Температура сварочной ванны при сварке плавлением

Обновлено: 17.05.2024

Образование сварочной ванны является важнейшим этапом полу­чения соединения при сварке плавлением. От формы и размеров сва­рочной ванны зависят форма и размеры сварных швов. Последние во многом определяют эксплуатационные характеристики получаемых со­единений.

Форму и размеры сварочной ванны определяют границами изотер­мической поверхности объемного теплового поля, соответствующие температуре плавления металла ТПЛ. Однако такой подход является не­сколько идеализированным, поскольку формирование объема расплав­ленного металла учитывает лишь эффект распространения теплоты вглубь металла за счет теплопроводности. В реальных условиях сварки сварочная ванна формируется под действием целого ряда сил, дейст­вующих в ней, в первую очередь силы тяжести жидкого металла, по­верхностного натяжения его и давления самого источника нагрева. Ду­га, обеспечивающая местный нагрев и расплавление кромок соединяе­мых элементов, оказывает на расплавленный металл давление, за счет которого он вытесняется из передней части ванны, т. е. из области с наи­большей интенсивностью нагрева в ее хвостовую часть. Это ведет к уменьшению толщины жидкой прослойки под дугой и создает усло­вия для углубления ванны. В результате изменяются очертания зоны расплавления (рис. 4.1). Давление на расплавленный металл определя­ется разностью его уровней h в ванне. Изменение условий сварки, в свою очередь, существенно отражается на формировании сварочной ванны, соотношении ее геометрических размеров.

ФОРМИРОВАНИЕ СВАРОЧНОЙ ВАННЫ

Рис. 4.1. Параметры формы сварочной ванны

Так, увеличение эффективной тепловой мощности, сосредоточен­ности источника, увеличение давления дуги ведут к увеличению глуби­ны проплавления и уменьшению ширины. При этом ванна удлиняется. Важным фактором, влияющим на геометрические параметры ванны, яв­ляется пространственное расположение выполняемых швов. При сварке изделий в наклонном положении на подъем (перемещение ванны снизу вверх) глубина проплавления возрастает, при сварке на спуск (переме­щение ванны сверху вниз) — снижается (рис. 4.2, б). В первом случае жидкий металл перетекает в хвостовую часть ванны, уменьшая толщину жидкой прослойки под дугой, во втором случае, наоборот, он затекает в головную часть ванны и толщина прослойки увеличивается.

ФОРМИРОВАНИЕ СВАРОЧНОЙ ВАННЫ

Рис. 4.2. Формирование сварочной ванны в разных положениях: а — вертикальном; б — наклонном; в — потолочном; г — горизонтальном

При сварке в вертикальном положении (рис. 4.2, а) процесс можно вести сверху вниз (на спуск) и снизу вверх (на подъем). В обоих случаях сила тяжести направлена вниз. При сварке на подъем сварочная ванна удерживается только силой поверхностного натяжения. При этом глу­бина проплавления резко возрастает. Для удержания расплава прихо­дится ограничивать тепловую мощность дуги и размеры ванны. При сварке на спуск удержанию жидкого металла способствует давле­ние дуги, а глубина проплавления уменьшается.

При сварке в потолочном положении (рис. 4.2, в) сварочная ванна удерживается силами поверхностного натяжения и давлением источни­ка нагрева. Для удержания ванны в потолочном положении также необ­ходимы меры по ограничению ее объема. Особенно неблагоприятные условия формирования ванны создаются при выполнении горизонталь­ных швов (рис. 4.2, г). Расплавленный металл натекает на нижнюю кромку. Это приводит к образованию несимметричной выпуклой формы шва, а также подрезов. Требование к сокращению размеров сварочной ванны в этом случае особенно жесткое.

Важным фактором, влияющим на работоспособность сварных со­единений и также связанным с образованием сварочной ванны, является формирование проплавления корня шва. На рисунке 4.3 показаны силы,
действующие на ванну. Ванна удерживается на весу силой поверхност­ного натяжения Рп, определяемой по формуле:

где аЖ — поверхностное натяжение расплавленного металла; r — радиус кривизны.

Рис. 4.3. Схема формирования проплавления сварного шва: r1 — радиус кривизны в поперечном сечении шва; r2 — радиус кривизны в продольном сечении шва

Поверхностное натяжение уравновешивает давление Рд, оказывае­мое на ванну дугой, и металлостатическое давление Рм = h ■ v, опреде­ляющееся разницей уровней h и плотностью расплавленного металла v.

Условие равновесия ванны в положении на весу можно записать так:

Из этой формулы следует, что удержание ванны облегчается при уменьшении радиуса кривизны проплава, определяющегося его размерами в поперечном r1 и продольном r2 сечениях. С увеличением ширины и протяженности ванны возрастают радиусы кривизны поверх­ности жидкого металла в двух взаимно перпендикулярных направлени­ях. В момент достижения одним из радиусов величины, большей крити­ческой, металлостатическое давление расплавленного металла и сила давления дуги превысят силу поверхностного натяжения, удерживаю­щую сварочную ванну. Произойдет разрыв поверхностного слоя в корне шва, и жидкий металл вытечет из ванны, образуя прожог. Особенно час­то это наблюдается при сварке металла малой толщины, когда свароч­ная ванна по ширине значительно превышает толщину свариваемого металла. Наиболее распространенной мерой предупреждения прожогов и обеспечения формирования проплава требуемой формы является пра­вильный выбор сварочных режимов и применение сварочных подкла­док.

Большая Энциклопедия Нефти и Газа

Температура в различных зонах сварочной дуги неодинакова: наиболее высокая в середине столба дуги около 6000 С, в анодной области - 2600 С, в катодной области - 2400 С, а температура сварочной ванны б ( см. рис. 3) достигает 1700 - 2000 С. В сварочной дуге переменного тока распределение тепла дуги и температуры в катодной и анодной областях примерно одинаково. [16]

Если в сварочной камере поддерживать давление 5 - Ю 4 мм рт. ст. ( 666 5 - 10 Н / м2), что соответствует парциальному давлению кислорода примерно 1 10 - 4 мм рт. ст. ( 133 3 10 - Н / м2), то только окислы меди, никеля и кобальта могут диссоциировать при температурах сварочной ванны . Таким образом, для этих металлов возможно раскисление путем диссоциации их окислов при сварке в вакууме. [17]

При дуговой сварке температура сварочной ванны достигает 2300 С вместо 1700 С в мартеновской печи. [18]

Самым сильным графитизатором является кремний, который способствует выделению углерода в свободном состоянии в виде графита. Углерод и алюминий повышает температуру сварочной ванны , раскисляют расплавленный металл и способствуют увеличению числа центров кристаллизации. [19]

Самым сильным графи-тизатором является кремний, который способствует выделению углерода в свободном состоянии в виде графита. Углерод и алюминий повышают температуру сварочной ванны , раскисляют расплавленный металл и способствуют увеличению числа центров кристаллизации. [20]

Для уменьшения деформаций применяют также предварительный подогрев свариваемой детали. В этом случае разность между температурой сварочной ванны и температурой всей детали уменьшается, и, следовательно, будут уменьшаться деформации от нагрева в процессе сварки. Данный способ нашел широкое применение при ремонте изделий из чугуна, алюминия, бронзы, высокоуглеродистых и легированных сталей. Изделия подогревают в специальных горнах, печах, индукторах. [21]

Для уменьшения деформаций применяют также предварительный подогрев свариваемой детали. В этом случае разность между температурой сварочной ванны и температурой всей детали уменьшается, а следовательно, будут уменьшаться деформации от нагрева в процессе сварки. [22]

Повышенные локальные концентрации водорода могут вызывать образование трещин в зоне термического влияния в процессе охлаждения. Пористость в металле шва также обязана своим происхождением водороду, который выделяется в процессе понижения температуры сварочной ванны и кристаллизации. [23]

То же наблюдается и при сварке других металлов. Например, при аргоно-дуговой сварке титана ( Тпл 1650 С) неплавящимся электродом, по данным Л. И. Мальцева, температура сварочной ванны равна - 2100 С. [24]

Большинство неразъемных соединений получают сваркой плавлением с использованием мощного теплового источника - электрической дуги. При этом основной металл и электрод плавятся, образуя жидкую ванну. Температуры сварочной ванны и примыкающего металла достигают высоких значений. После кратковременного нагрева следует достаточно быстрое охлаждение, т.е. возникает своеобразный термический цикл, который определяет строение сварного шва и околошовной зоны. Шов имеет структуру литого металла, которая образуется в процессе первичной кристаллизации. Из-за направленного отвода теплоты кристаллы здесь приобретают столбчатую форму, вытянутую перпендикулярно линии сплавления. [25]

В связи с наличием в латунях цинка, который является рас-кислителем для меди, жидкая латунь при плавке и сварке является достаточно раскисленной. Однако в процессе сварки латуней происходит значительная потеря цинка, обусловленная главным образом испарением. При температурах сварочной ванны цинк испаряется довольно интенсивно и, если не принимать мер против его потерь, металл шва вместо 37 - 38 % Zn в исходном расплавляемом металле будет содержать только 22 - 27 % Zn. Одновременно в таком шве может наблюдаться значительная пористость, ослабляющая его сечение и приводящая к возможности появления трещин. [26]

Вредное влияние водорода заметно усиливается, если одновременно с ним в металле присутствует кислород. Последний активно растворяется в никеле. При изменении температуры сварочной ванны от 1700 С до температуры плавления растворимость кислорода в никеле уменьшается примерно в 20 раз. [28]

Для металла расплавленной ванны при наплавке под флюсом характерен высокий перегрев: флюс создает своеобразную тепловую защиту. Избыток тепла расплавленной ванны передается в основной металл, вследствие чего происходит дополнительное его проплавление. Повышенные объем и температура сварочной ванны обусловливают ее высокую жидкотекучесть. Высокая жидкотекучесть ванны при наплавке под флюсом вынуждает внимательно относиться к выбору углов наклона электрода и изделия к горизонтальной плоскости, так как незначительное их изменение влияет на формирование сварного шва. [29]

Если жидкий металл плохо смачивает металл детали и плохо сплавляется с ним, значит ванна имеет низкую температуру. Температура ванны повышается путем увеличения силы сварочного тока или более интенсивным внешним нагревом свариваемой детали. Если чугун ремонтируемой детали плавится быстро, то температура сварочной ванны высока и ее снижают уменьшением силы сварочного тока или добавлением в ванну холодного металла в виде присадки чугуна. Деталь после наплавки охлаждают медленно в песке, золе или шлаке. [30]

Формирование сварочной ванны происходит под действием силы тяжести расплавленного металла Рм, давления источника теплоты Рд и сил поверхностного натяжения РН, действующих на поверхности металла. В зависимости от положения шва в пространстве различают сварку в нижнем вертикальном, горизонтальном и потолочном положениях. Характер действия сил на расплавленный металл зависит от положения шва в пространстве. При сварке в нижнем положении и сквозном проплавлении ( рис. 16.10) жидкая ванна на весу удерживается силами поверхностного натяжения Рн, которые уравновешивают давление дуги и вес жидкого металла: Рн Рд Рм. [48]

Кристаллизация сварочной ванны при сварке плавлением начинается в основном от готовых центров кристаллизации - частично оплавленных зерен основного металла. Кристаллы растут в направлении, обратном теплоотводу, т.е. по нормам к поверхности ванны, и заканчивают рост на оси шва. [50]

Кристаллизация сварочной ванны зависит от источника тепла, режимов сварки, теплофизических свойств свариваемого материала, от направления и скорости отвода тепла. При движении сварочной дуги вдоль свариваемых кромок в передней части сварочной ванны происходит процесс плавления, а в ее тыльной части идет процесс кристаллизации. [51]

Кристаллизация сварочной ванны при сварке плавлением начинается в основном от готовых центров кристаллизации - частично оплавленных зерен основного металла. Металл шва, выполненного сваркой плавлением, имеет столбчатое строение, так как состоит из вытянутых ( столбчатых) кристаллитов, растущих при кристаллизации в направлении, обратном теплоотводу. [52]

Температура сварочной ванны при дуговой сварке также характеризуется значительным превышением над точкой плавления, перегрев составляет 100 - 500 С. Высокая температура способствует высокой скорости протекания реакций, однако из-за больших скоростей охлаждения реакции при сварке обычно не успевают завершиться полностью. [53]

Место сварочной ванны оформляют валком из глины. Сварочную дугу направляют на шины, после образования сварочной ванны вводят присадочный пруток. [55]

Раскисление сварочной ванны , как в случае рутиловых электродов, производится только с помощью ферромарганца. Уровень механических свойств металла шва примерно такой же, как и при сварке электродами с рутиловым видом покрытия. Количество образующегося сварочного шлака невелико, он легко отделяется даже при сварке многослойных швов в достаточно глубокие разделки. [56]

Металл сварочной ванны удерживается от стекания вниз давлением газов пламени. Сварку лучше вести правым способом и выполнять в несколько слоев с минимальной толщиной каждого слоя. [57]

Формирование сварочной ванны происходит под действием силы тяжести расплавленного металла Рм, давления источника теплоты ( например, давления дуги) Рд и сил поверхностного натяжения РГ1, действующих на поверхности металла ( рис, 16), Характер действия этих сил зависит от положения сварки. [59]

Кристаллизация сварочной ванны при сварке плавлением на чинается в основном от готовых центров кристаллизации - частич но оплавленных зерен основного металла. Металл шва, выполнен ного сваркой плавлением, имеет столбчатое строение, так как состс ит из вытянутых ( столбчатых) кристаллитов, растущих при кристаллизации в направлении, обратном теплоотводу. [60]

Cварочная ванна при дуговой сварке

Важным фактором, влияющим на геометрические размеры и глубину проплавления сварного шва, является пространственное положение шва. Вертикальное положение особенно подходит для глубокого проникновения, так как давление источника и сила тяжести удаляют расплавленный металл из-под дуги.

По этой же причине глубина проплавления увеличивается при сварке под углом во время подъема и уменьшается при сварке во время спуска. В первом случае металл под действием силы тяжести течет по шине в обратном направлении, уменьшая толщину расплавленного слоя в нагретом месте. Во втором случае металл под действием силы тяжести течет к головке шины перед источником тепла, увеличивая толщину расплавленного слоя.

Формирование сварочной ванны

Формирование сварочной ванны является наиболее важным этапом в получении соединения при сварке плавлением. Форма и размер сварочной ванны определяют форму и размер сварного соединения. Последнее в значительной степени определяет эксплуатационные характеристики соединения.

Форма и размеры сварочной ванны определяются границами изотермической поверхности объемного теплового поля, соответствующего температуре плавления металла МНП. Однако такой подход несколько идеалистичен, поскольку при формировании объема расплавленного металла учитывается только эффект распространения тепла в металл за счет теплопроводности.

В реальных условиях сварки он образуется под влиянием ряда сил, действующих на сварочную ванну, в частности, силы тяжести жидкого металла, его поверхностного натяжения и давления источника нагрева. Дуга, которая локально нагревает и расплавляет края шва, оказывает давление на расплавленный металл так, что он выталкивается из передней части ванны, т.е. части ванны с наибольшей интенсивностью нагрева в задней части. Это уменьшает толщину слоя жидкости под дугой и создает условия для углубления ванны. Это приводит к изменению формы зоны расплава. Давление на расплавленный металл определяется разностью уровней h в ванне. Изменение условий сварки оказывает значительное влияние на формирование сварочной ванны и пропорции ее геометрических размеров.

Формирование сварочной ванны при прохождении электродом

Во время сварки источник тепла перемещается вдоль соединяемых кромок, а вместе с ним перемещается расплавленное пространство или сварочная ванна. При дуговой сварке под флюсом сварочная ванна окружена оболочкой (пузырем) из расплавленного шлакового флюса, который полностью окружает ореол дуги и поэтому невидим глазу. При сварке в газовой среде сварочная ванна окружена прозрачной газовой оболочкой; при сварке в защитной дуге сварочная ванна защищена шлаком и газом. В обоих случаях четко виден ореол дуги. При электрошлаковой сварке и вертикальной сварке под флюсом сварочная ванна изолирована от окружающего воздуха слоем шлака на ее поверхности.

Зоны плавления в сварочной ванне

Считается, что пространство плавления при дуговой сварке делится на две области: «голова», где расплавляется основной металл и дополнительные материалы, и «хвост», где образуется сварочная ванна и начинается кристаллизация. Форма сварочной ванны при дуговом процессе в данном случае характеризуется ее длиной, шириной, толщиной и глубиной проникновения в основной металл. Она ограничена изотермическими поверхностями с температурой плавления основного металла.
Объем сварочной ванны варьируется от 0,1 до 10 см3 в зависимости от метода и режима сварки. Сварочная ванна имеет эллиптическую форму, вытянутую вдоль направления сварки 1. В поперечном сечении форма сварочной ванны сильно варьируется в зависимости от режима и условий сварки. Наиболее характерной особенностью дуговой сварки является провар, который близок к полукругу.

В случае лучевой сварки форма ванны напоминает лезвие острого кинжала.

Сварочная ванна при дуговой сварке

Сварочные ванны при дуговых процессах характеризуются неравномерным распределением температуры. Металл нагревается намного выше температуры плавления в головной части ванны, где плавление металла происходит под воздействием источника тепла и где взаимодействие между металлом и шлаком или газом наиболее интенсивно. В хвостовой части ванны температура близка к температуре плавления основного металла. Средняя температура ванны для дуговой сварки под флюсом конструкционной низкоуглеродистой стали составляет около 1800°C. Максимальная температура в этих условиях достигает 2300°C.

Столб дуги, расположенный в головной части сварочной ванны, оказывает механическое воздействие (давление на поверхность расплавленного основного металла). Это давление обусловлено совместным действием упругого удара заряженных частиц о поверхность металла, давлением газа в дуговом промежутке и течением дуги под действием электродинамических сил. Такой направленный поток наблюдается только в асимметричных дугах, т.е. дугах, горящих между электродами с малой и большой площадью поперечного сечения, в данном случае между электродом или сварочной проволокой и основным металлом.
Это давление заставляет жидкий металл выходить из-под основания дуги, увеличивая глубину проникновения по мере погружения столба дуги в основной металл. Давление, оказываемое дугой на поверхность металла, пропорционально квадрату тока, протекающего через дугу.

Это давление может быть увеличено за счет повышения концентрации источника нагрева, увеличения плотности тока на электроде или использования флюса или огнеупорных покрытий, которые образуют гильзу на кончике электрода (сварка с глубоким проникновением). Естественно, чем выше давление, оказываемое дугой на поверхность расплавленного металла, тем глубже столб дуги будет проникать в металл. Это позволяет снизить давление, используемое при сварке с поступательным движением и многодуговой сварке с наклонными углами наклона электродов.

Жидкий металл вытесняется из-под основания дуги силой, действующей на поверхность сварочной ванны при обратном движении дуги в расплавленное пространство. При плотности электродного тока до 15 А/мм2 это смещение невелико и проявляется в виде образования незаполненных углублений (кратеров). По мере увеличения плотности тока электродов наблюдается довольно выраженное смещение металла в сварочной ванне до полного удаления жидкого металла из зоны головки. Это является причиной разного уровня жидкого металла в начале и конце пространства расплава.

Для поддержания этого разность уровней между давлением дуги, Pd, и гидростатическим давлением жидкого металла и шлака, Pg, должна быть одинаковой: если Pd < Pg, металл и шлак заполнят углубление, образовавшееся в конце шва. Если Pd >Pg, формирование шва будет нарушено.

Читайте также: