Схема генератор сварочный генератор

Обновлено: 28.09.2024

Сварочный электрогенератор – это прибор, который наравне способен выполнять две функции: организацию электроснабжения в автономном режиме и создание неразъемного соединения путем сварки.
Для данного оборудования характерна высокая мобильность, неповторимая функциональность и возможность решать огромное количество задач независимо от условий эксплуатации.

Устройство генераторов этого типа

Для лучшего понимания принципа работы электрогенератора необходимо ознакомиться с особенностями его конструкции.

Конструкция данного прибора включает в себя:

  1. Индикатор отображения силы тока;
  2. Прерыватель цепи;
  3. Переключатель в режим "генератор";
  4. Переключатель в режим "сварка";
  5. Выход 230В 16А х 2;
  6. Форсаж дуги;
  7. Регулятор силы тока;
  8. Клемы подключения сварочных кабелей.

К основным элементам данных устройств относят:

Этот компонент включает в себя трехфазный двигатель переменного тока и электрогенерирующее устройство, благодаря чему представляется возможным изменение параметров тока для сварки.

Этот элемент состоит из приводного ДВС, электрогенератора переменного тока и конструкции, позволяющей осуществлять контроль над параметрами тока.

Существуют вентильные и коллекторные СГ. Учитывая принцип функционирования, также различают приборы с самовозбуждением и с нейтральным возбуждением.


При разомкнутой сварочной цепи (работе с отключенной нагрузкой) на зажимах генератора возникает напряжение нулевой нагрузки, величина которого равняется электродвижущей силе, создаваемой обмоткой якоря (ОЯ). При других фиксированных факторах такое напряжение находится в непосредственной зависимости от потока магнитной индукции, воспроизводимого ОВН. Наравне с этим свойства магнитного потока обусловлены током возбуждения в обмотке, поддающимся корректировке посредством специального реостата (R).

Протекание тока в дуге якоря (Я) устройства запускается зажиганием дуги (Д). Ток проходит по виткам последовательной обмотки возбуждения ОВП, функционирующей на жестких характеристиках так, что генерируемый ею поток магнитной индукции противопоставляется таковому намагничивающей обмотки. Как следствие, рост тока способствует убыли суммарного потока в воздушном зазоре прибора, а также уменьшению электродвижущей силы, наводимой в ОЯ, и напряжению, создаваемому на зажимах. Возникает жесткая внешняя статическая характеристика.

Обратите внимание на тот факт, что огромное число установок данного типа (первым делом тех, которые предназначены для работы в составе данных агрегатов) снабжены обмоткой независимого возбуждения, для питания которой используется не какой-либо внешний объект, а дополнительная (третья) щетка, расположенная между главными, то есть генераторы выполнены с самостоятельным возбуждением.

СГ вентильного типа

Данные устройства представляют генераторы переменного тока с особыми преобразователями электричества. Такие установки снабжены механическим электропреобразователем, а не полупроводниковым, что отличает их от коллекторных аналогов.

Производство ВГС базируется на использовании трехфазных индукторных одноименнополюсных электромашин, в которых размещено по 2 пакета статора и ротора, материалом для изготовления которых служит особая электротехническая сталь.

Пакеты железа статора запрессовывают в стальную станину, посредством которой осуществляется их магнитное соединение. Пакеты железа ротора запрессовывают на втулку из стали, установленную на валу генератора. Соединяются они тоже магнитно. Каждый из пакетов железа ротора снабжен зубцами. Силовую ОЯ укладывают в углубления пакетов статора (одну для всех), а тороидальную ОВ – между пакетами железа ротора и жестко укрепляют на станине.


Условные обозначения, применяемые на изображенной на рисунке электрической схеме сварочного генератора:

2 - массивная втулка на валу;

3, 8 - пакеты железа ротора;

6, 9 - пакеты железа статора;

6 - станина;

7 - ОВ, закрепленная на станине;

Ф - главный поток магнитной индукции.

С помощью рисунка можно ознакомиться с конструкцией вентильного устройства. Здесь трехфазная обмотка индукторного устройства выводами подключается к трехфазному диодному мосту УО, представленному силовыми диодами из кремния. Подвергшийся выпрямлению ток питает сварочный пост. Служащие для ручной дуговой сварки жесткие внешние статические характеристики вентильного генератора формируются в частности благодаря внутреннему индуктивному сопротивлению непосредственно электромашины.


На электрической схеме вентильного сварочного генератора были использованы следующие обозначения:

ОЯ - обмотка якоря;

ОВ - обмотка возбуждения;

ТV, ТА - трансформаторы напряжения и тока;

VD - силовой вентильный блок;

VD1, VD2, VD3 - диоды в цепи возбуждения;

R – реостат, позволяющий управлять параметрами тока.

Во время нагрузки, то есть при проведении сварки, от вентильного СГ, конструктивно соответствующего схеме, загрузка всех фаз машины осуществляется симметрично.

Сварочные генераторы

Сварочные генераторы

Сварочные генераторы входят в состав сварочных преобразователей и сварочных агрегатов.

Сварочный преобразователь содержит приводной трехфазный электродвигатель, сварочный электрогенератор постоянного тока и устройство регулирования сварочного тока.

Сварочный агрегат содержит приводной двигатель внутреннего сгорания, сварочный электрогенератор постоянного тока и устройство регулирования сварочного тока.

Сварочные генераторы подразделяют по конструкции на коллекторные и вентильные, а по принципу действия на генераторы с самовозбуждением и с независимым возбуждением.

Сварчоные генераторы коллекторного типа с независимым возбуждением применялись в сварочных преобразователях, выпуск которых в нашей стране прекращен в 90х годах 20 века, но пока еще в некоторых организациях эксплуатируются.

Остальные виды генераторов в настоящее время являются составной частью сварочных агрегатов.

Коллекторные сварочные генераторы

Коллекторные генераторы являются машинами постоянного тока, содержащими статор с магнитными полюсами и обмотками, а также ротор с обмотками, концы которых выведены на пластины коллектора.

При вращении ротора витки его обмотки пересекают силовые линии магнитного поля и в них индуцируется ЭДС.

Графитовые щетки осуществляют подвижный контакт с пластинами коллектора. Щетки машины располагаются на электрической (геометрической) нейтрали коллектора, где ЭДС в витках меняет свое направление. Если сдвинуть щетки с нейтрали, то напряжение генератора снизится и переключение обмоток будет происходить под напряжением, что в сварочных генераторах под нагрузкой приведет к очень быстрому расплавлению коллектора электрической дугой.

ЭДС на щетках сварочного генератора пропорциональна магнитному потоку, создаваемому магнитными полюсами Е2 = сФ, где Ф - магнитный поток; с — постоянная генератора, определяемая его конструкцией и зависящая от числа пар полюсов, количества витков в якорной обмотке, скорости вращения якоря.

Напряжение на выходе генератора при нагрузке U2 = E2 - J св R г, где U2 - выходное напряжение на клеммах генератора при нагрузке; Jсв - сварочный ток; Rг - суммарное сопротивление участка цепи якоря внутри генератора и щеточных контактов.

Поэтому внешняя статическая характеристика такого генератора полого падающая. Для получения круто падающей внешней статической характеристики в коллекторных генераторах применяется принцип внутреннего размагничивания машины, что обеспечивается статорной обмоткой размагничивания. При необходимости получения жесткой внешней статической характеристики используется подмагничивающая обмотка статора.

Сварочный генератор с независимым возбуждением и размагничивающей обмоткой

Схема сварочного генератора с независимым возбуждением и размагничивающей обмоткой

Рис. 1 Схема сварочного генератора с независимым возбуждением и размагничивающей обмоткой

Отличительной особенностью такого генератора является то, что на магнитных полюсах расположены две обмотки возбуждения. Одна (намагничивающая) питается от постороннего источника тока (с независимым возбуждением), а по другой (размагничивающей) протекает сварочный ток.

Размагничивающая обмотка, играя роль сопротивления, включенного последовательно с дугой, обеспечивает падающую характеристику генератора, а при ее секционировании ступенчато регулирует величину тока.

Включение в работу всех витков размагничивающей обмотки дает ступень малых токов, а включение части витков - ступень больших токов.

Сварочные генераторы

Плавное регулирование сварочного тока осуществляется за счет изменения напряжения холостого хода, для чего служит реостат R в цепи намагничивающей обмотки. Увеличение сопротивления R приводит к снижению намагничивающего тока снижению потока намагничивания Фн, напряжения холостого хода генератора и, наконец, к уменьшению сварочного тока.

Генератор обеспечивает падающую внешнюю статическую характеристику только при вращении в одну сторону, указанную на корпусе стрелкой. В сварочных преобразователях необходимо контролировать правильное направление вращения электродвигателя до проведения сварки на холостом ходу.

Сварочный генератор с самовозбуждением и размагничивающей обмоткой

Главное отличие этого типа генераторов в том, что намагничивающая обмотка возбуждения питается не от постороннего источника, а от самого генератора. Поэтому они называются генераторами с самовозбуждением.

Принципиальная электрическая схема и устройство магнитной системы четырех полюсного генератора с самовозбуждением

Рис. 2. Принципиальная электрическая схема и устройство магнитной системы четырех полюсного генератора с самовозбуждением

В коллекторных сварочных генераторах, кроме основных полюсов и обмоток, есть ещё две дополнительных полюса, на которых размещается по витку дополнительной последовательной обмотки. Это необходимо для компенсации магнитного потока реакции якоря и сохранения положения электрической нейтрали машины при изменении нагрузки.

Для нормальной работы генератора с самовозбуждением необходимо, чтобы напряжение, подаваемое на намагничивающую обмотку, не изменялось в процессе сварки, т.е. не зависело от режима сварки. С этой целью в генераторе установлена третья дополнительная щетка, которая располагается между двумя основными щетками.

Напряжение, питающее намагничивающую обмотку, оказывается независящим от сварочного тока. Падающая же характеристика генератора обеспечивается за счет размагничивающего действия размагничивающей обмотки, проявляющегося под второй половиной полюсов.

Сварочные генераторы

Особенность сварочных генераторов с самовозбуждением состоит в том, что их запуск возможен только при вращении якоря, в одном направлении, указанном стрелкой на торцевой крышке статора. Это связано с тем, что первоначальное возбуждение генератора при его запуске происходит благодаря остаточному намагничиванию полюсов.

При вращении якоря в противоположную сторону в обмотке возбуждения потечет ток обратного направления, который своим нарастающим магнитным полем в какой-то момент времени компенсирует остаточное намагничивание полюсов, т.е. суммарный магнитный поток под полюсами станет равным нулю. В этом случае для возбуждения генератора необходимо намагничивающую обмотку временно подсоединить к независимому источнику постоянного тока.

Вентильные сварочные генераторы

Сварочные генераторы этого типа появились в середине 70-х годов 20 века после освоения производства силовых кремниевых вентилей. В этих генераторах функцию выпрямления тока вместо коллектора выполняет полупроводниковый выпрямитель, на который подается переменное напряжение генератора.

В сварочных агрегатах применяются генераторы три типа конструкции генераторов переменного тока: индукторный, синхронный и асинхронный. В России сварочные агрегаты выпускаются с индукторными генераторами с самовозбуждением, независимым возбуждением и со смешанным возбуждением.

Схема вентильного генератора с самовозбуждением

Рис. 3. Схема вентильного генератора с самовозбуждением

В индукторном генераторе неподвижная обмотка возбуждения питается постоянным током, но создаваемый ею магнитный поток имеет переменный характер. Он максимален при совпадении зубцов ротора и статора, когда магнитное сопротивление на пути потока минимально, и минимален при совпадении впадин ротора и статора. Следовательно, ЭДС наводимая этим потоком, тоже переменная.

Три рабочие обмотки расположены на статоре со сдвигом на 120°, поэтому на выходе генератора образуется трехфазное переменное напряжение. Падающая характеристика генератора получается за счет большого индуктивного сопротивления самого генератора. Реостат в цепи возбуждения служит для плавной регулировки сварочного тока.

Отсутствие скользящих контактов (между щетками и коллектором) делает данный генератор более надежным в эксплуатации. Кроме того, у него более высокий КПД, меньшие масса и габариты, чем у коллекторного генератора.

Принципиальная электрическая схема вентильного сварочного генератора типа ГД-312 с самовозбуждением

Рис. 4. Принципиальная электрическая схема вентильного сварочного генератора типа ГД-312 с самовозбуждением

Для обеспечения работы на холостом ходу питание обмотки возбуждения осуществляется от трансформатора напряжения, а для питания ее в режиме короткого замыкания – от трансформатора тока. В режиме нагрузки – сварки – на обмотку возбуждения подается смешанный сигнал управления пропорциональный части выходного напряжения и пропорциональный току. Вентильные генераторы выпускаются марки ГД-312 и применяются для ручной сварки металлов в составе агрегатов типа АДБ.

Принципиальная схема сварочного генератора ГД-4006

Рис. 5. Принципиальная схема сварочного генератора ГД-4006

В России выпускают несколько конструкций многопостовых агрегатов с количеством постов от 2х до 4х. На рынке представлены универсальные агрегаты для нескольких способов сварки или сварки и плазменной резки. В частности агрегат АДДУ-4001ПР.

Формирование искусственных ВСХ агрегата АДДУ-4001ПР обеспечивается тиристорным силовым блоком с микропроцессорным управлением. Более широкие технологические возможности обеспечивает применение в агрегатах инверторных силовых блоков, как например в агрегате Vantage 500.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Схема сварочного генератора

Сварочные генераторы используются в условиях, когда отсутствуют внешние источники питания. Данные устройства самостоятельно вырабатывают электроэнергию, достаточную для полноценного функционирования сварочного поста. В их конструкцию входит сам сварочный аппарат и генератор, вырабатывающий электроэнергию. Наиболее широкое распространение получили силовые установки, работающие на бензине.

Физические свойства ручной дуговой сварки

Для выполнения ручной дуговой сварки используются электроды. Они подаются к месту сваривания постепенно, по мере расплавления, и перемещаются вдоль шва. В это время проявляется основное физическое свойство, когда между электродом и основным металлом загорается дуга. В этот момент стержень расплавляется и жидкий металл в виде капель стекает в так называемую сварочную ванну.

Схема сварочного генератора

Одновременно со стержнем расплавляется и покрытие электрода, в затем, превращаясь в газ, защищает пространство около дуги и саму ванну на расплавленной поверхности, препятствует контакту атмосферного воздуха с расплавленным металлом. Постепенно дуга перемещается, сварочная ванна становится твердой, металл кристаллизуется, и в этом месте образуется соединительный шов, на поверхности которого появляется твердая корка из шлака.

Сварочная дуга образуется и поддерживается с помощью переменного или постоянного тока, подведенного к электроду и самой металлической конструкции. На самом электроде и поверхности ванны образуются так называемые активные пятна. Расстояние между ними составляет длину дуги. Металл расплавляется на определенную глубину, размер которой зависит от нескольких факторов. Прежде всего, это рабочий режим сварки и ее расположение в пространстве. Существенное влияние оказывает скорость движения дуги, конструкция соединения, размеры и форма кромок, свариваемых между собой.

Как работают генераторные установки

Схема сварочного генератора

Схема сварочного генератора часто применяется не только на производстве, но и в домашних условиях при выполнении ремонтных работ. Нередко они используются как автономные источники электроэнергии и являются незаменимым оборудованием, особенно на дачах и в загородных домах при регулярных отключениях электричества.

В целом, действия сварочных электрогенераторов происходят по одной и той же схеме.

  • В якорной обмотке появляется ток с переменным значением. Он появляется там, где эти обмотки пересекают магнитные силовые линии, находящиеся на полюсах статора.
  • Затем ток подводится к коллекторам и преобразуется из переменного в постоянный.
  • На следующем этапе этот постоянный ток подается на угольные щетки, очень плотно контактирующие с коллекторами.
  • В завершение процесса ток идет к зажимам, подключенным к этим щеткам, а уже от них – к сварочным проводам.

Точно также работает и бензиновый генератор для сварочного аппарата. В конструкции каждого агрегата имеется обмотка возбуждения со свойствами намагничивания. Для ее питания могут быть использованы разные способы:

  • С помощью независимых внешних источников питания.
  • Непосредственно от генератора, с обмотки якоря при помощи дополнительной щетки, соединенной с намагничивающей обмоткой возбуждения.

В первом случае в генераторе используется независимое возбуждение, а во втором – самовозбуждение. Работа каждого из них может происходить в разных режимах, которые при необходимости регулируются плавными изменениями намагничивающего тока.

Схема сварочного генератора

Большое значение имеет последовательная обмотка возбуждения, входящая в конструкцию генератора. Ее основным отличием является малое число витков. Обмотка последовательно соединяется с дугой и подает к ней электрический ток. В результате, сила тока в ней будет одинакова с силой тока на сварочной дуге. Каждая обмотка разделяется на несколько секций и функционирует не только полностью, но и отдельными частями.

Сварка этого типа используется в основном для ручной работы с помощью единичных электродов. Именно для таких случаев предусмотрены генераторы с резко падающими внешними характеристиками, когда при повышении тока уменьшается напряжение. Такой ток требуется для поддержания постоянного стабильного горения дуги, которое может быть неровным из-за неравномерного движения руки сварщика.

Коллекторная схема генераторных установок

Одной из ведущих схем подобной аппаратуры являются сварочные генераторы коллекторного типа. Работы этих устройств осуществляется следующим образом.

Схема сварочного генератора

При нахождении сварочной цепи в разомкнутом виде, и отсутствии нагрузки, на зажимах аппарата появляется так называемое напряжение нулевой нагрузки. Его величина эквивалентна ЭДС, возникающей в якорной обмотке. При нахождении в рабочих режимах данное напряжение находится в полной зависимости от потока магнитной индукции, появляющегося в независимой обмотке возбуждения. Одновременно, магнитный поток зависит от тока возбуждения в обмотке и регулируется специальным реостатом.

В момент зажигания дуги запускается течение тока в якорной обмотке. Далее ток идет через витки в последовательной обмотке возбуждения. В ней создается магнитный поток, направленный против другого магнитного потока, который создается в намагничивающей обмотке ОВН. В связи с этим сварочный ток возрастает, а суммарный магнитный поток в воздушном зазоре генератора снижается. Соответственно происходит уменьшение ЭДС, наводимой в якорной обмотке, и снижение генерируемого напряжения на зажимах.

Таким образом, наблюдается образование крутопадающей внешней статической характеристики. В большинстве сварочных установок коллекторного типа имеется обмотка независимого возбуждения, питающаяся через дополнительную щетку, расположенную между основными. То есть, в этих генераторах присутствует функция самовозбуждения.

Схема генераторов вентильного типа

Бензогенераторы данного типа выполнены в виде индукторного трехфазного генератора переменного тока. Он отличается повышенной частотой, а в схеме имеется встроенный выпрямительный блок. Трехфазная якорная обмотка переменного тока установлена на статоре. Она соединяется по схеме «звезда» или «треугольник». Между двумя роторными пакетами, на статоре также расположена обмотка возбуждения.

Схема сварочного генератора

Сам ротор изготовлен в виде двух пакетов, состоящих из зубчатых элементов, изготовленных из электротехнической стали. Он не имеет обмоток и вращается вокруг своей оси. В каждом пакете ротора имеется восемь зубцов, смещенных относительно друг друга на 180 градусов.

Когда по обмотке возбуждения проходит постоянный ток, в ней происходит возникновение переменного магнитного потока. Его распределение осуществляется таким образом, чтобы первый пакет создавал лишь северные полюсы, а второй – южные. При совмещении зубцов ротора и статора достигается максимальное значение магнитного потока, а величина сопротивления на пути этого потока будет минимальной. Магнитный поток становится минимальным, когда зубец статора совпадает с пазом ротора.

Схема сварочного генератора

Таким образом наглядно видно, что обмотка возбуждения принимает непосредственное участие в создании пульсирующего или переменного магнитного потока. Пронизывая трехфазную обмотку статора, этот поток вызывает наведение в ней переменной ЭДС с повышенной частотой. В свою очередь, переменная ЭДС с помощью выпрямительного блока преобразуется в постоянное напряжение вентильного генератора.

Название устройства связано с выпрямительным блоком, в котором используются кремниевые вентили, собранные по трехфазной схеме в виде моста. Питание обмотки возбуждения осуществляется через трехфазную силовую цепь генератора. Для этого существует специальный блок, в который входят трансформаторы тока и напряжения, а также выпрямители. После запуска генератор изначально самовозбуждается за счет остаточного магнитного потока.

По сравнению с коллекторными устройствами, схема для сварочного генератора вентильного типа обладает существенными преимуществами. У них отсутствуют ненадежные скользящие контакты, они обладают повышенным КПД, отличаются компактными размерами и небольшой массой. Вентильные аппараты зарекомендовали себя более надежными в эксплуатации, высокой стабильностью горения и эластичностью сварочной дуги.

Конструктивные особенности сварочных аппаратов

Все сварочные устройства изготавливаются в компактном виде, включают в себя саму сварку и генератор сварочного аппарата. Агрегаты могут работать на бензине или дизельном топливе и применяются в тех местах, где случаются частые перебои с подачей электроэнергии или электричества нет вообще.

Схема сварочного генератора

В соответствии с конструктивным исполнением генераторы могут быть передвижными или стационарными, одно- или многопостовыми, с различными вольтамперными характеристиками. Наибольшее распространение получил бензиновый сварочный генератор, средняя мощность которого не превышает 100 кВт. Эти агрегаты просты и удобны в обслуживании, обладают незначительной массой, могут эксплуатироваться в сложных условиях, в том числе при низкой температуре.

Среди недостатков следует отметить пониженный рабочий ресурс, существенный расход топлива и невозможность работы свыше 6 часов в день. Тем не менее, они очень популярны у потребителей в качестве резервной или аварийной аппаратуры. Лучшим вариантом считаются инверторные устройства, способные выдавать постоянную частоту 50 Гц, и выполнять сварочные работы с высоким качеством швов.

Дизельный сварочный генератор хотя и не такой мобильный, но тем не менее, он отличается повышенной выносливостью и способностью непрерывно работать в течение длительного времени. Они создают мало шума и расходуют незначительное количество топлива. Дизельные генераторы очень удобны при больших объемах сварочных работ и в случае необходимости могут использоваться как электростанции круглосуточно обеспечивая бесперебойную подачу электроэнергии.

Схемы генераторов 220в бензиновый

В данном разделе вы можете найти необходимую Вам схему для бензинового генератора.

1. Типовая схема электропроводки для двигателей GX610 GX620 GX670


2. Схема электрическая для двигателей типа HONDA GX630 GX660 GX690


3.Схема электрическая генератора GESAN G10000V, G10TFV


4.Схема электрическая генератора HITACHI E100


5. Схема электрическая генератора Hyndai HY7000LE-3


6. Схема электрическая генератора Hyndai HY7000LE


7. Схема электрическая генератора SKAT УГБ-6000Е


8. Типовая схема 1 фазного бензинового генератора


9.Типовая схема бензинового генератора


10.Схема подключения (Схема цепи Champion GG2500)


11.Схема подключения (Схема цепи Champion GG3800, GG8000)


12.Схема подключения (Схема цепи Champion GG8000-E)



14.Схема электрических соединений в генераторе (модели WPG 1500, 2500, 3000)


15.Схема электрических соединений в генераторе (модели WPG 3800, 5000)


16.Схема электрических соединений в генераторе (модели WPG 3800E2, 5000E2)


17.Схема электрических соединений в генераторе (модели WPG 6500)

18.Схема электрических соединений в генераторе (модели WPG 6500E2)


19.Трехфазный генератор G12TFH (MECC ALTE T20F-200/2, 400/230 В ±4%)


20. Однофазный генератор G12000H (SINCRO FK2MBS, 230 В ±10%)


21.СХЕМА АВТОМАТА ВВОДА РЕЗЕРВА (АВР) ДЛЯ БЕНЗИНОВЫХ ТРЕХФАЗНЫХ ЭЛЕКТРОГЕНЕРАТОРОВ GESAN


22.СХЕМА АВТОМАТА ВВОДА РЕЗЕРВА (АВР) ДЛЯ БЕНЗИНОВЫХ

МОНОФАЗНЫХ ЭЛЕКТРОГЕНЕРАТОРОВ GESAN


23.ЛОГИЧЕСКАЯ СХЕМА РАБОТЫ АВР


24.Схема электрическая генератора Fubagti 2000

Обозначения элементов на принципиальной схеме бензинового генератора:

  • AVR — Автоматический регулятор напряжения ( Automatic Voltage Regulator )
  • BATTERY — Аккумулятор
  • CHARGE COIL — Катушка подзарядки аккумулятора
  • COMBINATION SWITCH — Замок зажигания
  • ENGINE STOP DIODE — Реле остановки двигателя
  • FUEL CUT SOLENOID — Клапан отсечки топлива ( стоит в карбюраторе )
  • FUSE — Предохранитель
  • OIL ALERT UNIT — Реле датчика уровня масла
  • OIL LEVEL SWITCH — Датчик уровня масла
  • OS — Датчик уровня масла
  • OSU — Система остановки двигателя при низком уровне масла
  • RECTIFIER — Выпрямитель, диодный мост
  • SOCKET — Розетка
  • SPARK PLUG — Свеча зажигания
  • STARTER MOTOR — Электростартер

Ниже показано как выглядят некоторые элементы схемы и их назначение



AVR или automatic voltage regulator — блок регулирующий напряжение 220 вольт на выходе генератора. При выходе из строя как правило пропадает напряжение на выходе генератора.


Аккумулятор 12в служит для запуска генератора при помощи электростартера


Замок зажигания предназначен для запуска генератора с помощью ключа


Реле датчика масла бензинового генератора отвечает за экстренную остановку двигателя генератора при низком уровне масла в картере.


Электростартер бензинового генератора предназначен для запуска генератора.


Выпрямительный диодный мост предназначен для преобразования переменного напряжения 12В в постоянное, для заряда аккумулятора.

Познакомимся со схемами бензогенераторов

Повседневная жизнь человека практически немыслима без электроэнергии, ведь вся его профессиональная деятельность, а также досуг, невозможны в принципе без этого. Отключение света в самый ненужный момент может не только надолго испортить настроение, но и повредить некоторые бытовые приборы, чувствительные к нестабильной подаче электроэнергии и скачкам напряжения сети. Чтобы себя подстраховать от таких негативных последствий, многие задумываются о приобретении бензогенератора для своего дома. Такой прибор, являющийся автономным источником электрической энергии, способен обеспечить светом практически все жилище, в зависимости от того, какой мощности устройство было приобретено. Также отличительной особенностью некоторых разновидностей бензогенератора является то, что его можно брать с собой за пределы дома, например, на природу. Чтобы более конкретно узнать о данном устройстве, следует тщательно разобрать его отличительные особенности, классификацию, а также другую информацию, которая может стать полезной при покупке.

Классификация бензогенераторов


На российском рынке существует достаточно много различных агрегатов, отличающихся друг от друга сразу по нескольким признакам. Исходя из этого, можно сформировать своеобразную классификацию бензинового генератора как вид технического устройства:

  • Профессиональные и бытового назначения. Агрегаты, относящиеся к первому типу, используются на крупных предприятиях промышленного назначения, где подключаются к мощной аппаратуре. Что касается бытового бензинового генератора, то такое устройство прекрасно подходит для применения в частных загородных домах, а также за его пределами.
  • Стационарные устройства и переносного типа. Переносной бензогенератор отличается более скромными габаритами, чтобы его можно было свободнее транспортировать за пределы дома. Естественно, это сказалось на его мощности — она, как правило, не превышает 5 кВА.
  • В зависимости от двигателя, т.е. 2-тактные и 4-тактные. Двухтактный движок устанавливается на бензогенераторы небольшой мощности — до 1 кВт. Начиная с 1 кВт и выше — устанавливают четырехтактный двигатель.
  • Однофазного (220В) и трехфазного (380В) типа. Трехфазные агрегаты стоят на порядок дороже, да и большой необходимости в них нет. Это объясняется тем, что для домашней сети необходимы однофазные устройства, которые и получили наибольшее распространение.

Исходя из показателей мощности — небольшой мощности (до 4 кВт), средней (до 15 кВт) и агрегаты высокой мощности (до 30 кВт).

Что касается мощности бензинового генератора, то есть свои нюансы:

  • Агрегаты, мощность которых не превышает 4 кВт, относятся к домашним устройствам. Один такой бензиновый генератор способен полностью обеспечить электроэнергией небольшой домик или склад. Специфика конструкции таких генераторов не позволяет им работать без перерыва — в среднем, продолжительность беспрерывной работы составляет порядка четырех часов. По истечении данного времени, устройство необходимо отключить, чтобы система могла охладиться.
  • Агрегаты, мощность которых составляет до 15 кВт, могут использоваться на строительных площадках и в офисных зданиях. Это более современная конструкция, поэтому срок беспрерывной работы такого бензинового генератора составляет порядка десяти часов.
  • Агрегаты мощностью до 30 кВт используются для обеспечения электричеством больших складских и торговых помещений. Как правило, заранее рассчитывается схема подключения, а также место, где будет расположен бензогенератор.

Устройство бензогенератора

Как уже было сказано ранее, в конструкции могут использоваться два вида мотора — 2-тактный и 4-тактный.

Дополнительно к двигателю, агрегат комплектуется дополнительными системами подачи топлива, смазки, а также системой подавления шума. Естественно, что в конструкции присутствует выхлопная труба, т.к. устройство работает на бензине.

Бензиновые генераторы могут быть синхронными и асинхронными. Агрегаты, относящиеся к первому типу, считаются более усовершенствованными, поэтому могут переносить более сильные скачки напряжения. Асинхронные системы используются в дешевых моделях, поэтому их конструкция более простая, чем у синхронных.

На видео рассказ про асинхронные

В системе также присутствуют контрольно-измерительные приборы, осуществляющие регулировку основных рабочих узлов. Данная функция крайне важна для стабильной работы всего бензогенератора в целом.

Представленная ниже схема наглядно демонстрирует весь агрегат, а также основные его рабочие узлы и степень их влияния на систему в целом. Стоит заметить, что узлы соединены между собой крепежными элементами, а также целостной рамной конструкцией.


Принцип работы

Данное знание позволит устранить различные неполадки, риск возникновения которых всегда присутствует в процессе эксплуатации.

Для лучшего понимания обозначим весь принцип работы поэтапно:

  • В соответствующий кратер топливного бака заливается топливо — бензин.
  • После того, как осуществлено подключение устройства в сеть, топливо поступает в двигатель по бензопроводу.
  • В процессе поступления топлива к двигателю, оно проходит специальный процесс очистки от всевозможных примесей.
  • По завершении данного процесса, топливный насос производит закачку бензина в карбюратор.
  • В самом карбюраторе происходит смешивание бензина до необходимой консистенции. После этого осуществляется подача кислорода в топливо. Как только достигается нужная горючесть, бензин подается на цилиндры используемого мотора.
  • Происходит запуск двигателя. Топливная смесь воспламеняется посредством попадания на нее искры из свечи зажигания. Как только топливо сгорело, появляется газовое образование, запускающее в действия коленвал и поршневую систему. Крутящийся момент передается роторному механизму, который и образует электрическую энергию из механической.
  • Роторный механизм вращается, что провоцирует образование магнитного поля, которое, в свою очередь, влияет на возникновение электромагнитного поля.
  • Конечным итогом всего процесса является возникновение электрической энергии.

Вообще, мощность самого бензогенератора напрямую зависит от количества витков обмотки, поэтому нужно иметь данный факт в виду.

На видео происходит разбор бензогенератора Firman и рассказ о его устройстве

Схема устройства

Безусловно, неопытному человеку довольно сложно разобраться во всевозможных схемах подключения и устройства бензиновых генераторов. Неудивительно, ведь данная информация является довольно специфической, разобраться в которой может только опытный электрик.

Однако, можно попробовать разобраться и самому во всех этих хитросплетениях. В принципе, данная статья и предназначена для этого, поэтому попытаемся доступным языком описать несколько схем бензогенератора.

Итак, первой нашего внимания заслуживает электрическая схема устройства (рассмотрим на примере модели Huter DY):


На схеме мы видим принцип работы устройства. A2 (альтернатор) раскручивается механическим образом при помощи троса, A5 (катушка зажигания) формирует искру на F1 (свеча). Подобным образом осуществляется процесс запуска бензинового двигателя агрегата. Примечательно, что в случае, если SB1 (выключатель) будет замкнут, то искра не возникнет, т.е.двигатель не запустится.

Две катушки L1 и L2 вырабатывают выходное напряжение разной мощности. В первом случае, данный показатель будет равен 220 В, а во втором — 12 В.

Уровень масла определяется по специальному индикатору — HL1, а PV1 (стрелочный прибор) определяет степень напряжения.

Стабильность работы всего агрегата формируется благодаря катушкам L3 и L4.

На видео идет рассказ об устройстве и схеме бензогенератора на примере моделей Зубр

Схема подключения к сети дома

Данная работа осуществляется с использованием трех сетей:

  • Общая электрическая сеть, через которую осуществляется подача всего электричества.
  • Сеть потребителей электричества.
  • Провода самого устройства.


При этом, подключение может осуществляться тремя способами:

  • При помощи обычного рубильника (переключателя).
  • С частичным использованием автоматизации.
  • С полной автоматизацией процесса.

Понятно, что первый способ является наиболее простым, поэтому и рассмотрим его более подробно.

Сам рубильник функционирует в трех положениях, каждое из которых отвечает за свой этап работы.

Само подключение осуществляется поэтапно:

  • Наиболее простой способ подключения — это в розетку домашней сети. После этого, необходимо подключить бензиновый генератор ко всем вероятным потребителям (приборам). Подключается он к разводке этих устройств.
  • Следите за тем, чтобы номинальный ток агрегата и сечение проводов совпадали.
  • Нет необходимости в проведении лишних манипуляций — достаточно лишь соединить вилку запитывающего устройства с генератором любым путем (через удлинитель или напрямую).

Переход ручки переключателя в следующую позицию обесточит весь обслуживаемый объект. Следующий поворот рубильника — и все питание переходит на альтернативный источник, т.е. бензиновый генератор.

Заключение

Именно здесь и становятся необходимыми те схемы устройства и подключения, которые были предоставлены в данной статье. Их понимание и осуществление на практике — вот залог успешной реализации данных проектов.

Устройство сварочного генератора


Сварочный генератор – это автономная установка, применяемая для проведения сварки в условиях отсутствия полноценного источника электроэнергии. Данный агрегат гармонично сочетает в себе две важнейшие функции: организует независимое электроснабжение и вырабатывает сварочный ток определенных параметров.

Его использование позволяет проводить ремонтные и монтажные работы любой сложности там, где снабжение электричеством происходит с перебоями или невозможно вообще в силу отсутствия соответствующих линий. Кроме этого, такой аппарат часто незаменим и в быту, например, в качестве автономной системы освещения или для проведения срочной сварки.

Конструктивно устройство сварочной установки представлено генератором тока и приводным топливным двигателем, которые объединены рядом контролирующих и управляющих узлов и систем. К ним относятся: реостат для отладки сварочного тока, якорь, топливная емкость, пульт управления, коллектор, корпус, токосъемный механизм, капот со шторами и кровлей.

Стоит отметить, что в целом принцип работы сварочного генератора аналогичен действию других подобных установок. Однако у данного аппарата имеется одно главное отличие – наличие такого узла, как якорь, вращаемый посредством двигателя. Благодаря этому он вырабатывает электрическую энергию с постоянными характеристиками, что позволяет обеспечить стабильную и непрерывную сварочную дугу.

Главные эксплуатационные преимущества сварочных генераторов:

  • компактность, мобильность;
  • высокая надежность, функциональность;
  • небольшой уровень шума;
  • работа в сложных условиях и в режиме высоких нагрузок;
  • удобный, недорогой и независимый источник питания;
  • продолжительная эксплуатация в автономном режиме;
  • стабильная генерация электротока с определенными параметрами.

Типы сварочных генераторов


Приобретая такую технику, следует осознавать, что она предназначена для производства определенного объема электричества, которое нужно для сварки. В связи с этим все конкретные требования потребителя должны совпадать с эксплуатационными возможностями оборудования. В противном случае его эффективная работа невозможна. В зависимости от технических и функциональных характеристик, выделяют следующие типы сварочных генераторов:

  1. Трансформаторы – удобные в работе и компактные агрегаты, выдающие переменный ток и отличающиеся доступной стоимостью.
  2. Выпрямители – станции, предназначенные для производства постоянного тока. Это оборудование используется для получения качественных сварочных швов и обработки деталей из нержавеющей стали.
  3. Инверторы – устройства с функцией высокоточной настройки рабочих параметров. Чаще всего применяются для сваривания в автоматическом или аргонодуговом режиме.

Также в продаже имеются сварочные генераторы, классифицируемые по виду используемого топлива на:

Эти установки характеризуются небольшой мощностью и доступной ценой. Они непригодны для длительных работ в сложных условиях, но считаются наилучшим решением для периодического применения в быту. Отличаются оптимальными габаритами и малым весом, при работе производят мало шума, не загрязняют окружающую среду.

Главные характеристики таких агрегатов – высокая надежность в эксплуатации и солидный спектр мощностей. Благодаря этому дизельные установки отличаются значительным рабочим ресурсом и возможностью функционирования при низкой температуре, а, следовательно, и более высокой рыночной стоимостью. Но их эксплуатация обходится значительно дешевле, чем оборудования, работающего на бензине.

Характеристики сварочных генераторов


Помимо вышеперечисленных критериев, существует еще ряд важных характеристик, которые напрямую влияют на работу сварочных генераторов. Во-первых, это мощность. Данный показатель указывается производителем в прилагаемом техпаспорте в кВт или кВа. Специалисты рекомендуют подбирать агрегат с определенным запасом мощности, поскольку никогда не известно, какие задачи по сварке понадобится выполнить в будущем.

Во-вторых, защита от пыли и влажности. Современные требования безопасности категорически запрещают работу на бытовых и профессиональных сварочных генераторах в условиях проливного дождя, поскольку велик риск заработать электрический шок и испортить оборудование. Именно поэтому большинство станций имеет класс защиты от «одиночных капель и крупных частиц дождя», также встречаются установки с защитой от «косого дождя».

В-третьих, ремонтопригодность. Прежде чем начать беседу с продавцом о всех прелестях определенной модели, рационально узнать, – где, кем и на каких условиях оказывается техническая поддержка и проводится гарантийный ремонт. Важным критерием является и комплектация. Если оборудование предназначено для ручной переноски, оно должно оснащаться соответствующим чемоданчиком. Также стоит обратить внимание на следующие показатели:

  • тип и стартовая сила тока;
  • рабочее и холостое напряжение;
  • диаметр электродов;
  • продолжительность включения;
  • рабочая температура;
  • вес, размер, транспортабельность.

Работа сварочного генератора

Практически всегда выгоднее приобрести именно сварочный генератор, а не автономную станцию и отдельно установку для сварки. Ведь часто случается так, что топливный агрегат не обеспечивает работу сварочного аппарата по причине нехватки мощности. А вот генератор для сварки рассчитан на определенную мощность и эксплуатацию в широком спектре температур, что при правильном подборе гарантирует отличное качество созданных швов.

Также немаловажен факт, что подобные установки предназначены для обработки разных металлов в различных, порой сложных климатических условиях. Кроме того, именно в автономных системах предусмотрены разнообразные защитные функции, микропроцессорное управление и возможность автоматической отладки напряжения. Благодаря этому такое оборудование отличается универсальностью, высокой производительностью и безопасностью.

Схемы сварочных генераторов


Современная промышленная индустрия предлагает широкий ассортимент моделей этих установок. Схемы сварочных генераторов, определяющие принципы их функционирования и управления, выполняются в различных модификациях и отличаются внешними характеристиками. Сегодня практически все известные производители используют собственные наработки в данной сфере.

Такой подход весьма полезен для конечных потребителей, поскольку обеспечивает возможность выбрать продукцию не только с учетом планируемых работ, но и по бюджету. В настоящее время наибольшим спросом пользуется оборудование, функционирующее по типу независимого или самовозбуждения и следующим схемам:

  • универсальная;
  • с падающей характеристикой;
  • с жесткой или пологопадающей характеристикой.

Ремонт сварочного генератора

Несмотря на то, что сварочный генератор отличается высокими техническими характеристиками и степенью надежности, иногда, как и все электромеханическое оборудование, он ломается. Причины выхода аппарата из строя могут быть разными: некачественное топливо, ненадлежащее обслуживание, некорректно установленный режим работы и т.д.


Чтобы избежать неожиданного отказа сварочного генератора и последующей остановки работ на объекте, необходимо своевременно проводить его техническое обслуживание и по возможности устранять выявленные неисправности. Как правило, к каждому аппарату прилагается инструкция, в которой подробно описываются самые распространенные проблемы и методы их решения.

Однако самостоятельный ремонт сварочного генератора требует определенных познаний в сферах электрики и механики. Если таковых не имеется, лучше остановиться на стандартном профилактическом обслуживании, а все остальное доверить профессионалам сервисных центров. Подобное распределение ответственности, несомненно, позволит увеличить срок службы сварочного генератора от любого производителя. Типичные работы по устранению дефектов можно разделить на две основные группы:

Обычно предусматривает периодическую проверку и при необходимости замену поршневых колец. Срок непрерывной эксплуатации данных элементов сварочного генератора указывается в инструкции. Поэтому если при разборе двигателя выявляется изношенность этих запчастей, их следует заменить. Дальнейшая пригодность к службе или необходимость смены смазки для двигателя и свечи также определяется путем визуального осмотра;

Чаще всего такие работы заключаются в замене истертых токосъемных щёток и перематывании обмоток в ситуации межвиткового замыкания. Даже если выявлен износ только одной щетки, обязательно меняют сразу обе. Именно для этого типовой ремнабор комплектуется парой запасных. Еще одним распространённым дефектом является поломка валовых подшипников или их прокрутка внутри корпуса. Подобные неисправности сварочного генератора сопровождаются ощутимым шумом и повышенной температурой.

Осуществляем бесплатную доставку до транспортной компании с дальнейшей отгрузкой в города: Воронеж, Пенза, Волгоград, Астрахань, Краснодар, Сочи, Петрозаводск, Мурманск, Архангельск, Вологда, Ижевск, Уфа, Пермь, Сыктывкар, Ухта, Тюмень, Нижневартовск, Сургут, Челябинск, Омск, Барнаул, Кемерово, Новокузнецк, Абакан, Красноярск, Иркутск, Чита, Хабаровск, Благовещенск, Владивосток и другие города России.

Данный сайт носит исключительно информационный характер и не является публичной офертой, определяемой Статьёй 437 (2) ГК РФ. Актуальную информацию о внешнем виде, технических характеристиках, наличии на складе и стоимости товаров запрашивайте в отделе продаж. Каждый раз, оставляя свои данные в любой форме обратной связи на нашем сайте, Вы даёте своё согласие на обработку персональных данных.

Читайте также: