Цинк это активный металл

Обновлено: 28.09.2024

Цинк — металл, давно известный человеку. Древние египтяне лечили цинковой мазью раны. Португальские купцы в XV и XVI веках привозили в Европу металл, но называли его «индийским оловом».

Обходились без чистого цинка

Цинк — это удивительный металл. Сплав его с медью был известен в древности во многих странах. Латунь описывал еще Аристотель, алхимики прокаливали карбонат цинка с углем, получая «философскую шерсть». А вот чистого металла люди еще не знали. Но не везде. В индийском Раджастане нашли остатки плавильного оборудования, и остатки соединений цинка.

Совсем непонятна находка цинковой статуэтки на землях древней Дакии. Статуэтка датируется доримской эпохой. В журнале «Химия и жизнь» рассказали о находке цинковой сережки на Северном Кавказе. Возраст — более 5000 лет! Скорее всего, люди не раз находили и утрачивали секрет выплавки цинка.

Белый налет или бельмо?

Слово «цинк» первым использовал Парацельс.

Цинк металл

Лингвистам бывает сложно отследить происхождение названий. Имя (название) нашего нынешнего героя возводят к персидскому слову «ченг» (Tschang); древнегерманское «цинко» означало бельмо на глазу (вполне соотносится с цветом металла), или Zinke — «зубец».

В разные времена и в разных странах имя металла менялось. Это были «шпиаутер», «спелтер», «тутия» (Tutia). Нынешнее имя металл получил в начале прошлого века.

Свойства металла

Наш хрупкий герой — переходный металл синевато-белого цвета. На воздухе быстро окисляется, темнеет от пленки оксида.

цинк элемент

В таблице Менделеева этот химический элемент находится в 12 группе (по старой классификации во II группе четвертого периода).

  • атомный номер 30;
  • атомная масса 65,38 г/моль;
  • металлический блеск;
  • непрозрачность;
  • плотность 7,14 г/см3;
  • структура кристаллической решетки гексагональная.

Химические свойства цинка обусловлены его «темпераментом». До щелочноземельных металлов ему далековато, но в реакции он вступает охотно. В реакциях проявляет степени окисления 0; +2.

  • Цинк хороший восстановитель и активный металл.
  • Наш герой охотно реагирует с разбавленной азотной кислотой, с концентрированными серной и азотной кислотами.
  • С галогенами в присутствии паров воды может воспламениться.
  • С растворами щелочей образует гидрокомплексы.
  • При температуре красного каления (550-600°С) вступает в реакцию с водой, с сероводородом. При реакции выделяется водород.

Взаимодействие с металлами происходит в расплавленном состоянии, но это мало касается химических реакций.

Физические свойства цинка:

  1. Температуры плавления и кипения равны соответственно 427 и 907 ºС.
  2. Нагрев до 100-150 градусов дает возможность прокатки и вытягивания металла; чем больше примесей в металле, тем более хрупким он становится.
  3. Хотите услышать «оловянный крик» — сгибайте и разгибайте пруток или металлическую пластинку. Правда, на крик это мало похоже, скорее треск или скрип. Но для незамысловатого фокуса на вечеринке сойдет.

В природе металл состоит из пяти изотопов:

Смесь металлов — это сплав

Сплавы для промышленного использования содержат Zn-Al и Zn-Al-Cu. Почти всегда в состав добавляется магний (не более 0,1%). Сплавы цинка делятся на антифрикционные и литейные.

  • Марки антифрикционных сплавов: ЦАМ9-1,5; ЦАМ10-5.
  • Литейные марки: ЦА4, ЦА4М1, ЦА30М5.

Месторождения и руды

Нахождение в природе минералов, содержащих цинк, приурочено к терригенным и карбонатно-терригенным, вулканогенных формациям, известнякам и скарнам.

Происхождение металл берет в медно-цинковых, свинцово-цинковых, сульфидных рудах.

Самородный цинк существует, но встречается настолько редко, что его нельзя принимать в качестве металлургического сырья.

Извлекают руды в основном шахтным способом.

Интересно: самый большая в мире шахта, где добывают цинк — Rampura Agucha Mine — находится в штате Раджастан (Индия).

Основные руды на цинк:

    сфалерит (цинковая обманка);

Сфалерит

Где искать цинк

Месторождения в мире (разведанные и подтвержденные) обещают, что цинком человечество обеспечено на 40 лет вперед.

Запасы в природе (в порядке уменьшения) распределены следующим образом:

  • Россия;
  • Австралия;
  • Китай;
  • Перу;
  • Мексика;
  • Казахстан;
  • США;
  • Индия.

Данные могут отличаться по разным статистическим источникам.

Мелкие месторождения имеют около 70 стран, но далеко не везде металл добывают.

Добыча в России возможна в Крыму, на Дальнем Востоке, Кольском полуострове, на Камчатке. Несмотря на огромный потенциал в запасах, Россия имеет не более 3% мировой добычи, да и потребляет металла мало. В основном он идет на экспорт.

Важно: запасы и добыча — две большие разницы. Лидирует в добыче Китай, Австралия сильно уменьшила добычу. В мировой добыче цинка доля нашей страны занимает всего 2%.

Производство металла

Невысокая температура кипения замедлила развитие промышленного производства металла. Обычные способы производства (нагревом смеси руды и угля) не проходили. Цинк испарялся и в виде паров уходил из печи с дымовыми газами. Когда научились конденсировать пары, появился дистилляционный метод выплавки, а производство металла увеличилось.

Сейчас в металлургии цинковые концентраты перерабатывают двумя методами — гидро- и пирометаллургическим.

В обоих случаях вначале происходит выплавка (обжиг) обогащенной руды в печи.

С помощью огненной металлургии цинк начали получать уже давно. Способ морально устарел; сейчас с его помощью выплавляют около 20% металла.

Слитки цинка

Остальные 80% получают гидрометаллургическим (электролитическим) методом.

  1. Процесс высокомеханизирован.
  2. Кроме нашего героя извлекаются сопутствующие ценные элементы.
  3. Получение чистого цинка высокого качества.

Он нужен человеку

Сферы применения нашего героя очень широки, будь то чистый металл, его соединения или сплавы.

В порошкообразном состоянии он используется в качестве восстановителя во многих химических процессах. Это очистка растворов цинкового купороса, осаждение золота из растворов.

Цветное телевидение использует соединения металла в качестве люминофоров; основные цвета на экране (синий, красный, зеленый) дают ZnS·Ag, ZnSe·Ag, Zn3(PO4)2·Mn.

Сульфид цинка, активированный серебром, применяют в радиолокации.

Головной болью потребителей изделий из металлов (особенно черных) является ржавчина. Тут отлично помогает покрытие защитным металлом.

Способы оцинкования метизов и крепежа:

Плюсы метода: защитный слой образуется даже в труднодоступных местах.

Минус — ограничение температуры эксплуатации изделия (не более 370 градусов).

Познавательно: водопровод в Австралии был защищен от ржавчины холодным цинкованием в 50-х годах прошлого века. До сих пор покрытие не обновлялось — нужды не было.

Применение металла в строительстве естественно. Нержавеющие прочные крыши всегда «в тренде».

Батарейки, аккумуляторы содержат цинк. Многие химические источники тока содержат металл в отрицательном электроде.

Соединения металла пользуются спросом. Хлорид цинка применяют в производстве фибры, как флюс для пайки. Полиграфия стала использовать для литер сплав, содержащий почти 95% цинка (остальное алюминий и магний). В позапрошлом веке начали использовать цинкографию для иллюстраций печатных книг. Книги с картинками всегда интереснее, правда?

Он нужен всем

Цинк как микроэлемент необходим организму человека. Это естественный иммуномодулятор, регулятор функций центральной нервной системы, антиоксидант.

Наш организм — это большая совершенная лаборатория, где ежеминутно проходят множество реакций. Наш герой участвует в десятках из них: синтез белков, выработка пищеварительных ферментов, правильный метаболизм кислот. Мало цинка — получайте массу проблем в разных «точках» тела. А решить их просто, всего-то дать себе, любимому, нужное количество нужного микроэлемента.

Беременным в первом триместре необходимы препараты нашего героя, иначе не избежать токсикоза и всех связанных с ним «прелестей жизни».

Важно: исследователи полагают, что некоторые виды шизофрении вызываются недостатком цинка, марганца и витамина В6.

Мужчины, это ваш металл

Журнал Men’s Health назвал цинк «основным микроэлементом для мужского полового здоровья». Роль недостатка металла в развитии половых дисфункций доказана.

Подросткам для правильного развития половых органов цинк необходим. Недостаток может привести к замедлению роста, росту молочных желез, изменению голоса.

Сексуально активные мужчины теряют со спермой значительный запас цинка, поэтому им необходимо пополнять запас металла.

Ученые считают, что цинк предотвращает развитие аденомы простаты.

Не забывайте, что алкоголь «вымывает» полезный микроэлемент из организма. Может, отсюда мудрая поговорка «рожденный пить … любить не может».

Цена вопроса

Стоимость цинка — 2001 USD/тонна (на 13.05.2020); с чистотой 99,995 % он известен под аббревиатурой SHG.

admin

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

Цинк. Химия цинка и его соединений

Цинк расположены в побочной подгруппе II группы (или в 12 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение цинка и свойства

Электронная конфигурация цинка в основном состоянии :

+30Zn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2

3s 3d

Характерная степень окисления цинка в соединениях +2.

Физические свойства

Цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (быстро тускнеет на воздухе, покрываясь тонким слоем оксида цинка).


Температура плавления цинка 420°С, температура кипения 906°С, плотность 7,13 г/см 3 .

Нахождение в природе

Среднее содержание цинка в земной коре 8,3·10 -3 мас.%. Основной минерал цинка: сфалерит (цинковая обманка) ZnS..


Цинк играет важную роль в процессах, протекающих в живых организмах.

В природе цинк как самородный металл не встречается.

Способы получения

Цинк получают из сульфидной руды. На первом этапе руду обогащают, повышая концентрацию сульфидов металлов. Сульфид цинка обжигают в печи кипящего слоя:

2ZnS + 3O2 → 2ZnO + 2SO2

Чистый цинк из оксида получают двумя способами.

При пирометаллургическом способе , который использовался издавна, оксид цинка восстанавливают углём или коксом при 1200—1300 °C:

ZnO + С → Zn + CO

Далее цинк очищают от примесей.

В настоящее время основной способ получения цинка — электролитический (гидрометаллургический) . При этом сульфид цинка обрабатывают серной кислотой:

При это получаемый раствор сульфата цинка очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу.

При электролизе чистый цинк осаждается на алюминиевых катодах, с которых его удаляют и подвергают плавлению в индукционных печах. Таким образом можно получить цинк с высокой чистотой (до 99,95 %).

Качественные реакции

Качественная реакция на ионы цинка — взаимодействие избытка солей цинка с щелочами . При этом образуется белый осадок гидроксида цинка.


Например , хлорид цинка взаимодействует с гидроксидом натрия:

ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl


При дальнейшем добавлении щелочи амфотерный гидроксид цинка растворяется с образованием комплексной соли тетрагидроксоцинката:


Обратите внимание , если мы поместим соль цинка в избыток раствора щелочи, то белый осадок гидроксида цинка не образуется, т.к. в избытке щелочи соединения цинка сразу переходят в комплекс:

Химические свойства

1. Цинк – сильный восстановитель . Цинк – довольно активный металл, но на воздухе он устойчив, так как покрывается тонким слоем оксида, предохраняющим его от дальнейшего окисления. При нагревании цинк реагирует со многими неметаллами .

1.1. Цинк реагируют с галогенами с образованием галогенидов:

Реакция цинка с иодом при добавлении воды:

1.2. Цинк реагирует с серой с образованием сульфидов:

Zn + S → ZnS

1.3. Цинк реагируют с фосфором . При этом образуется бинарное соединение — фосфид:

1.4. С азотом цинк непосредственно не реагирует.

1.5. Цинк непосредственно не реагирует с водородом, углеродом, кремнием и бором.

1.6. Цинк взаимодействует с кислородом с образованием оксида:

2Zn + O2 → 2ZnO

2. Цинк взаимодействует со сложными веществами:

2.1. Цинк реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:

Zn 0 + H2 + O → Zn +2 O + H2 0

2.2. Цинк взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой и др.). При этом образуются соль и водород.

Например , цинк реагирует с соляной кислотой :

Zn + 2HCl → ZnCl2 + H2

Демонстрация количества выделения водорода при реакции цинка с кислотой:

Цинк реагирует с разбавленной серной кислотой:

2.3. Цинк реагирует с концентрированной серной кислотой . В зависимости от условий возможно образование различных продуктов. При нагревании гранулированного цинка с концентрированной серной кислотой образуются оксид серы (IV), сульфат цинка и вода:

Порошковый цинк реагирует с концентрированной серной кислотой с образованием сероводорода, сульфата цинка и воды:

2.4. Аналогично: при нагревании гранулированного цинка с концентрированной азотной кислотой образуются оксид азота (IV) , нитрат цинка и вода :

При нагревании цинка с очень разбавленной азотной кислотой образуются нитрат аммония , нитрат цинка и вода :

2.5. Цинк – амфотерный металл, он взаимодействует с щелочами. При взаимодействии цинка с раствором щелочи образуется тетрагидроксоцинкат и водород:

Zn + 2KOH + 2H2O = K2[Zn(OH)4] + H2

Цинк реагирует с расплавом щелочи с образованием цинката и водорода:

В отличие от алюминия, цинк растворяется и в водном растворе аммиака:

2.6. Цинк вытесняет менее активные металлы из оксидов и солей .

Например , цинк вытесняет медь из оксида меди (II):

Zn + CuO → Cu + ZnO

Еще пример : цинк восстанавливает медь из раствора сульфата меди (II):

CuSO4 + Zn = ZnSO4 + Cu

И свинец из раствора нитрата свинца (II):

Восстановительные свойства цинка также проявляются при взаимодействии его с сильными окислителями: нитратами и сульфитами в щелочной среде, перманганатами, соединениями хрома (VI):

Оксид цинка

Оксид цинка можно получить различными методами :

1. Окислением цинка кислородом:

2. Разложением гидроксида цинка при нагревании:

3. Оксид цинка можно получить разложением нитрата цинка :

Химические свойства

Оксид цинка — типичный амфотерный оксид . Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.

1. При взаимодействии оксида цинка с основными оксидами образуются соли-цинкаты.

Например , оксид цинка взаимодействует с оксидом натрия:

2. Оксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—цинкаты, а в растворе – комплексные соли . При этом оксид цинка проявляет кислотные свойства.

Например , оксид цинка взаимодействует с гидроксидом натрия в расплаве с образованием цинката натрия и воды:

Оксид цинка растворяется в избытке раствора щелочи с образованием тетрагидроксоцинката:

3. Оксид цинка не взаимодействует с водой.

ZnO + H2O ≠

4. Оксид цинка взаимодействует с кислотными оксидами . При этом образуются соли цинка. В этих реакциях оксид цинка проявляет основные свойства.

Например , оксид цинка взаимодействует с оксидом серы (VI) с образованием сульфата цинка:

5. Оксид цинка взаимодействует с растворимыми кислотами с образованием солей.

Например , оксид цинка реагирует с соляной кислотой:

ZnO + 2HCl = ZnCl2 + H2O

6. Оксид цинка проявляет слабые окислительные свойства .

Например , оксид цинка при нагревании реагирует с углеродом и угарным газом:

ZnO + С(кокс) → Zn + СО

ZnO + СО → Zn + СО2

7. Оксид цинка — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната бария:

Гидроксид цинка

1. Гидроксид цинка можно получить пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоцинката натрия:

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить исходное вещество Na2[Zn(OH)4] на составные части: NaOH и Zn(OH)2. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Zn(OH)2 не реагирует с СО2, то мы записываем справа Zn(OH)2 без изменения.

2. Гидроксид цинка можно получить действием недостатка щелочи на избыток соли цинка.

Например , хлорид цинка реагирует с недостатком гидроксида калия с образованием гидроксида цинка и хлорида калия:

1. Гидроксид цинка реагирует с растворимыми кислотами .

Например , гидроксид цинка взаимодействует с азотной кислотой с образованием нитрата цинка:

2. Гидроксид цинка взаимодействует с кислотными оксидами .

Например , гидроксид цинка взаимодействует с оксидом серы (VI) с образованием сульфата цинка:

3. Гидроксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—цинкаты, а в растворе – комплексные соли . При этом гидроксид цинка проявляет кислотные свойства.

Например , гидроксид цинка взаимодействует с гидроксидом калия в расплаве с образованием цинката калия и воды:

Гидроксид цинка растворяется в избытке щелочи с образованием тетрагидроксоцинката:

4. Г идроксид цинка разлагается при нагревании :

Соли цинка

Нитрат и сульфат цинка

Нитрат цинка при нагревании разлагается на оксид цинка, оксид азота (IV) и кислород:

Сульфат цинка при сильном нагревании разлагается аналогично — на оксид цинка, сернистый газ и кислород:

Комплексные соли цинка

Для описания свойств комплексных солей цинка — гидроксоцинкатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоцинкат на две отдельные частицы — гидроксид цинка и гидроксид щелочного металла.

Например , тетрагидроксоцинкат натрия разбиваем на гидроксид цинка и гидроксид натрия:

Na2[Zn(OH)4] разбиваем на NaOH и Zn(OH)2

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы цинка реагируют с кислотными оксидами .

Например , гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид цинка не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Аналогично тетрагидроксоцинкат калия реагирует с углекислым газом:

А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.

Например , с соляной кислотой:

Правда, под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:

Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:

Гидролиз солей цинка

Растворимые соли цинка и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Zn 2+ + H2O = ZnOH + + H +

II ступень: ZnOH + + H2O = Zn(OH )2 + H +

Более подробно про гидролиз можно прочитать в соответствующей статье.

Цинкаты

Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:

Для понимания свойств цинкатов их также можно мысленно разбить на два отдельных вещества.

Например, цинкат натрия мы разделим мысленно на два вещества: оксид цинка и оксид натрия.

Na2ZnO2 разбиваем на Na2O и ZnO

Тогда нам станет очевидно, что цинкаты реагируют с кислотами с образованием солей цинка :

Под действием избытка воды цинкаты переходят в комплексные соли:

Сульфид цинка

Сульфид цинка — так называемый «белый сульфид». В воде сульфид цинка нерастворим, зато минеральные кислоты вытесняют из сульфида цинка сероводород (например, соляная кислота):

ZnS + 2HCl → ZnCl2 + H2S

Под действием азотной кислоты сульфид цинка окисляется до сульфата:

(в продуктах также можно записать нитрат цинка и серную кислоту).

Концентрированная серная кислота также окисляет сульфид цинка:

При окислении сульфида цинка сильными окислителями в щелочной среде образуется комплексная соль:

Z nS + 4NaOH + Br2 = Na2[Zn(OH)4] + S + 2NaBr

§ 44. Общие химические свойства металлов

По химическим свойствам металлы являются восстановителями, так как легко отдают свои электроны атомам неметаллов, превращаясь в положительно заряженные ионы — катионы.

Способность атомов металлов отдавать, а их катионов — присоединять электроны может служить мерой их химической активности. Так, алюминий на воздухе очень быстро покрывается оксидной плёнкой, а с золотом заметных изменений не происходит. Цинк активно взаимодействует с соляной кислотой, а серебро — нет. Поэтому алюминий и цинк можно отнести к активным металлам, а золото и серебро — к неактивным.

Ряд активности металлов

Химическую активность разных металлов легко сопоставить, анализируя их поведение в водных растворах солей и кислот. Например, если в раствор сульфата меди(II) опустить цинковую пластинку или железный гвоздь, то практически сразу же на их поверхности появляется красноватый налёт меди. Это свидетельствует о том, что цинк и железо вытесняют медь из раствора. Эти процессы можно представить следующими уравнениями:

Zn 0 + Сu 2+ = Zn 2+ + Cu 0 ;

Fe 0 + Cu 2+ = Fe 2+ + Сu 0 .

В этих реакциях цинк и железо отдают свои электроны ионам меди, то есть они окисляются. Ионы меди принимают электроны, поэтому медь восстанавливается.

Если поступить наоборот и в раствор сульфата цинка поместить медную пластинку, то на ней не произойдёт осаждения цинка. В чём тут причина?

Экспериментальным путём, изучая способность одних металлов вытеснять другие из водных растворов их солей, русский учёный Н. Н. Бекетов расположил металлы в ряд. В нём металлы, находящиеся левее, способны восстанавливать последующие из растворов их солей. Поскольку эта способность металлов связана с их восстановительной активностью, то этот ряд получил название ряда активности металлов.

Ряд активности металлов

Li K Ba Sr Cа Na Mg Al Mn Zn Cr Fe Ni Sn Pb ( H2 ) Cu Hg Ag Pd Pt Au

Чем левее в этом ряду расположен металл, тем большими восстановительными свойствами в водном растворе он обладает, то есть легче отдаёт свои электроны окислителю и переходит в виде катиона в раствор; тем труднее катион этого металла восстанавливается. Цинк и железо легче отдают свои электроны, чем медь, и поэтому восстанавливают Cu 2+ из раствора.

По положению цинка в ряду активности можно прогнозировать, что этот металл способен восстановить из раствора ионы олова, меди и серебра:

Zn 0 + Sn 2+ = Zn 2+ + Sn 0 ;

Zn 0 + 2Ag + = Zn 2+ + 2Ag 0 .

В то же время медь будет восстанавливать только ионы серебра, но не восстановит ионы олова:

Cu 0 + 2Ag + = Cu 2+ + 2Ag 0 .

Это означает, что цинк обладает большей восстановительной способностью. Он легче отдаёт электроны, чем олово, медь и серебро. Поэтому цинк считается более активным металлом, чем эти металлы. В свою очередь, медь — более активный металл, чем серебро.

Ряд активности металлов позволяет не только прогнозировать поведение металлов в реакциях с растворами солей, но и сравнивать их отношение к воде, растворам кислот, а также к неметаллам и ряду других веществ.

Так, слева от водорода расположены металлы, которые вытесняют водород из воды и кислот (то есть восстанавливают ионы водорода Н + ). Металлы, расположенные справа от водорода, такой восстановительной активности в реакциях с растворами кислот не проявляют. Например, цинк реагирует с соляной кислотой, вытесняя водород:

Zn 0 + 2Н + = Zn 2+ + ,

а серебро водород не вытесняет.

Взаимодействие металлов с простыми и сложными веществами

К общим химическим свойствам металлов относят их реакции с неметаллами, водой, кислотами, солями. Для некоторых металлов также характерны реакции с растворами щелочей. Часть металлов вступает в реакции с органическими веществами. Многие перечисленные взаимодействия вам известны из предыдущих глав пособия. Кроме того, вы изучали химические свойства металлов в 9-м классе. Поэтому на данном этапе обучения мы систематизируем известные вам свойства, составив таблицу 31.

Таблица 31. Общие химические свойства металлов

Неметаллы

Щелочные и щёлочноземельные (Са, Sr, Ва, Ra) металлы образуют водород и щёлочь при обычных условиях.

Металлы средней активности, реагируя с парами воды, образуют оксиды.

Образуют нерастворимые основания: магний реагирует с кипящей водой; алюминий реагирует с водой, если с поверхности удалена плёнка оксида, например алюминий амальгамирован

Кислоты

Щелочные металлы реагируют с кислотами-окислителями HNO3(конц), H2SO4(конц) со взрывом. Pb пассивируется в разбавленных HCl, H2SO4. Напомним, что при взаимодействии металлов с кислотами-окислителями HNO3(конц) и H2SO4(конц) водород не выделяется, а образуются продукты восстановления азота и серы

Cоли

Растворы щелочей

В такие реакции вступают цинк, алюминий, бериллий

Отметим, что с водой при нормальных условиях взаимодействуют все металлы s-элементов , кроме бериллия и магния. Магний реагирует с водой при нагревании. Алюминий взаимодействует с водой при комнатной температуре, но только после удаления с его поверхности плёнки оксида алюминия. При этом образуются гидроксиды металлов. Остальные металлы от марганца до водорода в ряду активности взаимодействуют с парами воды при нагревании, образуя, как правило, оксиды металлов. Металлы, находящиеся в ряду напряжений после водорода, не взаимодействуют с водой ни при каких условиях.

img

Активные металлы (Na, K) вступают в реакции с карбоновыми кислотами, спиртами, фенолами.

Положение металла в ряду активности металлов позволяет прогнозировать его поведение в окислительно-восстановительных реакциях, протекающих в водных растворах.

Атомы металлов во всех химических превращениях являются восстановителями.

Металлы в химических превращениях являются восстановителями и легко отдают свои электроны, превращаясь в положительно заряженные ионы — катионы.

Активность металлов в окислительно-восстановительных реакциях, протекающих в водных растворах, определяется по их положению в ряду активности: чем левее в этом ряду расположен металл, тем большими восстановительными свойствами он обладает и тем труднее катионы этого металла восстанавливаются.

Более активные металлы восстанавливают менее активные металлы из растворов их солей. Металлы, стоящие в ряду напряжений левее водорода, вытесняют его из разбавленных кислот (кроме азотной). Металлы s-элементов, за исключением бериллия и магния, вытесняют водород из воды при обычной температуре.

  1. Назовите характерные для металлов физические свойства.
  2. Перечислите p-элементы, которые относятся к элементам-металлам.
  3. Расставьте коэффициенты в уравнении реакции методом электронного баланса: Cu + HNO3(разб) → Cu(NO3)2 + NO↑ + H2O.
  4. Составьте уравнения возможных химических реакций с учётом, что медь окисляется до степени окисления +2:

Повышенный уровень

*Самоконтроль

1. В порядке увеличения восстановительной активности металлы расположены в ряду:

  • а) Mg, Ca, Na;
  • б) Cu, Ag, Hg;
  • в) Cа, K, Cs;
  • г) Zn, Al, Pb.

2. Реагируют с растворами щелочей:

3. Реагируя с парами воды, образуют оксиды:

4. Масса цинковой пластинки увеличится при погружении её в раствор:

5. На растворение 13 г цинка требуется раствор, содержащий гидроксид натрия массой (г):

Цинк и его сплавы: химический состав, физические свойства, применение

Цинк и его сплавы: химический состав, физические свойства, применение

Цинк — хрупкий голубовато-белый металл. В природе без примесей не встречается. В 1738 году Уильям Чемпион добыл чистые пары цинка с помощью конденсации. В периодической системе Менделеева находится под номером 30 и обозначается символом Zn.

Свойства цинка

Химические свойства цинка

Цинк — активный металл. При комнатной температуре тускнеет и покрывается слоем оксида цинка.

  • Вступает в реакцию со многими неметаллами: фосфором, серой, кислородом.
  • При повышении температуры взаимодействует с водой и сероводородом, выделяя водород.
  • При сплавлении с щелочами образует цинкаты — соли цинковой кислоты.
  • Реагирует с серной кислотой, образуя различные вещества в зависимости от концентрации кислоты.
  • При сильном нагревании вступает в реакции со многими газами: газообразным хлором, фтором, йодом.
  • Не реагирует с азотом, углеродом и водородом.

Физические свойства цинка

Цинк — твердый металл, но становится пластичным при 100–150 °C. При температуре выше 210 °С может деформироваться. Температура плавления — очень низкая для металлов. Несмотря на это, цинк имеет хорошую электропроводность.

  • Плотность — 7,133 г/см³.
  • Теплопроводность — 116 Вт/(м·К).
  • Температура плавления цинка — 419,6 °C.
  • Температура кипения — 906,2 °C.
  • Удельная теплота испарения — 114,8 кДж/моль.
  • Удельная теплота плавления — 7,28 кДж/моль.
  • Удельная магнитная восприимчивость — 0,175·10-6.
  • Предел прочности при растяжении — 200–250 Мн/м 2 .

Подробный химический состав цинка различных марок указан в таблице ниже.

Обозначение марок Цинк, не менее Примесь, не более
свинец кадмий железо медь олово мышьяк алюминий всего
ЦВ00 99,997 0,00001 0,002 0,00001 0,00001 0,00001 0,0005 0,00001 0,003
ЦВ0 99,995 0,003 0,002 0,002 0,001 0,001 0,0005 0,005 0,005
ЦВ 99,99 0,005* 0,002 0,003 0,001 0,001 0,0005 0,005 0,01
Ц0А 99,98 0,01 0,003 0,003 0,001 0,001 0,0005 0,005 0,02
Ц0 99,975 0,013 0,004 0,005 0,001 0,001 0,0005 0,005 0,025
Ц1 99,95 0,02 0,01 0,01 0,002 0,001 0,0005 0,005 0,05
Ц2 98,7 1,0 0,2 0,05 0,005 0,002 0,01 0,010** 1,3
Ц3 97,5 2,0 0,2 0,1 0,05 0,005 0,01 - 2,5
* В цинке, применяемом для производства сплава марки ЦАМ4-1о, массовая доля свинца должна быть не более 0,004%. ** В цинке, применяемом для проката, массовая доля алюминия должна быть не более 0,005%.

Содержание примесей в цинке зависит от способа производства и качества сырья.

В России основной процент цинка получают гидрометаллургическим способом — металл восстанавливают из солей в растворах. Такой способ позволяет получить наиболее чистый металл. Но часть цинка обрабатывают при высоких температурах. Такой метод называют пирометаллургическим.

Свинец — особая примесь в цинке, так как основная его часть оседает из-за нерастворимых анодов, содержащихся в металле. Катодный цинк, помимо всех указанных примесей, состоит из хлора и фтора.

Как примеси изменяют свойства цинка

Производители ограничивают содержание кадмия, олова и свинца в литейных сплавах цинка, чтобы подавить межкристаллитную коррозию.

Олово — вредная примесь. Металл не растворяется и выделяется из расплава — способствует ломкости цинковых отливок. Кадмий напротив — растворяется в цинке и снижает его пластичность в горячем состоянии. Свинец увеличивает растворимость металла в кислотной среде.

Железо повышает твердость цинка, но снижает его прочность. Вместе с тем оно усложняет процесс заполнения форм при литье.

Медь увеличивает твердость цинка, но уменьшает его пластичность и стойкость при коррозии. Содержание меди также мешает рекристаллизации цинка.

Наиболее вредная примесь — мышьяк. Даже при небольшом ее количестве металл становится хрупким и менее пластичным.

Чтобы избежать растрескивания кромок при горячей прокатке цинка, содержание сурьмы не должна быть выше 0,01%. В горячем состоянии она увеличивает твердость цинка, лишая его хорошей пластичности.

Сплавы цинка

Сплавы на цинковой основе с добавлением меди, магния и алюминия имеют низкую температуру плавления и обладают хорошей текучестью. Они легко поддаются обработке, свариванию и паянию.

Латунь

Различают латуни двухкомпонентные и многокомпонентные.

Двухкомпонентная латунь — сплав цинка с высоким содержанием меди. Существует желтая латунь с медью в количестве 67%, золотистая медь или томпак — 75%, и зеленая — 60%. Такие сплавы могут деформироваться при температуре 300 °C.

Многокомпонентные латуни, помимо 2-х основных металлов, состоят из других добавок: никеля, железа, свинца или марганца. Каждый из элементов влияет на свойства сплава.

ЦАМ — семейство цинковых сплавов. В их состав входят магний, алюминий и медь. Такие сплавы цинка используются в литейном производстве. В них содержится алюминий в количестве 4%.

Основная область применения сплавов ЦАМ — литье цинка под давлением. Сплавы этого семейства обладают низкой температурой плавления и хорошими литейными свойствами. Их высокопрочность позволяет производить прочные и сложные детали.

Вирениум

Сплав состоит из цинка (24,5%), меди (70%), никеля (5,5%).

Производств цинка

Добыча металла

Цинк как самородный металл в природе не встречается. Добывается из полиметаллических руд, содержащих 1–4% металла в виде сульфида, а также меди, свинца, золота, серебра, висмута и кадмия. Руды обогащаются селективной флотацией и получаются цинковые концентраты (50–60% Zn).

Цинковая руда

Концентраты цинка обжигают в печах. Сульфид цинка переводится в оксид ZnO. При этом выделяется сернистый газ SO2, который используется в производстве серной кислоты.

Получение металла

Существуют два способа получения чистого цинка из оксида ZnO.

Самый древний метод — дистилляционный. Обожженный концентрированный состав подвергают термообработке, чтобы придать ему зернистость и газопроницаемость.

Затем концентрат восстанавливают коксом или углем при температуре 1200–1300 °C. В процессе образуются пары металла, которые конденсируют и разливают в изложницы. Жидкий металл отстаивают от железа и свинца при температуре 500 °C. Так достигается цинк чистотой 98,7%.

Иногда используется сложная и дорогая обработка цинка ректификацией — разделением смесей за счет обмена теплом между паром и жидкостью. Такая чистка позволяет получить металл чистотой 99,995% и извлечь кадмий.

Второй метод производства цинка — электролитический. Обожженный концентрат обрабатывается серной кислотой. Готовый сульфатный раствор очищается от примесей, после чего подвергается электролизу в свинцовых ваннах. Цинк дает осадок на алюминиевых катодах. Полученный металл удаляют с ванн и плавят в индукционных печах. После этого получается электролитный цинк чистотой 99,95%.

Литье металла

Горячий цинк — жидкий и текучий металл. Благодаря таким свойствам он легко заполняется в литейные формы.

Примеси влияют на величину натяжения поверхности цинка. Технологические свойства металла можно улучшить, добавив небольшое количество лития, магния, олова, кальция, свинца или висмута.

Литье металла

Чем выше температура перегрева цинка, тем лучше он заполняет формы. При литье металла в чугунные изложницы его объем уменьшается на 1,6%. Это затрудняет получение крупных и длинных цинковых отливок.

Применение цинка

Для защиты металлов от коррозии

Чистый цинк используется для защиты металлов от коррозии. Основу покрывают тонкой пленкой. Этот процесс называется металлизацией.

В автомобильной отрасли

Сплавы на цинковой основе используют для оформления декора автомобильного салона, в производстве ручек дверей, замков, зеркал и корпусов стеклоочистителей.

В автомобильные покрышки добавляют окись цинка, которая повышает качество резины.

В батарейках, аккумуляторах и других химических источниках тока цинк используется как материал для отрицательного электрода. В производстве электромобилей применяются цинк-воздушные аккумуляторы, которые обладают высокой удельной энергоемкостью.

В производстве ювелирных украшений

Ювелиры добавляют цинк в сплавы на основе золота. В итоге они легко поддаются ковке и становятся пластичными — прочно соединяют мелкие детали изделия между собой.

Металл также осветляет ювелирные изделия, поэтому его часто используют в изготовлении белого золота.

В медицине

Окись цинка применяется в медицине как антисептическое средство. Окись добавляют в мази и другие составы для заживления ран.

Благодаря своим свойствам, цинк широко применяется в различных областях промышленности. Металл пользуется спросом из-за относительно низкой цены и хороших физических свойств.

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 вместо предполагаемой формулы 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 . Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI — белыe, а Cu2S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Взаимодействие с простыми веществами

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

При избытке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Взаимодействие со сложными веществами

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

с кислотами-окислителями

— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением:

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

— с концентрированной азотной кислотой

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Химические свойства хрома

Хром — элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 , т.е. в случае хрома, также как и в случае атома меди, наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

С бромом же хром реагирует при температуре красного каления (850-900 o C):

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 o С:

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

С водородом хром не реагирует.

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 , то есть железо относится к d-элементам, поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей, а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах. При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду, выделяя из нее кислород.

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Либо же при избытке серы дисульфид железа:

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =t o => 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =t o => 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =t o => 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.) и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е.:

Читайте также: