ограничиваются объёмом мартеновской или электропечи.

Обезопасить свариваемый металл от окисления и шлаковой корки, ухудшающей качество готового шва можно, применив непрерывную подачу в сварочную зону легкоплавких и в то же время – химически инертных компонентов. Ими и являются сварочные флюсы. Они могут применяться также для целей поверхностной наплавки. Применение флюсов снижает уровень пыли, которая всегда образуется при сварке.
При использовании данных материалов должны обеспечиваться следующие условия:

  • Сварочный флюс не должен снижать производительность сварки, а, наоборот, стабилизировать её;
  • Материал не должен вступать в химические реакции, как с основным металлом, так и с металлом сварочной проволоки;
  • На протяжении всего рабочего цикла должна обеспечиваться изолированность зоны сварочного пузыря от окружающей среды;
  • После окончания процесса остатки флюса, связываясь со шлаковой коркой, должны легко удаляться из зоны обработки. При этом до 70…80% материала флюса можно, после соответствующей очистки, вновь использовать при сварке.

Эти требования довольно сложны и противоречивы, поэтому оптимальный состав и технология подачи сварочных флюсов определяется под конкретный вид сварки, конфигурацию соединяемых частей металла и производительность процесса.

Классификация сварочных флюсов

Все разновидности сварочных флюсов характеризуются следующими параметрами:

  1. Своим внешним видом – могут быть порошковидными, зернистыми/кристаллическими, пастоподобными и даже газовыми. Например, для целей электросварки или наплавки оптимальными считаются сварочные флюсы в виде порошка или мелких гранул (при этом материал должен обладать ещё и соответствующими показателями электропроводности). В то же время при газосварке или пайке лучше применять флюсы в виде паст, порошка или газа.
  2. Химическим составом, к которому предъявляются требования химической инертности при весьма высоких температурах, а также способности к эффективной диффузии некоторых составляющих флюсов в металл сварного шва.
  3. Способом получения. Различают плавящиеся и неплавящиеся флюсы. Первые эффективнее при наплавке, когда поверхность металла должна быть эффективно дополнена иными химическими элементами (например, для улучшения внешнего вида и повышения антикоррозионных свойств). Неплавящиеся флюсы призваны улучшить механические показатели готового шва, поэтому их используют при сварке высокоуглеродистых сталей и цветных металлов, например, алюминия, которые в обычных условиях плохо свариваются.
  4. По своему назначению. Например, легированная сварочная проволока с флюсом позволяет улучшить химсостав, и повысить уровень механической прочности исходного металла. Особо ценятся флюсы универсального применения, которые можно использовать не только для сварки стали, но также для сварки цветных металлов и сплавов.

марки сварочных флюсов

Типовыми составляющими любого сварочного флюса являются кремнезём и марганец. Однако для целей легирования в состав флюсов могут включаться различные ферросплавы и металлы.

Классификацию рассматриваемых материалов часто производят также и по их марке. Она определяется предприятием-разработчиком. Например, все марки флюсов, которые были разработаны Институтом электросварки имени Патона, в своём обозначении обязательно имеют буквы АН (академия наук). Своё «фирменное» обозначение ФЦ имеют и флюсы, разработанные Центральным НИИ транспортного машиностроения. Несмотря на то что рецептура практически всех флюсов стандартизирована (например, флюсы, предназначенные для автоматической сварки под флюсом сварочными тракторами, выпускаются по требованиям ГОСТ 9087), единой маркировки данных материалов нет.

состав флюсов для сварки

Технология получения

Она определяется химическим составом сварочного флюса.

Неплавленые флюсы имеют керамическую основу, и получаются механическим измельчением компонентов на шаровых мельницах. В зависимости от размера фракций такие флюсы подразделяются на мелкие с размером зерна 0,25…1,0 мм, и нормальные, с размером зерна до 3…4 мм. Первые применяются при сварке проволокой небольших диаметров, не превышающих 1,0…1,5 мм; в обозначение таких флюсов добавляют букву М. В случае значительного количества компонентов в марке неплавленого флюса, их предварительно связывают между собой склеиванием, а затем уже размалывают до требуемого размера частиц.

В состав неплавленых флюсов входят, кроме кремнезёма, марганцевая руда, ферросплавы, металлические порошки и оксиды некоторых элементов. Критерием отбора считается способность этих компонентов усиливать металлургические процессы, которые протекают в зоне сварки. В результате улучшаются условия для поверхностного легирования и раскисления металла, сварной шов приобретает более мелкозернистую структуру, а количество вредных примесей в шве уменьшается. Легирующие способности неплавленых флюсов позволяет применять более дешёвую сварочную проволоку.

Вместе с тем, неплавленые флюсы имеют и свои недостатки. Например, их упаковка должна быть гораздо более тщательной, поскольку все компоненты таких флюсов гигроскопичны и легко впитывают влагу, ухудшающую качество материала. Неплавленые флюсы более требовательны к соблюдению технологического процесса сварки, поскольку при этом могут существенно измениться условия легирования.

сварочные флюсы


К неплавленым флюсам относят также магнитные. По своей эффективности они подобны керамическим, но содержат дополнительно ещё железный порошок, что увеличивает производительность сварки.

Плавленые флюсы используются преимущественно в технологиях автоматической сварки всех разновидностей. Технология их получения более сложная, и включает в себя следующие этапы:

  • Подготовку, и размол всех компонентов, которые должны быть в составе флюса (кроме тех, что используются в неплавленых флюсах, туда включают также плавиковый шпат, глинозём, мел и ряд других);
  • Перемешивание механической смеси в специальных вращающихся мельницах;
  • Плавку в газопламенных печах с защитной атмосферой или в электродуговых печах;
  • Гранулирование, которое выполняется для того, чтобы итоговые фракции имели нужных размер зёрен. Для этого расплав флюса выпускается в воду, где и затвердевает в шарообразные частицы;
  • Сушку во вращающихся сушильных барабанах;
  • Окончательное просеивание и упаковку.

плавление сварочного флюса

Плавленые сварочные флюсы состоят из оксида марганца и кремнезёма SiO2. Марганец обеспечивает восстановление оксидов железа, которые постоянно образуются в процессе сварки, а также связывает находящуюся в шлаках серу в сульфид, который впоследствии легко удаляется с поверхности сварного шва. Кремний, в свою очередь, повышает сплошность металла в зоне шва, поскольку препятствует росту концентрации окиси углерода при сварке. Хорошие раскисляющие свойства кремния способствуют увеличению однородности химического состава металла при сварке под флюсом.

Плавленые флюсы имеют прозрачную или светло-жёлтую окраску. Их плотность не превышает 1,6…1,8 г/см 3 .

автоматическая сварка под флюсом

Действие сварочных флюсов при проведении сварки

Для ручной сварки флюс насыпается слоем толщиной до 60 мм на поверхности металла, которые прилегают к будущему стыку. При недостаточной толщине слоя флюса может быть непровар металла, с образованием трещин и раковин. После этого возбуждается разряд (при электросварке) или поджигается горелка – при газопламенной. По мере перемещения сварочного электрода слой флюса подсыпается на новые поверхности. Поскольку размеры столба в дуги больше высоты флюса, то разряд протекает полностью в жидком расплаве компонентов, которые воздействуют на металлический расплав с удельным давлением до 8…9 г/см 2 . В результате проведения сварки под флюсом исключается разбрызгивание металла, сокращается расход сварочной проволоки и повышается производительность процесса. Это происходит потому, что наличие флюса позволяет использовать более высокие значения рабочего тока без опасности получения прерывистого сварочного шва. Для сравнения – токи 450…500 А при открытой сварке применять невозможно, т. к. дуга выплёскивает металл из сварочной ванны.

В условиях автоматической или полуавтоматической сварки сварочные флюсы используются так. Флюс подаётся из бункера по специальной трубке. Чуть позже включается подача электродной проволоки с катушки, которая расположена после ёмкости с флюсом. По мере выполнения сварки часть флюса, которая не была использована и связана шлаками, пневматически отсасывается в специальную ёмкость. Расплавленная и охлаждённая шлаковая корка впоследствии механически удаляется с поверхности сварного шва.

Положительными факторами применения сварочных флюсов являются:

  1. Отсутствие потребности в предварительной разделке кромок будущего шва, поскольку при больших токах (для электросварки), либо повышенной концентрации кислорода (при газовой сварке) расплавление металла протекает значительно интенсивнее.
  2. Отсутствие угара металла, как в зоне шва, так и на поверхностях, которые прилегают к нему. Всё это сопровождается повышением качества готового сварного шва.
  3. Более устойчивое горение дуги.
  4. Увеличение КПД источника питания, поскольку снижаются потери энергии, затрачиваемой на нагрев металла, его разбрызгивание и повышенного расхода сварочной проволоки с флюсом.
  5. Более комфортные условия труда сварщика, поскольку значительная часть пламени дуги экранируется слоем флюса.

Ограничением для применения сварочных флюсов считается невозможность быстрого осмотра места выполненной сварки. Это повышает требования к качеству подготовительных работ, особенно, если сваркой соединяют детали сложной конфигурации. Кроме того, сами флюсы достаточно дороги, а их расход сопоставим с затратами на сварочную проволоку.

Читайте также: