Расход газа при аргонодуговой сварке

Обновлено: 13.05.2024

Алюминий является одним из самый распространенный металлов, но в то же время и одним из самых сложных, так как на нем образуется оксидная пленка, имеющая температуру плавления выше, чем у самого металла. Это вызывает трудности при газовой сварке алюминия. В современном сварочном деле существует несколько способов для его сварки:

  • TIG – ручная методика неплавящимся электродом;
  • MIG – полуавтоматический способ.

Эти методы могут проходить как в среде защитного газа, так и без него. Рассмотрим далее, как производится сварка алюминия аргоном.

Аргон представляет собой благородный инертный газ, не имеющий запаха и цвета, почти в полтора раза тяжелее воздуха. Он слишком востребован для использования при соединении деталей из-за своей доступности, в сравнении с другими инертными веществами. Без аргона можно варить, но при этом происходит окисление расплавленного металла (при взаимодействии с кислородом), что значительно влияет на качество и эстетичность соединения. Именно поэтому в приоритете газовая сварка алюминия с использованием данного газа.

Содержание

  1. Подготовка основного и присадочного металла под сварку
  • Подготовка сварных кромок
  • Подготовка проволоки и прутков для сварки
  • Выбор способа сварки в зависимости от толщины свариваемого алюминия
  • Режимы ручной и автоматической сварки алюминия в аргоне неплавящимся вольфрамовым электродом
  • Режимы ручной сварки
  • Режимы автоматической сварки

Об особенностях и некоторых способах сварки алюминия, мы говорили на странице: «Сварка алюминия и его сплавов. Как варить алюминий?». Алюминий можно сваривать разными способами, но аргонодуговая сварка алюминия получила большое распространение. Рассмотрим подробно технологию сварки алюминия в среде аргона.



Подготовка аргонодугового аппарата к работе

Все комплектующие под рукой. Собираем все воедино:

Устанавливаем редуктор на баллон с газом

Подключаем газовый шланг к редуктору

Подключаем байонетный разъем горелки к минусовому разъему

Подключаем кабель управления к пяти-пиновому разъему на лицевой панели

Последним подключаем кабель массы к плюсовому разъему

Аппарат практически готов к работе, теперь переходим к сборке TIG горелки:

Первым устанавливаем цангодержатель


Аккуратно вставляем в него цангу


Прикручиваем хвостовик (не до конца)


Устанавливаем керамическое сопло


Вставляем вольфрамовый электрод


6. Настраиваем вылет электрода

7. Хорошенько затягиваем хвостовик.



Подготовка основного и присадочного металла под сварку

Подготовка сварных кромок

Перед сваркой алюминиевые кромки необходимо очистить от оксидной плёнки на поверхности металла Al2O3, имеющей большую твёрдость и высокую температуру плавления. Эта плёнка не расплавляется в жидком алюминии, поскольку температура её плавления превосходит не только температуру плавления алюминия, но и температуру его кипения. Плёнку можно удалять механическим или химическим способом, но делать это надо непосредственно перед сваркой, т.к. плёнка вновь очень быстро образуется на поверхности после зачистки.

Качество сварных соединений во многом зависит от выбора конструктивных элементов разделки кромок. Согласно ГОСТ 23949, в зависимости от свариваемой толщины, рекомендуются следующие формы разделок кромок и размеры швов:

Аргонодуговая сварка алюминия

При толщине металла менее 5мм, сварка в стык выполняется без разделки на подкладках (схема а) на рисунке).

При стыковой сварке листов толщиной 5-15мм рекомендуется чашеобразная разделка с углом раскрытия 30-40° с каждой стороны и радиусом 6мм (схема б) на рисунке). Рекомендуется выполнять подварочный шов с обратной стороны.

Если выполняется сварка листов толщиной 5-20мм, то рекомендуется двусторонняя разделка с углом раскрытия 20-30° с каждой стороны и радиусом притупления 6мм (схема в) на рисунке.

При сварке больших толщин металла, более 20мм, рекомендуется двухсторонняя чашеобразная разделка с углом раскрытия 25-30° с каждой стороны и притуплением кромок. Величина притупления 6мм (схема в) на рисунке.

Подготовка проволоки и прутков для сварки

Особое внимание нужно уделить очистке сварочной проволоки от оксидной плёнки. Наилучшим способом является электролитическое полирование. Но после обработки плёнка сразу же начинает вновь окисляться. Чтобы это предотвратить, её упаковывают в полиэтилен. И именно в таком виде, согласно государственным стандартам, происходит поставка проволоки для сварки алюминия. Прутки для ручной аргонодуговой сварки алюминия после обработки хранят в герметичных пеналах.



Выбор способа сварки в зависимости от толщины свариваемого алюминия

Сварка алюминия в аргоне может производиться плавящимся и неплавящимся электродом. Неплавящийся электрод может использоваться при ручной, полуавтоматической и автоматической сварке. Для повышения стабильности дуги рекомендуется использовать осцилляторы или импульсные возбудители. Таким способом целесообразно сваривать металл толщиной до 10-12мм. Для больших толщин он экономически неприемлем из-за низкой производительности, а также из-за сильного перегрева зоны термического влияния, поэтому, применяется сварка плавящимся электродом.

Для сварки металла толщиной 0,5-2,0мм применяют, как правило, однопроходную сварку без присадочного металла на съёмных или остающихся подкладках. При этом не рекомендуется выводить конец присадочного прутка за пределы газовой защиты, чтобы избежать его окисления. Длина дуги не должна превышать 2,5мм.

Сварка металла толщиной 6-8мм производится «левым способом» для уменьшения перегрева свариваемого металла.

Преимущества и недостатки

Аргонная сварка алюминия имеет ряд сильных и слабых сторон.

  1. Качественное соединение деталей.
  2. Защита поверхности с помощью газа.
  3. Отсутствие деформирования обрабатываемых деталей.
  4. Универсальная технология, которая подходит для соединение различных сплавов и однородных металлов. Подходит для использования материалов с высокой теплопроводностью.
  5. Повышение производительности.
  1. Покупка сложного оборудования.
  2. Наличие опыта в проведении сварочных работ.

Режимы ручной и автоматической сварки алюминия в аргоне неплавящимся вольфрамовым электродом

Скорость сварки необходимо согласовывать не только с силой тока, но и с расходом аргона. При большой скорости сварки, неправильном наклоне сопла горелки и малом расходе аргона зона сварки может оказаться недостаточно защищена, что приводит к окислению кристаллизующегося металла.

Диаметр сварочной горелки должен быть согласован с диаметром вольфрамового электрода, который обычно равен 2-5мм. В зависимости от этой величины выбирают силу тока, из расчёта 60-70А на миллиметр диаметра электрода. Ориентировочные режимы ручной и автоматической сварки вольфрамовым электродом в аргоне представлены в таблицах ниже. При механизированной сварке сила тока должна быть немного больше, чем ручной сварке.

Режимы ручной дуговой сварки

Диаметр электродной проволоки, мм Диаметр присадочной проволоки, мм Сила тока, А Расход аргона, л/мин Число проходов
Стыковое, отбортовка кромок 1,0 1,0 40-50 35-50 1
2,0 2,0 80-90 65-80 1
Стыковое, без разделки, одностороннее 3,0 3,0-4,0 2,0-3,0 100-130 80-110 1
Стыковое, без разделки, двухстороннее 5,0 4,0-5,0 3,0-4,0 200-240 160-200 2
Стыковое, V-образная разделка 10 5,0-6,0 4,0-5,0 250-300 240-280 5

Режимы автоматической сварки

Для сварки алюминиевого сплава типа АМг6 толщиной 10мм рекомендуются следующие режимы: диамтер электродной проволоки 5мм, присадочной — 4мм. Сила тока 580-600А, расход аргона 25-28л/мин, рабочее напряжение 16-17В, скорость сварки 10м/ч.

Необходимое оборудование и материалы

Для работы потребуется аппарат выдающий переменный ток, поскольку сварку алюминия постоянным током аргоновым методом провести не получится. Оптимальным вариантом будет инвертор с режимом тиг и набором опций, позволяющих:

  • бесконтактно зажигать дугу;
  • заваривать кратер на конце шва;
  • регулировать баланс тока;
  • устанавливать период времени, в течение которого продолжается подача аргона после отключения дуги.

Чтобы снизить расход газа для сварки алюминия нужно обзавестись горелкой с газовой линзой (цангодержателем), внутри которой помещена сетка. При проходе аргона через ячейки улучшается защита места сварки при меньшем расходе. Для установки линз выпускаются сопла нескольких диаметров, чем больше размер, тем надежнее защита.

Сварка проводится универсальным вольфрамовым электродом (AC/DC) любой окраски или специализированным для работы переменным током (AC) зеленого цвета. Конец заостряется, но оставляется притупление. После розжига дуги он станет похожим на каплю. Чтобы вольфрам не перегревался, электрод вставляют в сопло с вылетом 3 — 5 мм. При работе он загрязняется алюминиевыми брызгами, тогда конец снова заостряют.

Так как у алюминия высокая скорость плавления присадочная проволока должна быть диаметром не меньше толщины деталей, чтобы успевать продвигать ее. Она может подаваться вручную или механизмом полуавтомата. Работая с чистым алюминием, чаще всего выбирают проволоку №5356, а со сплавами — №4043, с добавлением кремния.

Для tig сварки алюминия требуется чистый газ аргон с концентрацией 98 — 99%. Поэтому покупать его нужно у надежных продавцов. Редуктор и манометры лучше выбрать импортные, поскольку они позволяют точнее настраивать расход, чем отечественные модели.

Режимы автоматической и полуавтоматической сварки алюминия в аргоне плавящимся электродом

При сварке плавящимся электродом и особенно тонкой электродной проволокой на полуавтоматах, необходим правильный выбор параметров, с учётом особенностей алюминиевых сплавов. Большое значение имеет их теплопроводность, при повышении которой глубина проплавления уменьшается с увеличением свариваемой толщины.

Важную роль играет рабочее напряжение дуги. Его значение зависит от трёх составляющих: состава защитного газа (марки аргона), силы сварочного тока и скорости подачи электродной проволоки. Ориентировочные режимы сварки указаны в таблице:

Режимы автоматической и полуавтоматической сварки сварки алюминия плавящимся электродом в аргоне

Толщина металла, мм Диаметр электродной проволоки, мм Тип соединения и подготовка к сварке Сила тока, А Рабочее напряжение, В Скорость подачи проволоки, м/ч Скорость сварки, м/ч Расход аргона, л/мин Число проходов
4 1,0-1,5 Стыковое, без разделки сварка двухсторонняя 120-250 19-55 325-360 25-29 10-12 2
10 1,6-2,0 250-300 25-30 290-325 15-25 14-18 2
5-6 2,0 Стыковое, без разделки, на подкладке 260-300 23-25 250-290 15-25 11-12 1
15-16 2,5-3,0 Без разделки, сварка односторонняя 380-430 24-28 145-215 11-15 12-16
20-22 3,0 420-480 30-33 215-250 11-15 14-18 2-4
25-30* 4,0 Двухсторонняя, с Х-образной разделкой 480-540 28030 145-215 11-15 15-20 4-6
5 2,5 400-420 26-32 11-15 16-22 5-8
*При сварке металла толщиной 40-50мм последующие проходы выполняются при режиме: сила тока 420-450А, напряжение 26-28В, скорость сварки 23-25м/ч

При сварке горизонтальных швов силу тока следует уменьшить на 10%, а при сварке вертикальных швов — на 17%.

Техника аргонодуговой сварки алюминия

При выполнении автоматической и полуавтоматической сварки алюминия большое значение имеет расстояние от мундштука до края газового сопла и от края газового сопла до изделия. На рисунке показаны оптимальные значения этих величин:

При увеличении этих расстояний ослабляется газовая защита (если не увеличивать расход газа) и перегревается электродная проволока. А при уменьшении этих значений, газовое сопло быстро загрязняется сварочными брызгами и возникает опасность расплавления конца токоведущего мундштука.

Сварку вертикальных швов необходимо производить снизу вверх. При сварке стыковых соединений горелку, как правило, располагают перпендикулярно к плоскости стыка, а при сварке тавровых соединений в нижнем положении — под углом 40-45°.

При сварке металла малой толщины и при выполнении корневых швов в соединении больших толщин, не допускаются поперечные колебания сварочной горелки. Такие движения возможны только при выполнении верхних слоёв многослойного шва при сварке металла большой толщины. В процессе сварки необходимо регулировать расход аргона. При недостаточном расходе защитного газа горение дуги становится неустойчивым. При чрезмерном расходе газа происходят завихрения в его потоках. Эти завихрения захватывают воздух, он попадает в зону сварки и окисляет металл сварного шва и зоны термического влияния.

При выполнении многопроходных швов после каждого прохода поверхность предыдущего шва должна быть зачищена до металлического блеска и протёрта ацетоном или спиртом.

Применение импульсно-дуговой сварки

Импульсно-дуговая сварки позволяет повысить производительность сварочных работ, благодаря такой технике, создаётся направленный струйный перенос металла, уменьшается его разбрызгивание, а также повышается стабильность электрической дуги.

Применение импульсно-дуговой сварки очень перспективно для сварки алюминиевых конструкций. Благодаря высокой концентрации энергии в импульсе, при оптимальном времени импульсов и пауз можно обеспечить стабильное проплавление и правильное формирование корня шва, а также значительно уменьшить сварочные деформации.

При сварке металла большой толщины рекомендуется применять электроды диаметром более 2мм. К примеру, используя проволоку диаметром 4мм, можно сваривать алюминиевые сплавы (типа АМг-61) толщиной 90мм при Х-образной разделке за 5 проходов при следующих режимах сварки: I=450-500А, U=22-25В, v=21-24м/ч.

Сварка больших толщин из-за высокой теплопроводности металла требует предварительного и сопутствующего подогрева до температуры 150°.

Что необходимо учитывать при проведении работ?

Аргоновая сварка применяется для соединения многих однородных металлов, сплавов. Принцип действия этого оборудования заключается в образовании электрической дуги между вольфрамовым электродом и металлической поверхностью, которая позволяет создать сварочный шов. На обрабатываемую поверхность поступает поток инертного газа.

При проведении работ следует учитывать ряд особенностей:

  1. Образование оксидной плёнки. Плёнку можно расплавить при температуре 2000 градусов Цельсия. Одновременно с этим алюминий плавится при 500 градусах. Чтобы сделать качественный шов, нужно предварительно зачистить заготовку от оксидной плёнки. Сделать это можно щёткой или растворителем.
  2. Гигроскопичность. Алюминий активно впитывает влагу из окружающей среды. При разогреве заготовки с помощью сварочной дуги материал начинает выделять накопившую влагу. Чтобы шов получился более качественным, сварщики рекомендуют предварительно разогревать заготовку до 150 градусов.
  3. Зачистка обрабатываемой поверхности от воздуха. Чтобы это сделать, нужно выставить правильный поток аргона. Если газа недостаточно, материал будет вспениваться. Вольфрамовый стержень повредится. Когда газа поступает слишком много, он будет мешает формироваться шву. Увеличенный расход сделает процесс соединение заготовок более затратным.

При сварке аргоном возникают сложности в формировании шва. У новичков часто остаётся выемка (картер). Связано это с длительным нагревом поверхности. Чтобы избежать этой проблемы, нужно правильно выставить режим затухания дуги. При равномерном снижении температуры можно добиться качественного шва без образования кратера.

Расход аргона при сварке алюминия какое выставить давление на редукторе



Основными показателями во время сварки, которые влияют на расход сварочных смесей, являются:

  1. Сила тока;
  2. Диаметр используемой проволоки;
  3. толщина свариваемого металла.

Многие производители указывают эти значения в паспортных данных на конкретный защитный газ, что значительно упрощает расчет.

Например, среднее потребление аргоновой смеси, применяемой при сварке методом TIG с током 100 А, будет равняться 6 л/мин. При увеличении силы тока до 300 А, расход увеличится до 10 л/мин.

Таблица влияния силы тока, напряжения дуги, скорости сварки на размер и форму шва

Такая же тенденция наблюдается и при методе MIG – увеличение диаметра проволоки с 1 мм до 1,6 мм приводит к увеличению потребления газа с 9 л/мин до 18 л/мин.

Расход сварочной смеси зависит от диаметра проволоки


Диаметр проволоки также имеет важное значение

Большое влияние оказывают условия, в которых происходят сварочные работы. На открытом пространстве, или при наличии сквозняков, расход будет увеличиваться, поскольку для создания оптимальной защиты металла от влияния посторонних факторов потребуется больше защитного газа. В этом случае заправка баллонов будет осуществляться чаще, чем при работе в закрытом помещении. Кстати, обо всех нюансах наполнения газовых баллонов читайте в статье: заправка газовой смесью: как это делается.

Какой расход газа при аргонной сварке

Аргон является негорючим и невзрывоопасным газом. Также он не образует взрывчатых смесей во взаимодействии с воздухом. Так как он тяжелее воздуха, аргон прекрасно справляется с ролью качественной защиты сварочной ванны. Газообразный аргон не содержит в своем составе влаги более 0,03 грамм на кубический метр.

Аргон используют для надежной защиты среды сваривания, а также при плавке редких и активных металлов. С его помощью можно осуществлять плавку алюминия и его сплавов, хромоникелевых и жаропрочных сплавов, нержавеющей стали. Хранится и поставляется к месту использования в аргоновых баллонах под давлением 150 ± 5 кгс на сантиметр квадратный.

В состав газа аргона, который используют при сваривании металла неплавящимися электродами, входят такие элементы, как:

  • Кислород;
  • Азот;
  • Соединения, содержащие углерод;
  • Водяной пар;

Расход аргона при сваривании может быть самым разным. Все зависит от толщины металла и самого свариваемого металла. Показатели расходов выглядят приблизительно так:

  • При сваривании алюминия расходуется 15 – 20 литров за минуту;
  • При сваривании меди расходуется 10 – 12 литров за минуту;
  • При сваривании конструкционных, а также низколегированных сталей расходуется 6 — 8 литров за минуту;
  • При сваривании сплавов магния расходуется 12 – 14 литров за минуту;
  • При сваривании сплавов никеля расходуется 10 – 12 литров за минуту;
  • При сваривании титана расходуется 35 – 50 литров за минуту;

При сваривании аргонодуговой сваркой стоит помнить о месте проведения сваривания. Если Вы работаете на сквозняке или на улице, Вам желательно применять защитные средства для проведения сварочного процесса. Также среди способов повышения качества сварочного шва является получение надежной защиты с помощью увеличения расхода газа.

Аргон является самым дешевым и самым доступным газом для сваривания. Особенно это стало ясно видно в последние десятилетия, когда аргон стал продуктом массового производства.

Сначала аргон использовался в электровакуумной технике. На сегодняшний день лампы накаливания наполняются смесью аргона с азотом в процентном соотношении 86/14. Так как в аргоне сочетается плотность и слабая теплопроводность, металл нити в лампе накаляется медленнее, поэтому передача тепла от нити к колбе значительно ниже. Также аргон применяют в люминесцентных лампах для того чтобы упрощать их включение.

В последние десятилетия аргон стал больше применяться в металлургии, чем в осветительных приборах. Сейчас выпускаются новые виды ламп, которые способны работать намного дольше и экономнее расходовать электрическую энергию.

Аргонная среда используется при обработке многих видов металлов. Например, продувая аргоном жидкую сталь, можно намного повысить ее качество, что позволит использовать ее для монтажа более ответственных конструкций. Аргон является универсальным газом, с помощью которого можно повысить качества металла при плавлении и при сварке.

Сварка в среде защитных газов

Расчет расхода сварочной смеси

Существует формула, которая позволяет выяснить приблизительный расход сварочной смеси в процессе сварки:

Расход аргона при сварке

Среди всех сварочных газов аргон является одним из наиболее востребованных в современности сварочных расходных материалов. Он выполняет защитную функцию, охраняя ванну расплавленного металла от негативного воздействия атмосферы. Другие газы не обладают столь высокой надежностью. Благодаря этому, сварка аргоном применяется для самых сложных мест. Стоимость материала заметно выше, чем у других, так что для стандартных процедур используется редко. Расход аргона при сварке может оказаться слишком большим, что сделает себестоимость процесса весьма высокой. В то же время, для ответственных и сложных процедур он оказывается незаменимым. Чтобы сэкономить, для каждого типа процедур нужно соблюдать свои оптимальные режимы.

Аргон для сварки в баллонах

Аргон для сварки в баллонах

Область применения

Благодаря своим практичным качествам, аргон может применяться практически повсеместно. В частной сфере он встречается достаточно редко, так как зачастую его не выгодно содержать, не говоря уже о покупке соответствующего оборудования. В строительстве, где нужно создавать ответственные несущие металлоконструкции, газ является практически незаменимым. Здесь не так важна стоимость, как надежность и минимизация вероятности появления брака во время работы.

Также его часто можно встретить в ремонтных мастерских. С его помощью соединяют детали в автомобилях, изделия из сложно свариваемых металлов. Сварка нержавейки и алюминия зачастую происходит именно с помощью этого газа. Сварочные цеха на различных предприятиях также не обходятся без постов с применением аргона, где приходится работать с тонкими деталями. В коммунальной сфере им могут сваривать трубы.

Принцип расчета расхода аргона

Расход аргона при аргонодуговой сварке зависит от конкретного вида производства. Это может быть массовое, одиночное и серийное, а также от номенклатуры. При работе с конструкциями, в которых нужно наплавлять большое количество металла, расчеты производятся по такой формуле: N = Nп х Rг

Nп является количеством килограмм потраченной на изделие проволоки, а Rг – коэффициент затрат газа на 1 кг наплавочного материала. Это помогает универсально определить общие затраты даже при больших объемах работы и поэтому часто применяется на производстве.

Существует также принцип расчета, основанный на расходе в литрах на 1 метр сделанного шва. Этот способ лучше всего подходит для расчета в серийном производстве, когда делаются однотипные детали. Его используют также на малых производствах. Для этого используется такая формула: Нг = (Нуг х Т + Ндг)

Нг здесь выступает в роли значения расхода удельного газа по номиналам таблицы для конкретной температуры работы. Т – основное время сварочного процесса. Ндг – дополнительные расходы газа, которые потрачены на подготовку и последующие процедуры подогрева. Если используется во время сварки несколько проходов, то это также учитывается. Расчеты ведутся в литрах, а не в кубических метрах, как это принято в физике.

Стоит отметить, что расход аргона при сварки нержавейки и прочих цветных металлов будет отличаться от обыкновенных сталей. Зачастую здесь величина может вырастать в 1,5, а то и в 2 раза.

Таблица расхода аргона в зависимости от толщины металла

Как и любой другой защитный газ, аргон требует больших объемов, если нужно проваривать большую глубину изделия. В таблице приведены средние показатели параметров расхода, в зависимости от самых распространенных видов толщины заготовок.

Диаметр проволоки, ммВеличина тока, АНапряжение, ВСкорость подачи проволки, м/ч Показатели качества аргона

Аргон может обладать различным уровнем качества. Основным показателем является его чистота. Естественно, что полностью 100% вещества в баллоне не может быть и такое получается только в лабораторных условиях. Но чем меньше в нем примесей, тем лучше для свойств газа. Наличие примесей определяется по ГОСТам.

  • Аргон – для второго сорта газа минимально допустимое соотношение является 99,95%;
  • Кислород – данной примеси не должно быть более 0,0002%, иначе возникает вероятность появления пор;
  • Азот – содержание до 0,001%;
  • Водяные пары – до 0,0003%;
  • Углекислый газ – до 0,00002%;
  • Метан – до 0,0001%;
  • Водород – до 0,0002%.

Газ высшего качества должен обладать содержанием чистого вещества от 99,99%. Он может использоваться для самых сложных и ответственных работ, но при этом обладает и самой высокой стоимостью.

Техника безопасности при использовании

Расход аргона при сварке алюминия и других металлов является лишь финансовой составляющей, так что забывать о технике безопасности при этом не стоит. Баллон с аргоном должен стоять на расстоянии, как минимум, 10 метров от источника огня и легковоспламеняющихся предметов. Храниться газ должен в надежных емкостях, прошедших проверку по технике безопасности. Хранение должно осуществляться в хорошо проветриваемых помещениях, чтобы не было скопления газов, которые вызывают удушье.

Во время работы с аргоном нужно использовать средства индивидуальной защиты для дыхания. Этот газ обладает особой вредностью для организма человека.

«Важно!

Особое воздействие идет через органы дыхания, так что защитные повязки или специальные противогазы будут незаменимы.»

Заключение

Одна из главных особенностей использования аргона, с практической точки зрения, является его высокая стоимость. Именно по этой причине расчет расхода, определение количество затрат газа и других материалов, чтобы определить себестоимость сварочного процесса, является очень важным. Больше всего потребность возникает в производственных условиях и при больших объемах работ. При относительно небольших соединениях актуальность в расчете нескольких швов отпадает. Тем не менее, стоит знать, на какое количество наплавленного металла хватит газа находящегося в баллоне.

Дуговая сварка в среде защитных газов

регулятор расхода углекислоты

Защитный газ предотвращает попадание из воздуха в сварочную ванну водорода, кислорода, иных вредных веществ, которые ухудшают качество шва. В некоторых случаях, газ выводит подобные элементы из сварочной ванны.

Предприятиям газ поставляется кислородными цехами заводов, домашний сварщик может купить его баллон в торговой сети. Например, 10-литровый баллон углекислоты стоит немногим более 500 рублей, однако израсходовав запас газа, емкость можно заполнить новой порцией двуокиси.

Каждый сварщик старается увеличить продолжительность работы баллона с регулируемой газовой средой, и просто уменьшить его расход обычным зажатием вентиля не получится.

Любая сварка, дома или на производстве, стремиться не только к сокращению расхода углекислоты, но и повышению качества соединяемых деталей, что у новичка часто происходит обратно пропорционально.

Однако выход CO 2 — двуокиси углерода, при работе полуавтоматической сваркой можно предварительно просчитать, чтобы не бежать в магазин за новым баллоном перед самым окончанием трудового дня.

Разновидности газов

Дуговая сварка в среде защитных газов производится в разных средах. Они могут быть активными или инертными. К последним относятся такие вещества как Ar, He и прочее. Они не растворяются в железе, не вступают с ним в реакцию.


Инертные газы применяют для сварки алюминия, титана и прочих популярных материалов. Дуговая сварка в защитном газе неплавящимся электродом применяется для стали, которая плохо поддается плавлению.

Активные газы также применяются в ходе проведения подобных работ. Но в этом случае чаще используют дешевые разновидности, например, азот, водород, кислород. Одним из самых популярных веществ, которые применяются в ходе сварки, является двуокись углерода. По цене это самый выгодный вариант.

Особенности газов, чаще всего применяемых в ходе процесса сварки, следующие:

  • Аргон не воспламеняется, а также не взрывоопасен. Он обеспечивает качественную защиту сварного шва от неблагоприятных внешних воздействий.
  • Гелий поставляется в баллонах с повышенной устойчивостью к давлению, которое здесь достигает 150 атм. Сжижается газ при очень низкой температуре, достигающей -269ºС.
  • Двуокись углерода является неядовитым газом, который не имеет запаха и цвета. Это вещество добывают из дымовых газов. Для этого применяется специальное оборудование.
  • Кислород является веществом, которое способствует горению. Его получают при помощи охлаждения из атмосферы.
  • Водород при контакте с воздухом становится взрывоопасным. При обращении с таким веществом важно соблюдать все требования безопасности. Газ не обладает цветом и запахом, помогает процессам воспламенения.

Факторы расхода

Наиболее значимыми условиями расхода сварочной смеси — контролируемой атмосферы, является следующие медиаторы:

  1. Тип и толщина соединяемого металла.
  2. Диаметр сварочного прута.
  3. Сила тока сварочного аппарата.

Учитывая каждый из приведенных факторов, можно вывести расход защитной среды. Приведенные ниже данные обусловливают количество выхода сварочной смеси при работе полуавтоматом с учетом диаметра проволоки и силы тока:

От чего зависит потребление защитного газа

Расход сварочной смеси зависит от диаметра проволоки

Расход углекислоты


Чтобы не быть голословным в оценке выхода диоксида углерода для производственной нужды, следует привести конкретный пример. Стандартная газовая емкость — 40-литровый баллон, содержит 24 кг чистого диоксида углерода, который на выходе образует 12 кубометров защитной среды.

Используя присадочную нить диаметром 1,0 мм, установили наименьшую силу тока — 100 A. Если ссылаться на данные справочников, беспрерывный режим подобный сварки продлиться ровно одни сутки — 24 час.

Однако рабочие смены с такой продолжительностью работы почти не встречаются, возьмем обычную смену — 8 час. Разделив объем газа на один рабочий день, получим 8 л контролируемой атмосферы.

Справочник указывает, что 1 кг наплавки потребует 1100 г углерода и 1300 — присадочного материала. Путем несложных вычислений можно прийти к следующему выводу: 1200 г присадки возьмут из баллона 1000 г газа.

Исходя их этого, можно констатировать, что 40- литровой газовой емкости хватит на плавку почти 29 кг сварочного материала.

Разумеется, это примерные сведения, однако они часто совпадают с фактическими данными. Для сварщиков-новичков приводится таблица расхода углекислоты, в зависимости от диаметра нити и показателя силы тока.

Расчет расхода защитного газа при сварке

Сущность сварки в среде защитных газов состоит в том, что дуга горит в среде защитного газа, оттесняющего воздух из зоны сварки и защищающего наплавленный металл от кислорода и азота воздуха. В настоящее время широко применяется сварка в среде углекислого газа и смеси газов аргон и СО2
. Они применяются при изготовлении изделий из углеродистых, легированных конструкционных сталей и в ряде случаев при изготовлении конструкций из перлитных теплоустойчивых и высоколегированных сталей.
Аргон
является инертным газом, что препятствует окислению металла шва и попадания в зону сварки иных газов из воздуха. Особенностью сварки в
углекислом газе
является сравнительно сильное выгорание элементов, обладающих большим сродством к кислороду (С, Al, Ti, Si, Mn и др.). Окисление происходит за счет как углекислого газа, так и атомарного кислорода, который образуется при диссоциации СО2 под действием температуры дуги. Основные физические свойства газов, а так же технические характеристики газа в баллонах представлены в таблице 1.

1. Методы расчета используемого защитного газа для сварки или наплавки зависят от вида производства (серийное, одиночное, массовое) и номенклатуры. При производстве металлоемких конструкций на мелкосерийном производстве при составлении производственной и конструкторской спецификаций на материалы, для расчета расхода газа на изделие применима следующая формула:

где Nп — норма расхода проволоки на изделие, определяемая в кг; Rг — коэффициент, учитывающий затраты защитного газа на 1кг расходуемой проволоки, кг/кг. Для укрупненных расчетов Rг можно брать равным 1,15. При изготовлении на предприятиях опытных образцов или установочных серий изделий нормативы расхода сварочных материалов рекомендуется применять с коэффициентом 1,3.

2. Применяется метод расчета расхода защитного газа Нг в литрах или кубических метрах на 1 м шва определяется в основном для серийного производства однотипных деталей или для малого производства по следующей формуле:

Нг = (Нуг х Т + Ндг)

где Нг — удельный расход защитного газа, приведенный в табл. 2, м3/с (л/мин); Т — основное время сварки n-го прохода, с (мин); Ндг — дополнительный расход защитного газа на выполнение подготовительно-заключительных операций при сварке n-го прохода, м3 (л); n — количество проходов, n = 1, 2, 3, . n (величина сечения каждого прохода для сварки стыковых соединений проволоками диаметром 1,4. 1,6 мм не должна превышать 30. 40 мм2, а диаметром 2 мм — 40. 60 мм2). Определяя расход углекислого газа в килограммах, необходимо иметь в виду, что при испарении 1 кг жидкой углекислоты его образуется 0,509 м3, или 509 л. Дополнительный расход защитного газа Ндг в литрах или кубических метрах на каждый проход рассчитывается по формуле:

где Тпз — время на подготовительно-заключительные операции (продувку горелки до сварки, настройку режимов сварки, обдув места сварки по окончании процесса), с (мин). Последний метод расчета является более экономичным и прогрессивным. Для контроля расхода газа на баллоны необходимо устанавливать расходомеры и редуктора.

Расход газа для цветных металлов при аргонодуговой сварке немного отличается от расхода для конструкционных сталей и зачастую больше в 1,5 и 2 раза.

– при сварке алюминия расход аргона 15 -20 литров в минуту, – при сварке меди расход газа составляет 10 -12 литров в минуту, – при сварке магниевых сплавов расход аргона 12 -14 литров в минуту, – при сварке никелевых сплавов расход аргона 10 -12 литров в минуту, – при сварке титана и его сплавов расход аргона 35 – 50 литров в минуту,

Формула расчета

Показатели расхода для сварочной смеси при сварке с полуавтоматом можно выполнить с помощью следующей формулы:

  • P = Py * T;
  • Py – показатели удельного расхода газа, о которых заявил производитель;
  • T – количество основного времени, необходимое, чтобы сварить один проход.

В приведенной ниже таблице указаны нормы потребления газа, на которые оказывают влияние такие показатели: какая в диаметре проволока и какие средние показатели имеет силы тока.


Так как 40-литровый баллон содержит сварочную смесь в количестве 6 000 литров, нетрудно произвести вычисления, сколько времени можно пользоваться одним резервуаром, если процесс сварки происходит непрерывно.

К примеру, расход CO2 при полуавтоматической сварке, когда используется проволока 1 мм в диаметре, составляет от 10 до 11 часов при условии, что процесс происходит непрерывно.

Показатели таких расчетов довольно грубые, ведь здесь не учитывают, сколько газа потребляется при выполнении подготовительных и финишных операций за один проход. Это поможет в определении приблизительной картины. Если потребуются более точные показания, для их проведения может потребоваться расходомер.

Оптимальный расход углекислоты при сварке полуавтоматом

Сейчас и на маленьких, и на крупных производствах можно все чаще встретить баллоны с защитным газом. Использование защитного газа при сварке улучшает качество сварного соединения, ускоряет работу и не позволяет кислороду проникать в сварочную зону. Кроме того, баллон с газом стоит недорого и специально для домашней сварки производители выпускают компактные баллоны, которые легко помещаются в багажник машины.


Если вы домашний сварщик, то просто приобретаете компактный баллон в магазине и пользуетесь, не беспокоясь о расходе. Если газ закончится, то можно быстро докупить еще один баллон. А что делать, если вы сварщик на производстве и к вам предъявляют довольно жесткие требования по расходу газа? Как подобрать объем так, чтобы газа точно хватило на весь сварочный процесс? В этой статье мы постарались кратко рассказать вам, как вычислить оптимальный расход углекислоты при сварке полуавтоматом.

Сколько аргона расходуется при сварке?


Аргон активно применяется при сварке. Он хорошо показывает себя при выполнении задач по защите среды сваривания. Одним из популярных вопросов у наших клиентов является то, каким будет расход при проведении сварки. Учитывая, что состав активно используется для плавления алюминия и различных сплавов (в том числе и жаропрочных), такие данные помогут вам рассчитать, сколько баллонов потребуется для выполнения задачи.

Расход будет зависеть от того, какие материалы приходится сваривать с использованием газа. При расчете используется простая формула:

Здесь Р означает расход, в то время как Ру — параметр расхода газа, заявленный непосредственно производителем. Т подразумевает затраченное на сваривание одного прохода время. Соответственно, уже после первого прохода сварки вы сможете вычислить, насколько хватит баллона. При этом, на расход также может влиять и толщина свариваемого материала, диаметр проволоки, а также сила используемого тока.

Хотите получить консультацию?

Значения будут отличаться для разных вариантов материалов. Усредненные данные по применению аргона с разными материалами приведены в таблице ниже.

Свариваемый материал Расход (литры в минуту)
Алюминий 15–20
Медь 10–12
Низколегированные и конструкционные стали 6–8
Никель 10–12
Титан 35–50
Магний 12–14

Чтобы заказать смесь для сварки в нужном количестве, вам достаточно обратиться в компанию «ТАНТАЛ-Д». Наши специалисты дадут дополнительную информацию о том, каков будет расход смеси при проведении работ.

Рекомендуем к прочтению:


140050, Россия, Московская обл., Люберецкий р-он, пос. Красково, ул. Карла Маркса, д. 117, строение 16 (территория ВНИИСТРОМ 12 км от МКАД)

Читайте также: