Ванадий в сварочной проволоке

Обновлено: 16.05.2024

Защитные газы и их влияние на технологические свойства дуги

В качестве защитных газов при дуговой сварке плавлением ТИГ и МИГ/МАГ применяют инертные газы, активные газы и их смеси. Защитный газ выбирают с учетом способа сварки, свойств свариваемого металла, а также требований, предъявляемых к сварным швам.

Инертными называют газы, не способные к химическим реакциям и практически не растворимые в металлах. Поэтому их целесообразно применять при сварке химически активных металлов и сплавов на их основе (алюминий, алюминиевые и магниевые сплавы, легированные стали различных марок). При сварке ТИГ и МИГ/МАГ используются такие инертные газы как аргон (Ar), гелий (He) и их смеси.

Активными защитными газами называют газы, способные защищать зону сварки от доступа воздуха и вместе с тем химически реагирующие со свариваемым металлом или физически растворяющиеся в нем. При дуговой сварке сталей в качестве защитной среды применяют углекислый газ (СО2). Ввиду химической активности углекислого газа по отношению к вольфраму этот защитный газ используют только при сварке МИГ/МАГ.

К активным газам применяемым при МИГ/МАГ также относятся газовые смеси в состав которых входят аргон (Ar), кислород (О2), азот (N2), водород (H2). Готовые газовые смеси поставляются в баллонах, также они могут быть получены путем смешивания газов составляющих смесь.

Классификация способов сварки в защитных газах приведена на схеме ниже.

Классификая способов сварки в защитных газах

Свойства защитных газов

В таблице ниже приведены физические свойства защитных газов.

Краткая характеристика защитных газов

Аргон - наиболее часто применяемый инертный газ. Он тяжелее воздуха и не образует с ним взрывчатых смесей. Благодаря низкому потенциалу ионизации этот газ обеспечивает высокую стабильность горения дуги. Однако, в тоже время, низкий потенциал ионизации является причиной и низкого напряжения на дуге, что снижает тепловую мощность дуги. Будучи тяжелее воздуха, аргон обеспечивает хорошую газовую защиту сварочной ванны (но только в нижнем положении сварки). Однако он может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе, что может вызвать кислородную недостаточность и удушье у электросварщика. В местах возможного накопления аргона необходимо контролировать содержание кислорода в воздухе приборами автоматического или ручного действия с устройством для дистанционного отбора проб воздуха. Объемная доля кислорода в воздухе должна быть не менее 19%.

Аргон выпускается согласно ГОСТ 10157-79 двух сортов: высшего и первого. Высший сорт рекомендуется использовать при сварке ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов. Аргон первого сорта применяют для сварки сталей и чистого алюминия.

Гелий - бесцветный, неядовитый, негорючий и невзрывоопасный газ. Значительно легче воздуха и аргона, что понижает эффективность защиту сварочной ванны при сварке в нижнем положении, но способствует лучшей защите при сварке в потолочном положении. Гелий используется реже, чем аргон, из-за дефицитности и высокой стоимости. Однако, из-за высокого потенциала ионизации, при одном и том же значении тока дуга в гелии выделяет в 1,5-2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительно повышает скорость сварки. Для сварки используется гелий трех сортов: марок А, Б и В (по ТУ 51-689-75). Применяют его в основном при сварке химически чистых и активных материалов и сплавов, а также сплавов на основе алюминия и магния.

Часто используются смеси аргона и гелия, причем оптимальным составом считается смесь, содержащая 35-40% аргона и 60-65% гелия. В смеси в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность горения дуги, гелий – высокую степень проплавления.

При сварке меди используется азот, так как он к ней химически нейтрален, т.е. не образует с ней никаких химических соединений и в ней не растворяется.

Активные газы

Углекислый газ (двуокись углерода) - бесцветен, не ядовит, тяжелее воздуха. При нормальных условиях (760 мм рт. ст. и 0°С) плотность углекислого газа в 1,5 раза выше плотности воздуха. Углекислый газ хорошо растворяется в воде. Жидкая углекислота - бесцветная жидкость, плотность которой сильно изменяется с изменением температуры. Вследствие этого она поставляется по массе, а не по объему. При испарении 1 кг жидкой углекислоты в нормальных условиях образуется 509 л углекислого газа.

Двуокись углерода нетоксична и невзрывоопасна. Однако при концентрациях более 5% (92 г/м 3 ) двуокись углерода оказывает вредное влияние на здоровье человека. Так как двуокись углерода в 1,5 раз тяжелее воздуха она может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать удушье. Помещения, где производится сварка с использованием двуокиси углерода, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией.

Основными примесями углекислого газа, отрицательно влияющими на процесс сварки и свойства швов, являются воздух (азот воздуха) и вода. Воздух скапливается над жидкой углекислотой в верхней части баллона, а вода – под углекислотой в нижней части баллона. Повышенное содержание воздуха и водяных паров в углекислоте может при сварке привести к образованию пор в швах, которые чаще всего появляются в начале и конце отбора газа из баллона. Чтобы снизить содержание влаги в поступающем на сварку углекислом газе до безопасного уровня, на его пути устанавливают осушитель. Для улавливания влаги осушитель заполнен хлористым кальцием, силикагелем или другими поглотителями влаги.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой углекислоты газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого рекомендуется подогревать выходящий из баллона углекислый газ. Для этого используют электрические подогреватели газа, которые устанавливаются перед редуктором.

Углекислый газ оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие. Из легирующих элементов ванны наиболее сильно окисляются алюминий, титан и цирконий, менее интенсивно - кремний, марганец, хром, ванадий и др.

Кислород - это бесцветный нетоксичный газ без запаха. Является сильным окислителем. Накопление кислорода в воздухе помещений создает опасность возникновения пожаров. Поэтому объемная доля кислорода в рабочих помещениях не должна превышать 23 %. В зависимости от содержания кислорода и примесей технический газообразный кислород изготовляют трех сортов. Содержание кислорода в первом сорте должно быть не менее 99,7 об. %, во втором - не менее 99,5 об. % и в третьем - не менее 99,2 об. %.

В сварочном производстве кислород широко применяют для газовой сварки и резки, а также при дуговой сварке как составную часть защитной газовой смеси. Кислород уменьшает поверхностное натяжение металла, и поэтому с увеличением его содержания в смеси на основе аргона критический ток (перехода крупнокапельного переноса в мелкокапельный, см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) уменьшается. Обычно содержание кислорода в смеси с аргоном не превышает 2-5%. В такой среде дуга горит стабильно. Перенос металла мелкокапельный с минимальным разбрызгиванием.

Азот - бесцветный газ, без запаха, не горит и не поддерживает горение. В сварочном производстве азот находит ограниченное применение. Азот не растворяется в расплавленной меди и не взаимодействует с ней, и поэтому может быть использован при сварке меди в качестве защитного газа. По отношению к большинству других металлов азот является активным газом, часто вредным, и его концентрацию в зоне плавления стремятся ограничить. Азот также применяется при плазменной резке и как компонент газовой смеси при сварке аустенитной нержавеющей стали.

Водород - не имеет цвета, запаха и является горючим газом. Водород редко используют в в качестве защитного газа. Так как смеси водорода с воздухом или кислородом взрывоопасны, при работе с ним необходимо соблюдать правила пожарной безопасности и специальные правила техники безопасности. При работе с водородом необходимо следить за герметичностью всех соединений, т.к. он образовывает с воздухом взрывчатые смеси в широких пределах.

Смеси защитных газов

Иногда является целесообразным употребление газовых смесей. За счет добавок активных газов к инертным удается повысить устойчивость дуги, увеличить глубину проплавления, улучшить формирование шва, уменьшить разбрызгивание, повысить плотность металла шва, улучшить перенос металла в дуге, повысить производительность сварки. Существенное значение при выборе состава защитного газа имеют экономические соображения.

Смесь аргона и гелия. Газовые смеси гелий-аргон применяются в основном для сварки цветных металлов: алюминий, медь, никелевых и магниевых сплавов, а также химически активных металлов. Оптимальным является соотношение 35 - 40% аргона и 60 - 65% гелия. Так в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность дуги, гелий - высокую глубину проплавления.

Смеси аргона с кислородом или углекислым газом. Благодаря добавке окислительных газов обеспечивается существенное снижение поверхностного натяжения жидкого металла расплавляемой электродной проволоки, уменьшение размеров образующихся и отрывающихся от электрода капель. Расширяется диапазон токов при сохранении стабильного ведения процесса сварки. Обеспечивается лучшее формирование металла шва и меньшее разбрызгивание, лучшая форма провара и меньшее излучение дуги, по сравнению со сваркой в чистом аргоне, а также в чистом углекислом газе. При добавлении кислорода наблюдается снижение критического тока, при котором крупнокапельный перенос металла переходит в мелкокапельный.

В таблице ниже приводятся основные характеристики газовых смесей для сварки МИГ/МАГ.

Ванадий как легирующий элемент различных сталей и сплавов

На сегодняшний день ванадий является одним из самых востребованных легирующих элементов в сталеплавительном производстве. В чем секрет такого спроса на него? Дело в том, что даже незначительное содержание ванадия в сплавах влияет на их качество положительным образом. Они становятся более прочными и устойчивыми. Соответственно, производитель может увеличить срок службы своей продукции. При добавлении данного легирующего элемента к ферросплавам увеличивается предел их текучести. Повышается также соотношение показателей предел текучести – предел прочности.

Уникальные свойства ванадия

Почему ванадий (феррованадий) имеет такое мощное действие на сплавы? Причиной этому являются уникальные свойства данного элемента. Он способен формировать карбиды. Их выделение из твердой массы ванадиевых ферросплавов происходит перед образованием цементита - химического соединения, называемого иначе карбид железа.

Таким образом, система в данном случае выглядит так: Fe—V—С.

Образованные ванадием карбиды, а также сложные ванадийсодержащие карбиды формируются из твердого раствора в мелкодисперсном виде. Данные вещества весьма сложно растворить в аустените (твердый раствор углерода в железе) или феррите (оксидные соединения железа с другими металлами). При их добавлении происходит значительное структурное измельчение стали и чугуна. Другое характерное для данного процесса явление – замедление интенсивности роста зерна в момент нагрева. Небольшое количество ванадия, не содержащееся в карбидах, формирует твердый раствор в феррите. Благодаря этому свойству рассматриваемого вещества значительно увеличивается растворимость в нем кислорода. Такой фактор, в свою очередь, положительно влияет на процесс очищения феррита от соединений оксидного типа, негативно сказывающихся на показателях его прочности.

При измельчении зерен аустенита и замедлении темпов их роста во время нагрева, карбиды ванадия оказывают тем самым несомненную пользу закаливаемым ферросплавам. Благодаря данному процессу изделия будут отличаться высокими показателями пластичности. Наиболее актуально данное свойство ванадия для закаливания крупногабаритной продукции. Наличие легирующего элемента в железных сплавах способствует их устойчивости к высоким температурам и повреждениям. В «цементируемых» сталях с низким содержанием углерода включение даже незначительного количества легирующего элемента замедляет темпы роста зерна аустенита при цементации. В результате закаливания цементированный слой стальных изделий будет отличаться высокой прочностью, тогда как глубинные слои сохранят свою пластичность.

Применение ванадия в производстве сплавов

  • Хромисто-ванадиевая сталь. Легирующий элемент в ней содержится в размере 0,2% от общего объема. Данный тип сплава отличается высокой прочностью и пластичностью, особенно в сравнении с хромисто-молибденовой сталью.
  • Инструментальная сталь. Такой тип сплавов должен быть устойчивым к высоким температурам.
  • Кипящая сталь. В нее ванадий начали добавлять всего несколько лет назад. Из таких сплавов производят листовой металл, который проходит обработку способами глубокой штамповки. При добавлении в кипящую сталь 0,03-0,05 % ванадия металлическое изделие получится износостойким и долговечным.
  • Сплавы тройной системы Co—Fe—V. Для них характерно высокое магнитное качество. Они все больше и больше применяются производителями магнитов. В стали данного типа добавляют 10% ванадия. Их преимуществом перед сверхтвердыми никель-алюминиевыми сплавами, которые невозможно обрезать или согнуть, является то, что такую сталь легко ковать или обрабатывать на промышленных станках.
  • Строительные стали.
  • Стали для железнодорожного транспорта.

Рисунок 1. Инструменты из хромисто-ванадиевой стали

Ванадий вчера, сегодня и завтра

В последнее время наблюдаются интенсивные темпы производства тугоплавких металлических элементов таблицы Д.И.Менделеева. Так, титан и молибден используются без каких-либо примесей и добавок, в чистом состоянии. Они составляют основу значительного количества ферросплавов. И если в середине прошлого столетия они изготавливались лишь в пределах лабораторий, то сегодня масштабы их производства гораздо шире и представляют собой крупные потоки сталеплавительной продукции. Феррованадий как легирующий элемент высоко ценится в промышленности, а потому спрос на него производителей растет с каждым днем. Однако открытия, касающиеся его свойств, были сделаны довольно поздно. Во всяком случае, другие элементы были подробно изучены ранее феррованадия. Даже сегодня, несмотря на широкий спрос на данный продукт со стороны производителей легированной стали , специальной литературы, в которой были бы подробно описаны качества и особенности данного легирующего элемента, существует мало. Такой дефицит открытий, связанных с изучением феррованадия, связан с трудностями, возникающими при изготовлении ковкого металла.

Однако вследствие широкого применения ванадия в сталеплавительном производстве сегодня ученые вплотную заняты исследованием качественных характеристик ферросплавов с добавлением данного легирующего элемента. Тем более, что современное техническое оборудование способно преодолеть трудности, связанные с производством ковкого металла в крупных масштабах. В связи с этим можно прогнозировать, что в скором времени наступит «золотой век» в истории применения ванадия, спрос на него может возрасти в разы по сравнению с сегодняшним потреблением.

Ванадий в России и за рубежом

То, что ванадий представляет высокую ценность для производства стальных сплавов, было обнаружено еще во времена Советского Союза. Однако в то время промышленное оборудование не было настолько усовершенствованным, чтобы с его помощью стало возможным полностью изучить результаты добавления этого элемента в качестве легирующего в различные сплавы.

  • Устойчивость к высоким температурам
  • Пластичность
  • Защита от коррозии даже при неблагоприятных условиях
  • Прочность и устойчивость к механическим повреждениям
  • Низкий удельный вес

Сегодня в самолето- и ракетостроении широко применяются сплавы с добавлением ванадия. С каждым годом все больший спрос на них появляется и в машиностроении. Применяют такие сплавы в химическом и судостроительном производстве. В Германии получен патент на ванадиевотитановый сплав, содержащий 30-49% ванадия. Широко применяются титанованадиевые сплавы и в Соединенных Штатах Америки и других развитых стран мира. Естественно, такой интерес обусловлен в первую очередь сверхпрочностью, которую обеспечивает даже незначительное содержание ванадия в сплавах. Если для техники будут использоваться такие устойчивые материалы – она будет долговечной и износостойкой.

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Тугоплавкий металл ванадий

Ванадий (V) - химический элемент пятой группы периодической системы Д.И. Менделеева, атомный номер 23, атомная масса 50,94. Металл серебристого оттенка, внешне напоминающий сталь, относится к классу тугоплавких. Имеет плотность 6,11 г/см 3 , температуру плавления tпл. = 1887 °С, температуру кипения tкип. = 3377 °С. Обладает хорошей прочностью и пластичностью.

Описываемый химический элемент относится к редким тугоплавким металлам. Целиком находится в рассеянном состоянии и не образует собственных минералов. Основные источники получения ванадия - железные руды, содержащие V как примесь.

История открытия

Впервые ванадий был открыт мексиканским ученым профессором минералогии Андресом Мануэлем Дель Рио и получил название “эритроний”. Однако, это открытие не было признано европейским научным миром. Повторно об обнаружении нового химического элемента было объявлено шведским химиком Нильсом Сефстремом, который нашел его в железной руде.

Свойства ванадия

Физические свойства


Свойство Значение
Атомный номер 23
Атомная масса, а.е.м 50,94
Радиус атома, пм 134
Плотность, г/см³ 6,11
Молярная теплоемкость, Дж/(K·моль) 24,95
Теплопроводность, Вт/(м·K) 30,7
Температура плавления, °С 1887
Температура кипения, °С 3377
Теплота плавления, кДж/моль 17,5
Теплота испарения, кДж/моль 460
Молярный объем, см³/моль 8,35
Группа металлов Тугоплавкий металл

Химические свойства


Свойство Значение
Ковалентный радиус, пм 122
Радиус иона, пм (+5e) 59 (+3e) 74
Электроотрицательность (по Полингу) 1,63
Электродный потенциал 0
Степени окисления 5, 4, 3, 2, 0

Марки ванадия и сплавов

  • ВЭЛ-1, ВЭЛ-2, ВЭЛ-3, - чистый ванадий, содержащий до 99,84% V, полученный электролитическим способом; поставляется в виде порошка.
  • ВнМ-1, ВнМ-2 - чистый V в виде слитков, полученных электронно-дуговой плавкой; содержание V составляет до 99,34% и 99,04% соответственно.
  • ВнП-1, ВнП-2 - чистый ванадий в виде прутков круглого сечения.
  • ВнПр-1, ВнПр-2 - чистый V в виде проволоки.
  • ВнПл-1, ВнПл-2 - чистый V в виде полос.
  • ВВ-8 - сплав ванадий-вольфрам с 6-8% W.

Достоинства / недостатки

    Достоинства:
  • имеет высокую температуру плавления;
  • имеет хорошие технологические и механические свойства - хорошая пластичность и свариваемость, прочность;
  • имеет меньшую стоимость по сравнению с другими металлами со схожими характеристиками.
    Недостатки:
  • относительно небольшой процент содержания в земной коре.

Области применения ванадия

Ванадий и его соединения находят применение во множестве промышленных отраслей, однако наибольший их объем востребован для нужд металлургической и химической промышленности.

Основная доля мирового потребления ванадия – примерно 87% – приходится на металлургическую промышленность (80% + 7% – черная и цветная металлургия соответственно). Рассматриваемый металл применяется в основном для легирования высококачественных конструкционных сталей с целью оптимизации их эксплуатационных характеристик. По данным статистики, в настоящее время V является мировым лидером среди легирующих элементов.

Ванадию присуща высокая химическая активность, определяющая возможность его применения в различных промышленных отраслях, включая химическую. Для нужд химической промышленности используется множество соединений этого металла, прежде всего, соли ванадиевых кислот (ванадаты), оксиды и карбиды ванадия. Конкретными примерами использования V являются производство красителей и получение катализаторов. Неоспоримо преимущество ванадия при производстве высококачественного инструмента, выполненного из различных хром-ванадиевых сталей.

Продукция из ванадия

Современное промышленное производство предлагает широкий спектр стандартных изделий, активно используемых в различных областях. Из круглого проката можно выделить ванадиевый пруток и проволоку. Плоский прокат представляет ванадиевый лист и полоса. К исходному сырью можно отнести слитки и порошок ванадия, которые занимают основополагающее место в цепочке производства изделий из данного металла.

Порошковая проволока для микролегирования стали ванадием

Изобретение относится к металлургии, в частности к микролегированию стали ванадием. Порошковая проволока состоит из стальной оболочки и наполнителя из порошкообразного сплава системы железо-ванадий-алюминий, при этом содержание ванадия и алюминия в наполнителе составляет, соответственно, 50-85% и не более 2,5%, а коэффициент заполнения проволоки составляет 0,75-0,77. Изобретение позволяет уменьшить количество примесей, в частности алюминия, повысить линейную массу наполнителя, а также осуществлять микролегирование всего сортамента ванадийсодержащих сталей. 1 табл.

Известна порошковая проволока, наполнитель которой содержит оксиды ванадия, алюминий, силикокальций и другие материалы [1]. Проволоку использовали для внепечного микролегирования ванадием стали марки Grade 55. Степень извлечения ванадия из пентаоксида при легировании колебалась от 50 до 70% и в среднем составила ≈56%. Это значительно меньше, чем сквозное извлечение ванадия из пентаоксида при производстве феррованадия и последующем легировании им металла, которое составляет 77-80% [2]. Кроме того, при использовании указанной проволоки в металл дополнительно вносятся алюминий и кремний, что не всегда желательно.

Наиболее близкой по технической сущности и достигаемому результату к заявляемой порошковой проволоке для микролегирования является порошковая проволока с наполнением ванадий-алюминиевой лигатурой ВНАЛ, содержащей ≈72,9% ванадия и ≈26,5% алюминия [3]. Степень усвоения ванадия при ее использовании составляет ≈98%. Порошковая проволока с лигатурой ВНАЛ может использоваться как для корректировки, так и для получения заданного содержания ванадия с высокой степенью точности. Недостатком такой проволоки является невысокая линейная масса наполнителя (320 г/м), вследствие чего для плавки массой 145 т на каждые 0,01% ванадия необходимо ввести в металл 65 м проволоки. При этом в металл дополнительно вводится избыточный алюминий, что может сказаться на механических свойствах стали, а также привести к затягиванию сталеразливочного стакана. Проволока не может быть использована для микролегирования ванадием некоторых сталей ответственного назначения, например сталей для железнодорожных рельсов, так как применение алюминия при раскислении и легировании этих сталей не допускается.

Поставлена задача разработать порошковую проволоку для микролегирования стали ванадием, отличающуюся минимальным количеством примесей, в частности алюминия, и повышенной линейной массой наполнителя. Проволока должна быть пригодна для микролегирования всего сортамента ванадийсодержащих сталей.

Поставленная задача достигается тем, что в известной порошковой проволоке для микролегирования стали ванадием, которая состоит из стальной оболочки и наполнителя из порошкообразного сплава системы железо-ванадий-алюминий, содержание алюминия в наполнителе не превышает 2,5%, а коэффициент заполнения проволоки наполнителем Кз составляет

где qн -линейная масса наполнителя, г/м;

qоб - линейная масса оболочки, г/м.

Сущность заявляемого решения, а именно порошковой проволоки для микролегирования стали ванадием, заключается в том, что она состоит из стальной оболочки и наполнителя из порошкообразного сплава системы железо-ванадий-алюминий. Оптимальное содержание ванадия в наполнителе составляет 50-85%, а содержание алюминия не превышает 2,5%. Присутствие алюминия в сплаве объясняется технологией его получения, а ограничение его содержания в составе объясняется необходимостью использования заявляемой порошковой проволоки для микролегирования всего сортамента ванадийсодержащих сталей.

В этом случае линейная масса оболочки qоб составляет в среднем ≈180 г/м, а линейная масса наполнителя qн=540-600 г/м, т.е. коэффициент заполнения проволоки Кз=0,75-0,77.

Сопоставительный анализ заявляемого технического решения и прототипа показывает, что использование заявляемой порошковой проволоки для микролегирования стали ванадием имеет ряд преимуществ. Например, при том же содержании ванадия в сплаве-наполнителе, что в проволоке-прототипе - 72,9%, линейная масса наполнителя в заявляемой порошковой проволоке составит 560 г/м против 320 г/м у прототипа, что приведет к значительному сокращению расхода проволоки. Высокое содержание алюминия в наполнителе проволоки-прототипа - 26,5% ограничивает возможность ее применения для микролегирования некоторых сталей, в частности рельсовой. Например, согласно ГОСТ 51685-2000 «Рельсы железнодорожные» [4], в сталях марок К78ХСФ и Э78ХСФ при содержании ванадия 0,05-0,15% содержание алюминия не должно превышать 0,005%, что невозможно получить при использовании проволоки-прототипа. Таким образом, данное техническое решение соответствует критерию «новизна».

Анализ патентов и научно-технической информации не выявил использования новых существенных признаков, приведенных в предлагаемом решении, по их функциональному назначению. Следовательно, предлагаемое изобретение соответствует критерию «изобретательский уровень».

Для проверки возможности реализации заявляемого решения провели 3 плавки рельсовой стали К78ХСФ в кислородном конвертере емкостью 160 т на Нижнетагильском металлургическом комбинате. Сталь марки К78ХСФ выбрана для проведения опытных плавок в связи с тем, что в ее составе содержится максимальное при микролегировании количество ванадия - 0,15%, при этом содержание алюминия в стали не должно превышать 0,005%.

На опытных плавках после продувки металл выпускали в ковш при содержании углерода ≈0,6%. Во время выпуска в ковш присаживали необходимые для получения заданной марки стали ферросплавы: ферромарганец, силикохром и ферросилиций, а также графит для дополнительного науглероживания. Микролегирование ванадием путем ввода порошковой проволоки, а также коррекцию химического состава проводили при обработке полученного металла на установке ковш-печь. Металл разливали на МНЛЗ. Некоторые технологические параметры микролегирования стали ванадием на опытных плавках приведены в таблице.

Таблица.
Технологические параметры микролегирования стали К78ХСФ ванадием с применением порошковой проволоки
Номер плавкиВведено проволоки, мКоэффициент заполнения проволоки КзСодержание элементов в порошковой проволоке, мас.%Введено в металл порошковой проволокой, мас.%
VAlVAl
15200,75852,50,150,0044
23830,76751,50,100,002
32690,77500,80,050,0008

Данные таблицы показывают, что при использовании заявляемой порошковой проволоки для микролегирования стали ванадием значительно сокращается ее расход, обеспечивается ввод в металл заданного количества ванадия, а количество введенного при этом алюминия не превышает значений, допускаемых в сталях, не раскисляемых алюминием - 0,005%.

1. Пат. РФ №2103381, 6 С21С 7/064. Способ производства низколегированной стали с ванадием. RU, БИ №3, 27.01.98.

2. С.М.Чумаков, С.Д.Зинченко, А.Б.Лятин, Г.П.Урюпин, М.В.Филатов. Совершенствование техники и технологии внепечной обработки конвертерной стали. Сталь, 1997, №10, с.22-25.

3. Д.А.Дюдкин, В.В.Кисиленко, В.П.Онищук, Д.А.Сочнев, В.В.Климанчук, М.Н.Якин, А.Г.Ковалев. Технология легирования стали ванадием из порошковой проволоки. Черная металлургия, Черметинформация, 2002, №2, с.40-42.

4. ГОСТ Р 51685-2000.

Порошковая проволока для микролегирования стали ванадием, состоящая из стальной оболочки и наполнителя из порошкообразного сплава системы железо-ванадий-алюминий, отличающаяся тем, что содержание ванадия и алюминия в наполнителе составляет, соответственно, 50-85% и не более 2,5%, а коэффициент заполнения проволоки Кз составляет

Состав сварочной проволоки

Состав сварочной проволоки

Изобретение относится к сплавам для сварочных проволок и может быть использовано при сварке и наплавке изделий из медно-никелевых сплавов, в том числе эксплуатирующихся в морской воде (теплообменные аппараты, трубопроводы, арматура и др.), в процессе их изготовления или ремонта.

при этом суммарное количество раскислителей (Mn+Ti+Si) составляет не менее 1,15 мас.%.

Однако из литературы известно, что прочность и коррозионная стойкость медно-никелевых сплавов в морской воде повышается с повышением содержания в них никеля. Поэтому для обеспечения равнопрочности и коррозионной стойкости металла шва и сварных соединений содержание никеля в металле шва должно быть несколько выше, чем в свариваемом металле. Поэтому применение проволоки по патенту на изобретение №2309828 для сварки медно-никелевых сплавов с содержанием никеля 29-42% не обеспечивает прочности и коррозионной стойкости металла шва на уровне прочности и коррозионной стойкости основного металла из-за низкого содержания в ней никеля (9,0-20,0%).

Известен состав сварочной проволоки для сварки медно-никелевых сплавов (по патенту №2240866, ФРГ, опубл. 21.02.74) следующего состава, мас.%:

никель 8,0-24,0
железо 0,1-2,0
марганец 0,1-2,0
ниобий 0,05-1,5
медь остальное

Применение этой проволоки для сварки медно-никелевых сплавов с содержанием никеля 29-42% также не обеспечивает прочности и коррозионной стойкости металла шва на уровне прочности и коррозионной стойкости основного металла из-за низкого содержания в ней никеля (8,0-24,0 мас.%).

Близким по составу к предлагаемому сплаву для сварочной проволоки является сплав константан марки МНМц 40-1,5 по ГОСТ 492-2006 следующего состава, мас.%:

Этот сплав в виде проволоки предназначен для электротехнических целей и компенсационных проводов. При применении его в качестве присадочного металла для сварки медно-никелевых сплавов и для наплавки на медные сплавы и стали в металле шва сварочного соединения или в металле наплавки образуется значительная пористость, что свидетельствует о недостаточном количестве раскислителей в его составе. Кроме того, в составе этой проволоки отсутствует железо, необходимое для обеспечения твердости металла шва не ниже аналогичных свойств основного металла.

Наиболее близким аналогом по составу к предлагаемой сварочной проволоке, принятой нами за прототип, является присадочная проволока по авторскому свидетельству SU 532497 A, C22C 9/00, 21.12.1976 следующего состава, мас.%:

никель 6,0-39,0
алюминий 0,3-2,5
железо 0,3-2,0
марганец 0,01-3,5
титан 0,1-0,55
ванадий 0,2-0,55
медь остальное

Эта проволока преимущественно предназначена для сварки и наплавки изделий из высокопрочных медно-никелевых сплавов.

Для обеспечения равнопрочности металла шва и сварных соединений при сварке высокопрочных медно-никелевых сплавов в состав присадочной проволоки были введены алюминий и ванадий. Введение алюминия и ванадия действительно, как показали исследования, позволило увеличить временное сопротивление наплавленного металла с 350-450 МПа до 550-600 МПа. Однако при этом трудоемкость изготовления присадочной проволоки из медно-никелевого сплава рассматриваемого состава увеличилась на 25-30%. Введение алюминия в состав присадочной проволоки из медно-никелевого сплава требует выполнять аргонодуговую сварку или наплавку неплавящимся электродом на переменном токе для разрушения образующейся пленки окислов Al2O3, тогда как при отсутствии алюминия в присадочной проволоке аргонодуговая сварка или наплавка неплавящимся электродом медно-никелевых сплавов выполняется на постоянном токе. При одних и тех же режимах сварки или наплавки скорость аргонодуговой сварки или наплавки неплавящимся электродом на переменном токе ниже, чем скорость сварки или наплавки на постоянном токе.

Для сварки или наплавки изделий из медно-никелевых сплавов с содержанием 39-42% никеля типа мельхиор или константан, временное сопротивление которых находится на уровне 350-450 МПа, для обеспечения равнопрочности сварных соединений и основного металла не надо получать металл шва с повышенным временным сопротивлением по сравнению с временным сопротивлением основного металла, а поэтому не требуется вводить в состав сварочной проволоки алюминий и ванадий и, следовательно, трудоемкость изготовления сварочной проволоки будет ниже, чем при содержании в ней алюминия и ванадия.

Техническим результатом предлагаемого изобретения является разработка состава сварочной проволоки с высокими сварочно-технологическими свойствами, обеспечивающего получение качественных сварных соединений или металла наплавки в наплавленных изделиях с плотным металлом шва или металлом наплавки, без трещин, пор и других дефектов. При этом должны быть снижены трудоемкость изготовления сварочной проволоки, а аргонодуговая сварка неплавящимся электродом должна выполняться на постоянном токе, как это принято при сварке медно-никелевых сплавов.

Технический результат достигается тем, что в проволоку, содержащую никель, марганец, железо, титан и медь, дополнительно введен кремний при следующем соотношении компонентов, мас.%:

при этом суммарное количество раскислителей (Mn+Ti+Si) должно быть не менее 1,1 мас.%, а содержание никеля в сварочной проволоке должно превышать содержание его в свариваемом сплаве не менее чем на 1% (для сварки изделий, эксплуатирующихся в морской воде).

Было также установлено, что для обеспечения отсутствия пор в металле шва или в металле наплавки суммарное количество раскислителей (марганец, титан, кремний) не должно быть менее 1,1 мас.%.

Опробование сварочной проволоки проводили при сварке пластин толщиной 10 мм из медно-никелевого сплава МНЖМц 30-1-1, содержащего, мас.%: 32,28 Ni; 0,85 Fe; 0,76 Mn, Cu - остальное. Сварку выполняли аргонодуговым способом неплавящимся электродом на постоянном токе прямой полярности, а сварку прототипа - также на переменном токе.

Было исследовано 5 составов сплавов для сварочной проволоки с различным содержанием компонентов. Оценивалось влияние состава сплава на наличие в металле шва дефектов (в виде пор, трещин, шлаковых включений или других дефектов), на временное сопротивление металла шва или металла наплавки, на возможность аргонодуговой сварки неплавящимся электродом на постоянном токе, на скорость сварки и на относительную стоимость сварки 1 погонного метра шва.

Результаты опробования приведены в таблице и показывают, что при аргонодуговой сварке медно-никелевых сплавов с содержанием 29-42% никеля неплавящимся электродом на постоянном токе (как это принято вообще при сварке медно-никелевых

сплавов указанным способом) получение бездефектных швов обеспечивается при применении сварочной проволоки заявляемого состава, тогда как при этом способе сварки на постоянном токе с применением сварочной проволоки по прототипу в шве образуются дефекты в виде плен и трещин. И только при сварке указанным способом на переменном токе получаются бездефектные сварные швы. Но при этом скорость сварки уменьшается примерно на 15% по сравнению со сваркой на постоянном токе.

Сварочная проволока заявленного состава обеспечивает получение равнопрочности металла шва и основного металла, тогда как при аргонодуговой сварке на переменном токе сварочной проволокой по прототипу временное сопротивление металла шва значительно (примерно на 40%) превышает временное сопротивление основного металла, что совершенно не требуется.

Сварочная проволока заявляемого состав дешевле сварочной проволоки по прототипу примерно на 25% в основном за счет уменьшения трудоемкости ее изготовления (в ней отсутствуют алюминий и ванадий, введение которых в сплав для получения проволоки существенно снижает деформационную способность сплава).

Стоимость сварки 1 пог.м шва при применении сварочной проволоки заявляемого состава примерно на 40% ниже стоимости сварки 1 пог.м шва при применении сварочной проволоки по прототипу.

Технико-экономический эффект от предложенного изобретения в сравнении с прототипом обеспечивается за счет снижения стоимости сварочной проволоки и стоимости сварки или наплавки.

Сварочная проволока для сварки или наплавки изделий из медно-никелевых сплавов с содержанием никеля 29-42 мас.%, выполненная из сплава, содержащего никель, железо, марганец, титан и медь, отличающийся тем, что сплав дополнительно содержит кремний при следующем соотношении компонентов, мас.%:


при этом суммарное содержание раскислителей (Mn+Ti+Si) составляет не менее 1,1 мас.%, а содержание никеля в сплаве проволоки превышает его содержание в свариваемом сплаве не менее чем на 1%.

Читайте также: