Сварка обечаек под флюсом

Обновлено: 21.09.2024

Прямой доступ кислорода в сварочную ванну чреват тем, что шов получится некачественным и просуществует недолго: начнётся окисление, образуются трещины. Чтобы избежать этого, усовершенствовали процесс. Один из способов разработал в институте сварки академик Евгений Патон. Электрическая дуга горит между концом проволоки и соединяемым металлом под слоем флюса, который перекрывает доступ кислорода. Отличие от классической электродуговой сварки только в том, что процесс проходит в защитной среде.

Применяется для всех металлов и сплавов, в том числе для неоднородных. Кроме защиты зоны сварки, флюс выполняет ещё одну функцию: стабилизирует электрическую дугу и раскисляет металл.

Государственное регламентирование технологии, типов соединения, характеристики

ГОСТ 8713-79 классифицирует и маркирует буквенными обозначениями подвиды способа соединения под флюсом:

  1. АФ – на весу. Производится без средств, предотвращающих протекание металла в зазоры между соединяемыми кромками. Если требуется проварить на полную глубину, то это делают в два приёма с обеих сторон шва.
  2. АФф – на флюсовой подушке. Название способа иллюстрирует суть: под свариваемый стык подкладывают флюс, через огнеупорную подкладку прижимают к стыку прорезиненным шлангом. Подают в трубку воздух под давлением – порошок плотно прижат к изделиям в области шва.
  3. АФм – на флюсомедной подкладке. Применяется для предотвращения пережога металла кромок, соединения угловых, стыковых и тавровых сопряжений с флюсомедными подкладками, формирующими обратную сторону шва.
  4. АФо – на остающейся подкладке. Применяется при односторонней сварке, когда нельзя сваривать на флюсовой подушке. Стальные подкладки – гарантия полного провара швов.
  5. АФп – на медном ползуне. Его конструкция обеспечивает соединение порошковой проволокой с принудительным образованием углового шва. Жидкий шлак образуется по ходу горения дуги, затем всплывает на поверхность.
  6. АФш — с предварительным наложением подварочного шва. Применяется реже из-за значительных трудозатрат. Упрощает процесс сборки изделия.
  7. АФк – с предварительной подваркой корня шва. Выполняют покрытым или плавящимся электродом в защитном газе. Глубина провара достигает 1/3 толщины детали.

Сварные соединения – как их определяет государственный стандарт

По ГОСТ 8713-79 сварные швы классифицируются как:

В свою очередь, они подразделяются на соединения:

  • с отбортовкой кромки;
  • без скоса;
  • со скосом одной кромки;
  • с криволинейным скосом одной кромки;
  • с ломаным скосом одной кромки;
  • с двумя симметричными скосами одной кромки.

Технология автоматической сварки под флюсом

Подготовительные операции: очистка места соединения от ржавчины, грязи и других посторонних включений металлической щеткой и шлифовальным кругом. Процесс идёт автоматически, оператор задаёт только один из режимов, перечисленных выше.

Флюс насыпают слоем 50-60 мм. Дуга скрыта под массой порошка и горит в его жидкой среде. Этот метод ведётся чаще на токе высокой плотности, поэтому используют автоматы с постоянной скоростью подачи проволоки. Она извлекается из бобины автоматически, как и флюс, который предварительно засыпают в специальный резервуар.

Особенности технологического процесса, материалы

Сварочная дуга горит в облаке газа, образованном плавлением и испарением флюса. Когда она гаснет, расплавленный порошок остывает и образует шлаковую корку. Его засыпают перед дугой слоем шириной 40-80 мм и длиной 40-100 мм. Неиспользованный материал отсасывается обратно в бункер и запускается повторно.

В промышленных масштабах сваривают проволокой или ленточными электродами. В качестве флюсов выступают искусственные силикаты: закись марганца, окиси магния, алюминия, кальция.

Процесс более экономичный, чем ручная электродуговая сварка, потому что коэффициент использования тепла дуги выше. Нет вредного воздействия на зрение и органы дыхания оператора – дуга скрыта под слоем порошка.

Недостаток – отсутствие возможности сваривать вертикальные швы.

Оборудование: принцип действия

Для работы этим методом существует два типа аппаратов:

  1. Электродная проволока подаётся с постоянной скоростью и не зависит от напряжения на дуге.
  2. Напряжение на дуге регулируется автоматически, от него зависит скорость подачи электродной проволоки.

На установках с постоянной скоростью сварочный ток подбирают в соответствии со временем подачи гибкого электрода, напряжение – изменением внешней характеристики источника питания.

сварочные аппараты

Примерная стоимость сварочных аппаратов на Яндекс.маркет

Настройки остальных параметров процесса – вылета электрода и высоты флюса – одинаковы для обоих типов аппаратов и зависят от конструкционных особенностей самих установок.

Разработка технологии сварки обечайки

Разработка технологии сварки изделия. Выбор способа получения заготовок. Резка металла с помощью установки автоматизированного плазменного раскроя. Расчет режимов автоматической сварки под флюсом. Схема листогибочной машины с гидравлическим приводом.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 23.03.2014
Размер файла 183,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Разработка технологии сварки обечайки

1. Разработка технологии сборки и сварки изделия

Под технологическим процессом в машиностроении понимают последовательное изменение формы или состояния материала в целях получения изделия определенного вида или качества. Основная цель проектирования технологического процесса - разработка такого способа изготовления заданного изделия, который бы являлся наиболее рациональным не только технически, но и экономически при правильном и полном использовании всех технических возможностей оборудования и оснастки на наиболее выгодных режимах, при минимальных затратах времени, рабочей силы, вспомогательных материалов и т.д.

Разработку процесса изготовления конструкций в серийном производстве, в том числе сварных, выполняют в два этапа: предварительный и окончательный. [5]

На первом этапе производят расчленение изделий (по их чертежам на сборочные элементы, технологические узлы, под узлы), установление рациональной последовательности рабочих операций, а также выбор оптимального способа сборки и сварки изделия, выбор прогрессивных способов обработки и установление рациональной последовательности операций изготовления и подготовки деталей, их сборки и сварки в соответствии с техническими условиями по обеспечению надлежащего качества изделия, выбор основного и специального технологического оборудования, оснастки и средств механизации, назначение режимов сварки и обработки, нормирование и определение трудоемкости изготовления изделия.

В результате выявляется принципиальная схема технологического процесса (технологический маршрут), одновременно решаются вопросы, связанные с выбором оборудования, оснастки и режимов работы. В этом маршруте определяются все основные операции по изготовлению сварного изделия в принятой последовательности. Применительно к нашей конструкции принципиальная схема сборочно-сварочного технологического процесса будет выглядеть следующим образом:

Операция 010 - осуществляются заготовительная операция, операции формообразования и операции механической обработки:

1. Раскрой металла;

2. Резка по разметке;

3. Зачистка от брызг металла;

4. Контроль размеров;

5. Производится механическая обработка кромок развертки в месте сварки (разделка кромок);

6. Контроль размеров;

7. Вальцовка развертки обечайки корпуса на листогибочной машине;

8. Контроль качества вальцовки, выдержки размеров.

Операция 020 - осуществляется прихватка и сварка стыка обечайки корпуса:

1. Зачистить поверхности под сварку от грязи и ржавчины на ширине не менее 20 мм;

2. Прихватить стык обечайки корпуса минимум в 6 местах, выдерживая размер;

3. Сварить с зачисткой шва после каждого прохода;

4. Зачистить сварной шов с внутренней стороны;

5. Заварить корень шва с внутренней стороны;

6. Зачистить сварной шов и поверхности деталей от брызг металла;

7. Произвести ВИК;

8. Уложить сборку на складское место.

Операция 030 - осуществляется неразрушающий контроль сварного шва.

2. Выбор способа получения заготовок

Исходные данные:

Ширина - 1500 мм;

Внутренний диаметр - 1400 мм;

Толщина(S) - 12 мм;

упр сталь 10Х17Н13М2Т - 530 МПа.

Для получения заготовок используются различные операции: раскрой, резка, гибка, прессование, объемная и листовая штамповка и т.д. [1]

Определяем длину развертки обечайки по формуле 1:

где - длина развертки обечайки; - внутренний диаметр обечайки; - толщина металла.

По ГОСТ 19903-74 выбираем лист 2000Ч000.

Определим коэффициент использования материала:

где площадь материала изделия;

площадь материала заготовки.

Ким?75%, следовательно материал расходуется рационально.

Оставшийся после раскроя металл пойдет на изготовление деталей данного цеха или других цехов завода.

Для резки металла в данном реферате применяется установка автоматизированного плазменного раскроя CyberSTEP - CyberCUT 2060 с источником плазменной резки Kjellberg - HiFocus 440i

Установка автоматизированного плазменного раскроя CyberCUT 2060 позволяет резать листовой металл размерами до 2000 х 9000 мм.

Конструкция установки представляет собой портал с двусторонним приводом, перемещающийся по продольным рельсовым направляющим, и суппорта с закрепленным на нем плазмотроном.

На суппорте установлена система регулировки высоты плазмотрона THC, которая обеспечивает автоматическое поддержание требуемой высоты в процессе резки, что обеспечивает высокую точность, воспроизводимость и качество реза. Система THC контролирует процесс резки по напряжению дуги, система THC газопламенного резака (если установлен) имеет емкостный тип управления. Обе системы полностью независимы и обеспечивают комфортную работу оператора установки.

Система подвода коммуникаций (кабели, шланги) выполнена с использованием гибких кабельных каналов.

Источник плазменной резки, а так же все необходимые системы подачи газа подбираются в соответствии с требованиями заказчика.

Управление установкой осуществляется с помощью системы ЧПУ.

Таблица 1 - Технические характеристики установки автоматизированного плазменного раскроя CyberCUT 2060

Ширина обрабатываемого листа, мм

Длина обрабатываемого листа, мм

Вертикальный ход перемещения плазмотрона, мм

Длина рельсового пути (с учетом парковочной зоны), мм

Скорость позиционирования, мм/мин

Точность воспроизведения заданного контура, мм

Стабилизация расстояния между плазмотроном и поверхностью заготовки

Потребляемая мощность, кВт

закрытое помещение цеха +5…+40?С

Источник плазменной резки Kjellberg - HiFocus 440i

Самый мощный в линейке источник плазменной резки металла.

Имеет высокую гибкость применения для плазменной резки металла толщиной от 0,5 до 120 мм.

Обеспечивает максимальную продуктивность при высокой скорости плазменной резки и минимальных эксплуатационных расходах.

Источник плазменной резки HiFocus 440i использует технологию Contour Cut для резки мелких контуров и малых отверстий в конструкционной стали.

Таблица 2 - Технические характеристики источника плазменной резки Kjellberg - HiFocus 440i

400 В; 3-фазы; 50Гц

Газ для маркировки

Воздух, Кислород, Азот / Водород (forming gas: N2 - 95%, H2 - 5%), Аргон / Водород

Воздух, Азот, Кислород

Режим плазменной резки

20 - 440 A, пошагово;

200 V, 440 A / 100% ПВ

Режим маркировки маркировки

5 - 50 A, пошагово

Диапазон толщины металла:

Рекомендуемая толщина металла:

Габаритные размеры (L x W x H)

1030 x 680 x 1450 мм

2.3 Вальцовка

сварка флюс обечайка плазменный

Для вальцовки используем листогибочную машину с гидравлическим приводом LHF-1260Н.

Рисунок 2 - Схема листогибочной машины с гидравлическим приводом LHF-1260Н: 1 - нижние валки; 2 - верхний валок; 3 - изгибаемый лист

Таблица 3 - Технические характеристики листогибочной машины с гидравлическим приводом LHF-1260Н

Длинна гибки, мм

Наибольшая толщина изгибаемого листа, мм

Диаметр валков, мм

Габаритные размеры, мм

Мощность привода, кВт

3. Расчет режимов автоматической сварки под флюсом

Сварной шов обечайки варится автоматической сваркой под флюсом, следовательно, к нему можно применить следующую методику расчета [1]:

Исходные данные: основной материал - сталь (10Х17Н13М2Т); толщина свариваемых деталей - S = 12 мм.

Рисунок 3 - Сварной шов при автоматической сварке под слоем флюса

1. Выбираем диаметр электродной проволоки:

dэ=3 мм для шва №1 и для dэ=4 мм для шва №2. Выбор такого диаметра проволоки сопряжен с рядом факторов: пониженные токи сварки, минимальное тепловложение, высокое качество шва окупает меньшую производительность по сравнению с проволоками большего диаметра.

2. Для диаметра электродной проволоки 3 мм в расчетах будем использовать сварной ток Iсв= 280…300 А., а для проволоки 4 мм будем использовать ток 480 А.

3. Определяем величину напряжения на дуге по эмпирической зависимости:

Принимаем напряжение Uсв=32 В для 4 мм и Uсв=28 В для 3 мм.

4. Определяем площадь сечения наплавленного металла шва за данный проход исходя из рисунка 3:

Так как площадь наплавленного металла меньше рекомендуемой площади (не более 100 мм 2 ), то сварку будем вести в один проход.

5. Определяем скорость сварки одного прохода:

Принимаем 35 м/ч

Определяем коэффициент наплавки:

где ш - потери электродного металла вследствие испарения разбрызгивания и окисления, %. Обычно ш=7…15%. Для расчетов ш принимают 10%.

Что такое сварка под флюсом, как происходит процесс и какой вид флюса и режим выбрать для сварки разных металлов?

Сварка под флюсом – это способ сварки деталей из высоколегированной марганцевой, никелевой или фторидной стали, при котором сварочная ванна и шов защищены от окисления слоем флюса в виде порошка или гранул.

Процесс формирования шва протекает в газовой полости под слоем непрерывно подаваемого флюса. Кроме функции защиты от окисления, флюс также легирует формируемый шов марганцем и кремнием, повышая его прочность и формируя соединение с высокой степенью однородности.

ГОСТ на сварку флюсом 8713-79 устанавливает размеры и типы сварных соединений, а также способы наложения шва под флюсом.

Виды флюсов и их особенности

По способу изготовления флюсы бывают:

Плавленые флюсы изготавливают из шлакообразующих марганцевых руд и кварцевого песка путем размалывания, смешивания и расплавления с последующим гранулированием. Такие флюсы экономичны и хорошо подходят для сварки деталей из низколегированной стали.

Керамические (неплавленные) флюсы изготавливают из окислителей и солей амфотерных металлов, которые измельчают, смешивают с жидким стеклом до однородного состояния, после чего гранулируют и прокаливают.

сварка под флюсом

Примерная стоимость керамических флюсов на Яндекс.маркет

Керамические флюсы имеют мелкодисперсную порошкообразную структуру, они применяются для сваривания сложных высоколегированных стальных сплавов, при этом состав флюса подбирается под конкретную марку свариваемой стали.

По химическому составу флюсы бывают:

Солевые флюсы содержат соли фторидов и хлоридов, применяются для электросварки титана и стали, легированной никелем и хромом. Оксидные флюсы содержат оксиды активных металлов и кремния, применяются для сварки низкоуглеродистой стали. Смешанные флюсы содержат оксиды и соли металлов в различных пропорциях, применяются для сваривания многокомпонентных сплавов или деталей из разных металлов.

Описание технологии процесса

Существует три основных способа сварки под флюсом:

При автоматической сварке траектория и скорость движения электрода, а также скорость подачи проволоки регулируется управляющим процессором, рабочие участвуют только в качестве контролеров процесса для экстренного отключения сварочного агрегата.

Полуавтоматическая сварка под флюсом предполагает, что скорость подачи проволоки, сила тока сварки и угол наклона электрода к линии сварки регулируются автоматически, а ведение дуги осуществляется сварщиком вручную – через рукоятку или дистанционное управление. Полуавтоматический сварочный агрегат позволяет вручную изменять отдельные параметры тока непосредственно во время процесса сварки.

Сварка под флюсом вручную применяется в небольших агрегатах, где система подачи флюса встроена в неплавящийся электрод, при этом сварщик регулирует направление движения, угол наклона и скорость хода электрода в ручном режиме, специальными кнопками управляя подачей флюса и силой тока сварки.

Общий порядок действий при сварке под флюсом:

  1. С поверхностей деталей снимается оксидная пленка.
  2. Детали закрепляются на сварочной плите.
  3. Выбираются настройки и режим сварочного аппарата.
  4. Заполняется резервуар для флюса.
  5. Устанавливается бухта наплавной проволоки, конец которой заправляется в электрод.
  6. Происходит процесс сваривания.
  7. После остывания деталей собирается неизрасходованный флюс, и шов очищается от шлака.

Важно следить за расходованием проволоки и флюса, чтобы не допустить работы электрода вхолостую и повреждения деталей.

Оборудование для сварки

Для сварки флюсом потребуются стационарные условия и оборудование:

Сварочные плиты выполняются на бетонном основании из жаростойких материалов с возможностью закрепления деталей. Проволока берется из материала свариваемых деталей, толщина от 0,3 до 12 мм. Электрод изготавливается из вольфрамового сплава с керамической оплеткой.

Система подачи флюса представляет собой резервуар и шланг, конец которого отстоит от электрода на 10-30 см. Диаметр шланга подачи флюса должен позволять гранулам свободно сыпаться перед электродом.

Схема процесса автоматической сварки под слоем флюса

Автоматическая и полуавтоматическая сварка под флюсом контролируется программным обеспечением, регулирующим направление и скорость движения электрода вдоль линии сваривания.

Выбор режима сварки

В зависимости от толщины и металла свариваемых деталей выбирается режим сварки под флюсом. Для каждого режима существует свой диапазон напряжения, силы тока сварки и диаметр проволоки. Скорость формирования шва колеблется в пределах от 6 до 100 метров в час.

Если толщина свариваемых деталей от 2 до 10 мм, то выбирается режим сварки на стальной подкладке под стыком деталей. Режим на флюсовой подушке подходит для сварки деталей толщиной 10-25 мм, а сварка деталей толщиной 16-70 мм выполняется в режиме предварительной ручной проварки нижней части шва.

С увеличением толщины свариваемых деталей растет диаметр проволочного электрода и сварочный ток, но уменьшается скорость формирования сварного шва.

Сила тока сварки (А) зависит от толщины проволоки (мм) следующим образом:

Напряжение сварки существенно увеличивается только при толщине деталей свыше 25 мм.

Достоинства и недостатки

К преимуществам сварки под флюсом относятся:

  • высокая степень автоматизации процесса;
  • возможность проведения сварки под большой силой тока;
  • высокая скорость сварки;
  • качественный шов без окислов и раковин;
  • возможность увеличения сварной ванны для более качественного провара.

Системы автоподачи флюса и сохранение постоянного расстояния от электрода до шва позволяет сваривать сложные детали с минимальным участием рабочих. Защитный слой флюса не дает расплавленному металлу разбрызгиваться, что позволяет производить сварку под высокими токами, многократно увеличивая скорость формирования и качество шва.

Однородность шва достигается за счет изоляции сварной ванны от кислорода воздуха, а также из-за легирования шва компонентами флюса, которые можно подобрать специально для материала свариваемых деталей. Также сварка под флюсом дает возможность использования одновременно двух электродов, расположенных на расстоянии 10-20 мм друг от друга и питаемых от одного источника тока – это позволяет сделать больше сварную ванну под флюсом, увеличив таким образом скорость сварки и степень однородности готового изделия.

К недостаткам сварки под флюсом относят трудности контроля процесса и технологическую сложность. Агрегаты для сварки под флюсом занимают большие площади и требуют обслуживания квалифицированными кадрами. Сварной шов формируется под слоем флюса и у сварщика нет возможности контролировать качество шва в режиме реального времени. Избежать брака можно путем дополнения агрегата ультразвуковыми или лазерными системами контроля наличия дефектов.

Выбор режимов автоматической сварки под слоем флюса. Отличие параметров сварки низкоуглеродистых сталей, меди и титана

Выбор режима автоматической сварки под слоем флюса зависит от наименования основного металла, его толщины и формы разделки кромок. Выделяют 4 основных регулируемых параметра:

  • диаметр сварочной электродной проволоки;
  • сила и род тока, его полярность;
  • скорость перемещения дуги;
  • напряжение источника сварки.

Также имеются дополнительные параметры, влияющие на определение режима сварки:

  • состав (марка) и физико-химические свойства используемого флюса;
  • вылет проволоки из токоподводящего наконечника;
  • угол наклонения электрода к оси шва.

Порядок расчета режимов

В конструкторской документации задаются толщина свариваемых деталей, тип и форма разделки сварных швов по ГОСТ для соответствующих видов металла и его марок. Технология выполнения работ определяет параметры режима сварки и операции по подготовке свариваемых комок.

Используются следующие формулы для расчета параметров сварки:

Q=(I * U * 60) * к / V, где:

  • Q – удельная тепловая энергия (кДж/мм);
  • I – сварочный ток (А);
  • U – напряжение на дуге (В);
  • V – скорость сварки (мм/мин.);
  • к – коэффициент полезного тепловложения (для сварки под флюсом К = 0,9).

Коэффициент формы сечения шва рекомендуется в диапазоне 1…1,5. F=S / h, где:

Режимы автоматической сварки различных металлов под слоем флюса

Рекомендуемые (ориентировочные) режимы стыковых соединений.

медь М1
титан ВТ 1-0
сталь Ст. 20

Табличные режимы сварки являются ориентировочными. Точные параметры режима определяются при сварке опытных соединений на контрольных планках. Это особенно актуально для автоматической сварки под флюсом, так как зона плавления не поддается визуальному контролю во время ведения процесса.

Сварочный ток (I)

Сила тока в сварочной дуге оказывает существенное влияние на глубину провара. Выбор этого параметра зависит от вида металла, его толщины и формы разделки свариваемых кромок.

Полярность тока влияет на перераспределение тепловой энергии между плавящимся электродом и основным металлом. Прямая полярность применяется для увеличения доли наплавляемого металла в металле шва, но отрицательно влияет на устойчивость горения дуги и разбрызгивание сварочной ванны.

Как правило, для сварки под флюсом большинства металлов (за исключением алюминия) применяется подключение сварочного источника с обратной полярностью.

Скорость сварки (V)

Выбор оптимальной скорости сварки обеспечивает правильную форму сечения шва, влияет на время нахождения ванны в жидком виде и протекание тепловых и металлургических процессов при сварке. Оказывает обратное влияние на тепловые вложения и погонную энергию.

Схема процесса автоматической сварки под своем флюса

Изменение скорости сварки приводит к изменению коэффициента формы сечения сварного шва, его глубины и ширины.

Напряжение сварочного тока (U)

Увеличение напряжения ведет к увеличению контактного пятна сварочной дуги на поверхности металла и, соответственно, к увеличению ширины шва. При низком напряжении формируется вогнутый валик без усиления и образуются подрезы по линии сплавления. Повышенное напряжение приводит к образованию высокого усиления шва с узкой зоной проплавления.

Диаметр электрода (проволоки), (∅)

При установленном токе существует обратно пропорциональная зависимость плотности тока от диаметра проволоки.

Чем меньше диаметр электрода, тем выше плотность тока. С повышением плотности тока коэффициент формы шва стремится к уменьшению.

сварка под флюсом

Примерная стоимость проволоки для автоматической сварки под своем флюса на Яндекс.маркет

Влияние дополнительных настроек режима сварки на шов

Для правильного формирования сварного шва необходимо соблюдать соответствие параметров процесса сварки конструкции сварного соединения. Важность правильной настройки особенно актуальна для сварки химически активных при высоких температурах металлов и сплавов. Не следует пренебрегать опытными работами при настройке режима.

Влияние параметров дуги

Напряжение сварочной дуги растет при увеличении ее длины. Это оказывает влияние на образование дугового разряда и стабильность процесса горения.

Повышенное напряжение ведет к росту контактного пятна на поверхности металла и расширению шва.

Влияние угла наклона электрода

Позиционирование электрода относительно поверхности детали оказывает влияние на глубину провара и размеры сварочной ванны. Обычно применяют перпендикулярное расположение электрода к плоскости сварки.

Влияние вылета электрода из токоподающего наконечника

Увеличение вылета приводит к дополнительному нагреву сварочной проволоки, её ускоренному расплавлению и повышению доли электродного металла в металле сварного шва. Оптимальный вылет электродной проволоки в зависимости от ее диаметра указан в таблице.

Диаметр проволоки, мм 2-2,5 3-4 5
Вылет из наконечника, мм 14-16 17-19 20-22

Читайте также: