Укажите марки низкоуглеродистых сварочных проволок

Обновлено: 14.05.2024

Низкоуглеродистая сварочная проволока предназначена для сварки малоуглеродистых и некоторых среднеуглеродистых сталей, а также некоторых низколегированных сталей. Число указывает на содержание в проволоке углерода в сотых долях процента. Буква А указывает на повышенную чистоту металла сварочной проволоки по содержанию вредных примесей серы и фосфора - такая проволока обеспечивает наплавленный металл ( металл шва) с повышенными пластическими свойствами. [1]

Для сварки низкоуглеродистой стали применяют преимущественно низкоуглеродистую сварочную проволоку в сочетании с высококремнистым марганцовистым флюсом. [2]

При автоматической сварке низкоуглеродистой стали с применением плавленых флюсов и низкоуглеродистой сварочной проволоки Св-08 наплавленный металл и сварное соединение получаются более высокого качества, чем при сварке электродом ОММ-5, но несколько уступают показателям при сварке электродами УОНИ-13. По сравнению с ручной сваркой автоматическая имеет преимущества, заключающиеся в большей однородности, гладкой поверхности, хорошем формировании швов, отсутствии перерывов в работе в пределах шва, в замедленном охлаждении после сварки. [5]

Окислительное действие углекислого газа, происходящее в плавильном пространстве, обычно нейтрализуется благодаря применению низкоуглеродистой сварочной проволоки ( Св - 08Г2С) с повышенным содержанием марганца и кремния. [6]

В ряде случаев после операций восстановления геометрии и размеров деталей машин путем пластической деформации, наплавки, например низкоуглеродистой сварочной проволокой типа Св - 08кп, гальванического железнения с целью придания поверхности максимальной твердости и износостойкости проводят ХТО, к примеру цементацию, цианирование или другие виды ХТО. В табл. 4.21 приведены такие примеры. [7]

Если использовать низкоуглеродистую сварочную проволоку , в первых двух слоях неизбежно появляются трещины, обусловленные попаданием в металл шва хрома и никеля из нижележащих аустенитных валиков, и в этих слоях образуется мартенситная структура. [8]

Проволоки Св-08, Св - 08А и Св - 08АА изготовляют из кипящей стали. Остальные три марки низкоуглеродистой сварочной проволоки изготовляют из полуспокойной стали. Как видно из табл. 7 - 3, низкоуглеродистые сварочные проволоки в основном отличаются друг от друга содержанием марганца, серы и фосфора. [9]

Низколегированные стали типа 10ХСНД хорошо поддаются газовой сварке. В качестве присадочного металла применяется низкоуглеродистая сварочная проволока . [10]

Известно успешное применение керамических флюсов для сварки меди, никеля и их сплавов, для наплавочных работ. Автоматическая и полуавтоматическая наплавка производится низкоуглеродистой сварочной проволокой с применением легирующих керамических флюсов, содержащих повышенное количество ферросплавов. [11]

Кроме технологических преимуществ первого сочетания это было вызвано также некоторыми трудностями изготовления сварочной проволоки с высоким содержанием марганца и низким - углерода, в то время как обычная низкоуглеродистая сварочная проволока не была дефицитной. [12]

Получения качественных швов на углеродистых и низколегированных конструкционных сталях в настоящее время практически достигают применением следующих сочетаний флюсов и сварочных проволок: 1) плавленый высококремнистый марганцевый флюс и обычная низкоуглеродистая сварочная проволока ; 2) плавленый высококремнистый безмарганцевый флюс и низкоуглеродистая марганцовистая сварочная проволока; 3) керамический флюс и обычная низкоуглеродистая сварочная проволока. [14]

Получения качественных швов на углеродистых и низколегированных конструкционных сталях в настоящее время практически достигают применением следующих сочетаний флюсов и сварочных проволок: 1) плавленый высококремнистый марганцевый флюс и обычная низкоуглеродистая сварочная проволока; 2) плавленый высококремнистый безмарганцевый флюс и низкоуглеродистая марганцовистая сварочная проволока; 3) керамический флюс и обычная низкоуглеродистая сварочная проволока . [15]

Стальная и порошковая сварочная проволока

Проволоку различают по назначению: для сварки или наплавки.

Всего выпускается около 80 марок проволоки.

Буквы "Св" означают, что проволока сварочная. Через дефис указывают марку стали, из которой изготовлена проволока. Первая цифра соответствует содержанию углерода в сотых долях процента. Буквы означают наличие легирующих элементов в процентах, которые указываются числом, следующим за буквенным обозначением.

Буквенное обозначение легирующих элементов

Для сварки низкоуглеродистых сталей используют шесть марок: Св-08, Св-08А, Св-08АА, Св-08ГА, Св-10ГА, Св-10Г2,

Для низко- и среднелегированных сталей - 30 марок, например: Св-08ГС, Св-08Г2С, Св-18ХГС и др.

Для сварки высоколегированных сталей применяют 41 марку проволоки Св-08Х14ГНТ, Св-12Х13 и др.

Если после буквы цифра отсутствует, то количество данного элемента не превышает 1%. Буква "А" в конце маркировки свидетельствует о пониженном содержании серы и фосфора, а буквы "АА" - о еще меньшем их количестве.

Низкоуглеродистую и легированную проволоки выпускают неомедненными и омедненными (условное обозначение - О). Омеднение защищает проволоку от окисления и улучшает токоподвод.

В конце маркировки может стоять буква "Э". "Э" означает, что проволока служит для изготовления электродов. Буквы "Ш", "ВД" или "ВИ" говорят о том, что сталь для проволоки изготовлена соответственно электрошлаковым, вакуумно-дуговым переплавом или в вакуумно-индукционных печах.

Пример условного обозначения сварочной проволоки диаметром 3 мм марки Св-08А с омедненной поверхностью из стали, полученной электрошлаковым переплавом:

Условное обозначение сварочной проволоки

Условия сварки

Рекомендуемая проволока

Низкоуглеродистые и низколегированные стали в углекислом газе и смесях активных газов

Низкоуглеродистые и низколегированные стали в аргоне и гелии

Сварка в углекислом газе на открытом воздухе

Строительные металлоконструкции из стали 16Г2АФ в углекислом газе

Металлоконструкции из стали 10ХСНД в углекислом газе

Высокопрочные низколегированные стали (типа 14ХГНМ) в углекислом газе

Стали 08Х22Н6Т и 08Х18Г8Н2Т в углекислом газе

Проволока для сварки среднеуглеродистых и теплоустойчивых сталей

Марка стали

Марка проволоки при сварке

в азоте, гелии

в углекислом газе

Cв-15XMA, Св- 18ХГСА

Св-10ГСМ, Св-10ГСМТ, CB-08X2CMA, Cв-15XMA, Св-18ХГСА, Св-08ХЗГ2СМ

Св-08ХНСМА, Св-08ХГ2СМ, Св-08ХГСМА

15X5M, 15X5, 15Х5ВФ

Стальная сварочная проволока выпускается следующих диаметров (мм): 0,3; 0,5; 0,8; 1,0; 1,2; 1,4; 1,6; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0 и 12,0, Проволока поставляется в мотках диаметром 150-750 мм, массой от 1,5 до 40 кг, а также намотанной на катушки и кассеты.

Поверхность проволоки должна быть чистой и гладкой, без трещин, расслоений, плен, закатов, раковин, забоин, окалины, ржавчины, масла и других загрязнений.

При необходимости проволоку очищают пескоструйным аппаратом или травлением в 5%-ном растворе соляной кислоты. Можно очищать проволоку, пропуская ее через специальные механические устройства, а также шлифовальной бумагой до металлического блеска. Перед очисткой бухту проволоки рекомендуется отжечь при температуре 150-200°С в течение 1,5-2 часов.

Обязателен сертификат с указанием предприятия-изготовителя, условного обозначения проволоки, номера плавки и партии, состояния поверхности и ее химического состава. При утере сертификата проволока может быть использована только после определения ее химического состава.

Сварка под флюсом: присадочные материалы и флюсы

Правильный выбор марки сварочной (электродной) проволоки и флюса - один из главных элементов разработки технологии сварки под флюсом.

Электродная проволока: марки, обозначение, поставка

Химический состав электродной проволоки определяет состав металла шва и, следовательно, его механические свойства.

Стальная сварочная проволока, изготавливаемая по ГОСТ 2246-70, который предусматривает 77 марок проволоки.

В условные обозначения марок проволоки входит индекс Св (сварочная) и следующие за ним цифры и буквы. Цифры после индекса Св указывают среднее содержание углерода в сотых долях процента.

Так же, как и в марках стали, легирующие элементы в марках проволоки обозначаются буквами:

  • А - азот;
  • Ю - алюминий;
  • Р - бор;
  • Ф - ванадий;
  • В - вольфрам;
  • К - кобальт;
  • С - кремний;
  • Г - марганец;
  • Д - медь;
  • М - молибден;
  • Н -никель;
  • Б - ниобий;
  • Е - селен;
  • Т - титан;
  • Х - хром.

Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. Если содержание легирующего элемента менее 1%, то ставится только соответствующая буква.

Буква А в конце условных обозначений марок низкоуглеродистой и легированной проволок указывает на повышенную чистоту металла по содержанию серы и фосфора. В проволоке марки СВ-08АА содержится не более 0,020% серы и не более 0,020% фосфора.

В условном обозначении сварочной проволоки перед индексом Св указывается цифра, обозначающая диаметр проволоки в мм, а после условного обозначения - номер ГОСТа.

Например: сварочная проволока диаметром 3 мм марки Св-08А, предназначенная для сварки (наплавки), с неомедненной поверхностью условно обозначается таким образом: проволока 3 Св-08А ГОСТ 2246-70.

Если проволока поставляется с омедненной поверхностью, то после марки проволоки ставится буква О.

Буква Э обозначает, что проволока предназначена для изготовления электродов.

Буквы Ш, ВД или ВИ обозначают, что проволока изготовлена из стали, выплавленной электрошлаковым или вакуумнодуговым переплавом, или переплавом в вакуумно-индукционных печах.

Сварочные проволоки делятся на:

  • низкоуглеродистые (с суммарным содержанием легирующих элементов до 2%);
  • легированные (суммарное содержание легирующих элементов от 2 до 6%) и высоколегированные (суммарное содержание элементов более 6%).

Проволока поставляется в бухтах массой до 80 кг. На каждой бухте крепят металлическую бирку с указанием завода-изготовителя, условного обозначения проволоки, номера партии и клейма технического контроля. По соглашению сторон проволоку могут поставлять намотанной на катушки или кассеты.

Транспортировать и хранить проволоку следует в условиях, исключающих ее ржавление, загрязнение и механическое повреждение. Если же поверхность проволоки загрязнена или покрыта ржавчиной, то перед употреблением ее необходимо очистить. Проволоку очищают при намотке ее на кассеты в специальных станках, используя наждачные круги. Для удаления масел используют керосин, уайт-спирит, бензин и др. Для устранения влаги применяют термическую обработку: прокалку при температуре 100 - 150°С. Рекомендуется также обрабатывать проволоку в 20%-ном растворе серной кислоты с последующей прокалкой при температуре 250°С 2-2,5 ч. Необходимость в обработке электродной проволоки перед сваркой отпадает, если использовать омедненную проволоку.

В соответствии с требованиями EN 756 обозначение сварочных проволок строится по схеме:

Ni0,5 ? Ni = 0,4. 0,8;

Сварочные флюсы: функции, классификация, общие требования

Сварочный флюс - один из важнейших элементов, определяющих качество металла шва и условия протекания процесса сварки. От состава флюса зависят составы жидкого шлака и газовой атмосферы. Взаимодействие шлака с металлом обусловливает определенный химический состав металла шва. От состава металла шва зависят его структура, стойкость против образования трещин. Состав газовой атмосферы обусловливает устойчивость горения дуги, стойкость против появления пор и количество выделяемых при сварке вредных газов.

Функции сварочных флюсов

Флюсы выполняют следующие функции:

  • физическую изоляцию сварочной ванны от атмосферы;
  • стабилизацию дугового разряда;
  • химическое взаимодействие с жидким металлом; металла шва;
  • формирование поверхности шва.

Лучшая изолирующая способность - у флюсов с плотным строением частиц мелкой грануляции. Однако при плотной укладке частиц флюса ухудшается формирование поверхности шва. Достаточно эффективная защита сварочной ванны от атмосферного воздействия обеспечивается при определенной толщине слоя флюса.

Необходимая высота слоя флюса для сварки низкоуглеродистых и низколегированных сталей на различных режимах следующая:

Сварочный ток, А 200 - 400 600 - 800 1000 - 1200
Высота слоя флюса, мм 25 - 35 35 - 40 45 - 60

В состав флюса вводят элементы-стабилизаторы, повышающие стабильность горения дуги. Введение этих элементов позволяет применять переменный ток для сварки, более широко варьировать режимы сварки.

Химический состав металла шва формируется за счет основного и электродного металлов. Состав флюса также может приводить к изменениям химического состава металла шва. Однако эти изменения возможны, как правило, только в пределах долей процента. Для легирования металла шва применяют керамические флюсы.

Формирующая способность флюсов определяется вязкостью шлака, характером ее зависимости от температуры, межфазным натяжением на границе металл- шлак и т. п. Формирующая способность в значительной степени зависит от мощности дуги. При сварке мощной дугой (ток свыше 1000 А) хорошее формирование обеспечивают "длинные" флюсы, вязкость которых при повышении температуры монотонно уменьшается. При сварке кольцевых швов малого диаметра для предотвращения отекания шлака следует использовать "короткие" флюсы, вязкость которых резко уменьшается с повышением температуры.

Существенное влияние на формирование шва оказывает газопроницаемость флюса, которая определяется размерами частиц и насыпной массой флюса. Рекомендуемые размеры частиц стекловидного флюса в зависимости от мощности дуги, обеспечивающие удовлетворительное формирование шва, приведены ниже.

Сварочный ток, А 200 - 600 600 - 1200
Грануляция частиц, мм 0,25 – 1,6 0,4 – 2,5

Классификация флюсов

Флюсы можно классифицировать по:

  • способу изготовления;
  • химическому составу;
  • строению и размеру частиц;
  • назначению.

По способу изготовления флюсы подразделяются на:

  • плавленые;
  • керамические;
  • механические смеси.

Плавленые флюсы получают путем сплавления компонентов шихты в электрических или пламенных печах.

Керамические флюсы производят из смесей порошкообразных материалов, скрепляемых с помощью клеящих веществ, главным образом жидкого стекла. Спеченные флюсы изготовляют путем спекания компонентов шихты при повышенных температурах без их сплавления. Полученные комки затем измельчают до требуемого размера.

Флюсы-смеси изготовляют механическим смешением крупинок различных материалов или флюсов. Большим недостатком механических смесей является склонность к разделению на составляющие при транспортировке и в процессе сварки вследствие разницы в плотности, форме и размере крупинок. Поэтому механические смеси не имеют постоянных составов и сварочных свойств и недостаточно надежно обеспечивают получение стабильного качества сварных швов.

В зависимости от химического состава флюсы классифицируют по содержанию:

Низкокремнистые флюсы содержат менее 35% оксида кремния (SiO2). При содержании более 1% оксида марганца (МnО) флюс называют марганцевым. Высококремнистые флюсы содержат более 35% SiО2; в составе безмарганцевых флюсов менее 1% MnO. Особую группу при классификации флюсов по химическому составу занимают бескислородные флюсы.

По степени легирования различают флюсы:

  • пассивные (практически не легирующие металл шва);
  • слаболегирующие (плавленые);
  • и легирующие (керамические).

По строению частиц плавленые флюсы разделяют на:

  • стекловидные (прозрачные зерна)
  • пемзовидные (зерна пенистого материала белого или светлых оттенков желтого, зеленого, коричневого и других цветов).

Пемзовидные флюсы имеют меньшую насыпную массу (0,7-1,0 кг/дм 3 ), чем стекловидные (1,1-1,8 кг/дм 3 ). Наибольшее применение нашли плавленые флюсы.

В зависимости от назначения и преимущественного применения различают флюсы для электродуговой и для электрошлаковой сварки, а также для механизированной сварки и наплавки углеродистых сталей, легированных сталей, цветных металлов и сплавов. Такое разделение в известной степени условно, поскольку флюсы, преимущественно применяющиеся для сварки и наплавки металлов или сплавов одной группы, могут быть с успехом использованы для сварки и наплавки металлов другой группы. Вместе с тем флюсы, предна­значенные для сварки одних цветных металлов или одних марок легированных сталей, могут оказаться непригодными для сварки других цветных металлов или других марок легированных сталей.

Общие требования к флюсу

Флюсы для механизированной сварки должны обеспечивать устойчивое протекание процесса сварки, отсутствие кристаллизационных трещин и пор в металле шва, требуемые механические свойства металла шва и сварного соединения в целом, хорошее формирование шва, легкую отделимость шлаковой корки, минимальное выделение токсичных газов при сварке, а также иметь низкую стоимость и возможность массового промышленного изготовления.

В соответствии с EN 760 сварочные флюсы классифицируют по химическому составу как показано в таблице ниже.

Классификация (типы) флюсов по химическому составу

Al2O3 > 20%; CaF2 (общее содержание фтора) 20%

SiO 2 20%; CaF2 (общее содержание фтора) > 15%

Сочетания флюс-проволока при сварке под флюсом

Если сварочно-технологические характеристики процесса сварки под флюсом определяются в основном свойствами флюса, то механические свойства металла швов и сварных соединений зависят от сочетаний "флюс-проволока".

Получение качественных швов на углеродистых и некоторых низколегированных конструкционных сталях обеспечивается путем использования следующих сочетаний флюсов и сварочных проволок: плавленый высококремнистый марганцевый флюс и низкоуглеродистая или марганцовистая сварочная проволока, плавленый высококремнистый безмарганцевый флюс и марганцовистая сварочная проволока, керамический флюс и низкоуглеродистая или марганцовистая проволока.

При использовании плавленого высококремнистого марганцевого флюса и низкоуглеродистой или марганцовистой сварочной проволоки либо плавленого высококремнистого безмарганцевого флюса и марганцовистой сварочной проволоки последняя должна быть из кипящей или полуспокойной стали. Успокоение металла сварочной ванны и предупреждение пористости при сварке кипящей стали осуществляется в результате введения некоторого количества кремния из флюса в зону сварки. Легирование металла шва марганцем с целью повышения его стойкости против образования кристаллизационных трещин производится через флюс (первое и третье сочетания) или через проволоку (второе и третье сочетания).

Сварочные свойства высококремнистых марганцевых флюсов несколько лучше, чем свойства высококремнистых безмарганцевых. Положительной характеристикой высококремнистых марганцевых флюсов является высокая стойкость сварных швов против образования кристаллизационных трещин. Это обусловливается малым переходом серы из флюсов данного типа в металл шва и сравнительно сильным выгоранием углерода из металла сварочной ванны. Кроме того, на качество шва положительно влияет более низкое по сравнению с мар­ганцовистой проволокой содержание углерода в низкоуглеродистой проволоке, используемой в сочетании с высококремнистыми марганцевыми флюсами. При сварке под ними пористость сварных швов меньше, чем при сварке под высококремнистыми безмарганцевыми флюсами.

Если прочность и химический состав металла шва определяются химическими составами сварочной проволоки и основного металла, то его ударная вязкость в значительной степени зависит от флюса. Высокая ударная вязкость металла шва обеспечивается при его мелкокристаллической структуре, низком содержании неизбежных вредных примесей и неметаллических включений. Для выполнения этих требований во флюсе обычно снижают содержание SiO2. Поэтому при сварке низколегированных сталей преимущественно применяются низкокремнистые флюсы. Дополнительным требованием является возможно более низкое содержание водорода в металле шва. Измельчению структуры металла шва способствует также уменьшение погонной энергии сварки. Однако при этом уменьшается эффективность процесса сварки вследствие увеличения количества проходов.

В процессе сварки современных низколегированных сталей повышенной прочности допускается лишь ограниченный подвод тепла для исключения повреждения структуры основного металла в околошовной зоне. Это требование обеспечивается путем наложения многослойных швов при сварке металла средней и большой толщины. В связи с этим флюсы, предназначенные для сварки таких сталей, должны обеспечивать легкую отделимость шлаковой корки, высокие качество формирования шва и его механические свойства. В результате повышения механических свойств металла шва путем применения соответствующего сочетания флюса и проволоки исключается необходимость наложения неэкономичных тонких швов при многопроходной сварке толстого металла.

Реакции шлак-металл и газ-металл, восстановление и выгорание элементов

Во время сварки плавлением происходит взаимодействие между жидкими шлаком и металлом. Длительность этого взаимодействия обычно очень невелика. При электродуговой сварке она колеблется от 10 с до 1 мин. Взаимодействие прекращается после затвердевания металла и шлака. Несмотря на кратковременность, реакции взаимодействия между шлаком и металлом при электродуговой сварке могут проходить очень энергично, что обусловливается высокой температурой нагревания металла и шлака, большими поверхностями их контактирования и сравнительно большим относительным количеством шлака.

Взаимодействие между шлаком и металлом описывается реакциями вытеснения из шлака в металл одного элемента другим или распределения между шлаком и металлом. Реакции вытеснения преимущественно ведут к обогащению или обеднению металла шва легирующими элементами, реакции распределения - к образованию в металле шва неметаллических включений.

В процессе реакций вытеснения на поверхностях контактирования жидких металла и шлака взаимодействуют атомы металла и молекулы окислов шлака. Весьма существенную роль при этом играют реакции восстановления кремния и марганца:

(МnО) + [Fe] = (FeO) + [Mn]; (SiO2) + 2 [Fe] = 2 (FeO) + [Si].

Символы в круглых скобках обозначают элементы и соединения, находящиеся в шлаке, в квадратных - в металле. При высоких температурах реакции преимущественно идут слева направо (восстановление марганца и кремния из шлака в металл), при снижении температуры - справа налево (окисление марганца и кремния и переход их из металла в шлак). Направление реакций зависит также от концентрации реагирующих веществ. Если в металле сварочной ванны содержится мало марганца и кремния, а в шлаке много МпО и SiO2 и мало FeO, марганец и кремний при высоких температурах (вблизи дуги) восстанавливаются из шлака в металл. Если в металле сварочной ванны много марганца и кремния, а в шлаке нет МпО и SiO2, или много FeO, марганец и кремний окисляются даже в зоне высоких температур сварочной ванны.

Реакции взаимодействия между шлаком и металлом сварочной ванны проходят в условиях быстрого изменения температуры и постоянного обновления состава реагирующих фаз. В связи с этим изменяются как интенсивность прохождения этих реакций, так и их направление. Однако, хотя взаимодействие шлака и металла при сварке не достигает состояния равновесия, оно всегда направлено в сторону его установления.

Интенсивность взаимодействия шлака и металла зависит от режима сварки, причем, наиболее сильно на нее влияют сила тока и напряжение дуги; плотность тока и скорость сварки оказывают малое влияние. Уменьшение силы тока и увеличение напряжения дуги усиливают взаимодействие шлака и металла, увеличивают интенсивность восстановления или окисления кремния и марганца при сварке, усиливают переход серы и фосфора из шлака в металл или из металла в шлак. При автоматической сварке под флюсом заданный режим поддерживается постоянным, в единицу времени плавятся определенные количества электродного и основного металлов, одинаково проходят процессы взаимодействия металлической, шлаковой и газовой фаз при высоких температурах. Благодаря постоянству режима автоматической сварки получается шов стабильного химического состава. Если известны химический состав основного металла и сварочной или присадочной проволоки, а также характер изменения химического состава металла сварочной ванны в результате взаимодействия со шлаковой или газовой фазой, то можно заранее приблизительно рассчитать химический состав шва, который получится при сварке на выбранном режиме.

Обращение с флюсами для сварки и их хранение

Во избежание появления пор в швах влажность сварочных флюсов не должна превышать установленных норм. Влажность флюса АН-60 не должна превышать 0,05%; для остальных марок плавленных флюсов, выпускаемых по ГОСТ 9087-81 не более 0,10%.

Флюсы повышенной влажности просушивают в печах при 100-110°С (стекловидные флюсы) и 290-310°С (пемзовидные флюсы). Фторидные флюсы прокаливают при 500-900°С.

При повторном использовании флюсов размеры их частиц уменьшаются. Поэтому следует периодически просеивать флюс через сито и произоводить сварку под флюсом на меньших сварочных токах.

Области использования проволоки сварочной CBO8Г2С, ее характеристики и особенности

сварочная проволока

Во время сварки полуавтоматом с использованием защитного газа вам потребуется прибегнуть к использованию присадочной проволоки. Она нужна для того, чтобы стыки были заранее заполнены металлом.

Скорее всего возникнет вопрос выбора нужной проволоки, коли вы ею прежде не эксплуатировали .Есть некие сложности в расшифровке брэнда спирали ,каковых гораздо больше чем марок электродов.

Для вас, мы опишем общераспространённую модель спирали. Это сварочная спираль св08г2с технические возможности каковой дают возможность применять ее в больших количествах сварочных работах.

Это проволока в целях сварки — СВО8Г2С, подходящая на множество вариантов сварочных работ с её многофункциональной технической характеристике. Вы сможете понять и расшифровать марку данного типа, а также увидеть её химический состав.

  • Общая информация
  • Преимущества
  • Разбор марки
  • Рекомендации
  • Итог

Марки и классификация

Проволока классифицируется по применению: общего и специального. Первая применяется для сварки широко диапазона сталей, цветных сплавов. Специальная, например титановый сплав, используется редко, только для отдельных видов нержавейки. Ею варят титан и его сплавы.

По покрытию проволоку делят:

  • непокрытая;
  • омедненная;
  • покрытая флюсом.

Каждый сплав требует специального, подходящего именно для него, расходного материала. Основные марки:

  • стальная;
  • алюминиевая;
  • порошковая.

Каждый тип проволоки сварочной имеет ГОСТ, по которому изготавливается и в соответственно значений стандарта проверяется по специальной технологии. В группы входит металл, разный по химсоставу. Его определяют по содержанию легирующих элементов и углерода

В крупных цехах и в домашних мастерских наибольшей популярностью пользуются изготавливаемые по ГОСТ 2246-70 разновидности проволоки стальной сварочной, используемой для сварки. Из нее делают электроды. Выбрать нужный материал можно, ориентируясь на состав, указанный в маркировке: сначала Св – сварочная, затем обозначение легирующих компонентов и их состав в процентах.

Например, омедненная проволока Св08Г2С по ГОСТ 2246-70 содержит:

  • углерода 0,08%;
  • марганца 2%;
  • кремния до 1%.

Остальные компоненты не превышают суммарно 3% и каждого из них менее 1%.

А в конце маркировки указывает на химический состав повышенного качества. В нем пониженное содержание серы и фосфора. О – значит омедненная.

Низкоуглеродистая проволока широко используется для сварки металлоконструкций и арматуры на строительных площадках. Для создания столбов и опор линий электропередач, трубопроводов и корпусов кораблей использую омедненную проволоку Св08Г2СА.

Для цветных сплавов, высоколегированной нержавейки и стали, содержащей тугоплавкие вещества, создается по ГОСТ 7871-75 сварочная алюминиевая проволока. Выпускается диаметрами тянутая и прессованная. Предназначена она для работы на полуавтоматах.

Отличительные особенности

Если сравнивать сварочную проволоку СВ08Г2С с другими аналогами, то она имеет такие отличия:

  1. Стабильность сварочной дуги, что снижает возникновение прилипания электрода к поверхности свариваемого металла.
  2. Поддерживает широкий спектр различных режимов сварки.
  3. Подходит для многих типов полуавтоматических промышленных стендов и аппаратов.
  4. Сводит к минимуму разбрызгивание расплавленного металла, что улучшает прочностные характеристики сварочного шва.
  5. Повторный розжиг дуги производится легко и быстро.
  6. Экономит расходные материалы, например, медные наконечники.

Все перечисленные особенности позволяют на практике сваривать любые металлические конструкции посредством прочного и надежного шовного соединения, при этом кромки деталей провариваются полностью и не имеют негативных пропусков, пористости и других подобных дефектов.

Технические требования

Имеет сварочная проволока Св08Г2С ГОСТ2246-70 характеристики технические:

  • предел прочности 550 Мпа;
  • ударная вязкость 70 Дж/см2;
  • предел текучести 450 Мпа.

Предъявляются требования к сплошности металла. Не допускаются поры и химические включения.

Омедненную сплошную проволоку отличают от других расходных материалов положительные технические качества:

  • устойчивая горение:
  • сварка длинной дугой;
  • высокая прочность и герметичность шва;
  • легкое зажигание дуги первичное и повторное;
  • малое разбрызгивание;
  • длительный срок службы наконечников.

Плавление омедненной проволоки происходит равномерно, что значительно уменьшает разбрызгивание. Шов образуется ровный, без гребешков. Расход материала за счет этого почти на 40% меньше по сравнению со светлыми видами проволоки.

Где используется легированная проволока

Чаще всего проволока СВ08Г2С применяется при проведении работ на сварочных автоматах и полуавтоматах в промышленных условиях. Применяя ее, можно проводить ручную сварку различных изделий из стали. Применяя этот расходный материал, можно получить сварное соединение высокого качества. Шов получается ровным и чистым.

Сферы применения

Проволока этой марки незаменима при выполнении следующих операций:

  • образование валика на соединительном шве;
  • заполнение пространства между краями свариваемой заготовки.

При выполнении сварочных работ этот метиз является основным элементом технологических процессов. Без нее не обходится сварка в таких сферах, как:

  • строительство;
  • машиностроение;
  • самолето-, кораблестроение.

Также отметим, что эта легированная проволока для сварки может использоваться в качестве эффективного присадочного материала. Одна из характерных особенностей – высокий коэффициент наплавки. Благодаря этому обеспечивается высокое качество выполнения сложных мероприятий по наплавке.

В последнее время высоколегированная проволока для сварки активно применяется при выполнении работ в газовой атмосфере. Для создания такой среды обычно используется аргон или смесь этого газа с другими. Часто для образования этой среды применяется углекислый газ. Выбор в пользу последнего продиктован его меньшей стоимостью в сравнении с аргоном. Когда сварочные работы проводятся в среде углекислого газа, то используется постоянный ток. Отметим, что такая среда рекомендована для выполнения работ по сварному соединению изделий из углеродистых сталей.

Методы испытаний

Проволока сварочная определенного диаметра на приемку поступает с одной плавки и партии. Сначала она проходит визуальный контроль. На поверхности не должно быть царапин, пятен. Диаметр замеряется микрометром в нескольких точках. Для этого отбирается 5%, но не менее 3.

С отобранных мотков вырезаются по 2 куска с начала и конца мотка для проведения испытаний на физические свойства стали: на разрыв, упругую деформацию и другие. Проволоку определенной длины закрепляют в специальном оборудовании, и лаборанты фиксируют в протоколе каждое значение.

Определение содержания ферритной фазы

Содержащийся в стали феррит ослабляет его механические свойства: твердость, прочность, пластичность. Определить его содержание можно по специально отлитому образцу. При производстве сварной проволоки содержание ɑ-фазы измеряется дважды.

  1. При разливе металла берется ковшовая проба – специальной ложкой сталевар зачерпывает жидкую сталь из ковша и выливает в кокиль.
  2. От уже готовой проволоки отрезают куски, укладывают в медные тигли, и расплавляют вольфрамовым электродом. Жидкую сталь переливают в кокиль.

Остывшие с определенной скоростью образцы разрезают. Поверхность шлифуют и полируют с охлаждением, не давая им нагреться. После травления с помощью электронного микроскопа изучают структуру и сравнивают с образцом.

Определения массовой доли следов мыльной смазки

Количество мыльной смазки определяется по разнице веса проволоки до и после очистки. Отбираются образцы весом до 200 гр. Взвешиваются с точностью до 0,0002гр. После этого поверхность обрабатывается бензолом, толуолом или эфиром. Взвешивание каждого образца повторяется.

Начальник ОТК Металлургического комбината ЧЛПК Овчаров В. П.: «Контроль химсостава осуществляется предварительно по ковшовым пробам. Затем от каждой партии отбирается 5%, но не менее 2 бухт. Отрезаются образцы и сдаются в химическую лабораторию. Часть веществ определяются быстро с помощью спектрального анализа. Остальные методом растворения, выжигания и химического взаимодействия. Только после этого выписывается сертификат на соответствие по химическому составу с указанием каждого элемента с точностью до 0,001%».

Рекомендации

бобины

Как дополнение, мы предоставим вам немного рекомендаций по поводу приобретения сварочной спирали. Этими же наставлениями вы можете воспользоваться при закупке иных сварочных частей.

Сертификат соответствия — это первая просьба у продавца-консультанта до приобретения. Сертификат показывает действительно ли проволока подходит по стандартам сертификата.

Это спасёт вас от некачественных и поддельных составляющих. Не стоит также забывать о редкой возможности подделки сертификата.

Маркировка, упаковка, транспортирование и хранение

Учитывая размер изделия и требования к чистоте поверхности, маркировка товара производится на ярлыках, прикрепленных на мотки. В случаях пластиковых катушек, наклеивается на ее торце.
Порядок данных в маркировке строго регламентирован.

  1. Цифрой обозначается диаметр.
  2. Св – сварочная.
  3. Состав. Цифрами и буквами указывается содержание углерода и основных легирующих веществ. Буква А в конце обозначает улучшенное качество.
  4. Тип покрытия или его отсутствие.
  5. Вид переплава.
  6. ГОСТ, по которому изготавливается продукция.

Проволока выпускается в кассетах весом 1 – 15 кг, на пластмассовых катушках весом до 20 кг. Намотка рядная, равномерная. Мотки и бухты могут весить 80 кг. Каждая катушка или бухта содержат проволоку только одной плавки и партии. Они обматываются в 2 слоя непромокаемой – промасленной, бумагой и укладываются в картонные или деревянные ящики. На каждую партию выписывается Сертификат качества. В нем содержится:

  • товарный знак изготовителя;
  • номер партии;
  • ГОСТ;
  • химический состав.

На каждом сертификате стоит его регистрационный номер, на который ссылаются при выписывании копий. Кроме этого подписи начальника цеха и ОТК.

Транспортировка допускается любым типом транспортных средств крытого типа.

Хранение производится на складах, в сухих закрытых помещениях. Высота штабелей на должна превышать 1,5 м. Ширина проходов более 1 м.

Зачем следует знать коэффициент наплавки?

Выполняя работы по наплавке, специалист должен знать, какой коэффициент наплавки имеет используемая им проволока. Под ним следует понимать величину, которая описывает наплавляемый за конкретное время металл при определенной силе тока. Коэффициент наплавки метиза обычно составляет не менее 8,5 г/А*ч. Обычное его значение зависит от:

  • химического состава метиза;
  • типа покрытия изделия;
  • полярности и рода тока, который используется для выполнения наплавки.

Производительность операций по наплавке во многом зависит от коэффициента наплавки метиза СВ08Г2С. Также этот показатель влияет на число потерь сварочного шва на испарение, а также на разбрызгивание и окисление. Еще рассматриваемый показатель определяет коэффициент расплавления основного металла, а также целый ряд других важных характеристик и операций по сварке.

Область применения

Проволока выпускается разного сечения, поэтому с её помощью соединяются тонкостенные и толстые металлы: например, в быту часто применяется диаметр в 2 мм для ремонта небольших деталей, а сечение в 6 мм — используется в машиностроительной промышленности для сварки основания станков или других мощных металлоконструкций.
Проволока сварочная омедненная СВ08Г2С-О и ее применение:

  • ручная сварка, когда для защиты используют аргон и его смесь с CO2, при этом применяется неплавкий вольфрамовый электрод;
  • полуавтоматический вариант с защитой аргоном;
  • в качестве легирующей присадки для сварочной ванны, когда плавящийся флюс образует защитное облако от возможного окисления, а застывающие шлаки — твердую поверхность с аналогичными свойствами защиты во время кристаллического формирования шва.

СВ08Г2С-О имеет лучшую совместимость со всеми выпускаемыми полуавтоматами, помогает надежно соединять вручную любые углеродистые стали с высоким качеством швов. Известные эксперты сварочных технологий отмечают особую уникальность проволоки с такой маркировкой для формирования валика шовного соединения и равномерного заполнения расплавленным металлом зазоров между кромками деталей.

Читайте также: