Графит это металл или нет

Обновлено: 02.05.2024

Порошковый графит специального качества, используемый для покрытия штампов и в смеси с глиной для изготовления тиглей.

(Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.)

Смотреть что такое "Графит" в других словарях:

Графит — Формула C (углерод) Сингония Гексагональная (планаксиальная) Цвет Серый, чёрный стальной Цвет черты … Википедия

ГРАФИТ — (греч. graphis, graphidos, от grapbo пишу). Минерал растительного происхождения, состоящий из чистого углерода, черного или темно стального цвета, непрозрачен, марок, жирен на ощупь; употребляется на приготовление карандашей, плавильных горшков и … Словарь иностранных слов русского языка

Графит — [g r άj w (графе) пишу] м л, a C. Гекс. модиф. углерода со структурой слоистого типа. К л. шестиугольные таблички со штриховкой. Дв. скольжения. Сп. в. сов. по . Агр.: чешуйчатые, радиальнолучистые, земл.,… … Геологическая энциклопедия

ГРАФИТ — ГРАФИТ, наиболее устойчивая модификация углерода. Графит используют для изготовления деталей и аппаратуры в электротехнике, металлургии, химическом машиностроении, ракетостроении и др., в производстве огнеупорных материалов и изделий,… … Современная энциклопедия

ГРАФИТ — минерал, наиболее распространенная и устойчивая в земной коре полиморфная гексагональная модификация углерода. Структура слоистая. Темно серые до черных чешуйчатые агрегаты, конкреции, сплошные массы. Твердость 1 2; плотность ок. 2,2 г/см³.… … Большой Энциклопедический словарь

графит — пирографит, плумбаго, стержень, спель, смазка, грифель Словарь русских синонимов. графит сущ., кол во синонимов: 9 • грифель (4) • … Словарь синонимов

Графит — Graphite минерал, одна из кристаллических форм углерода. В ядерных реакторах используется графит ядерной чистоты в качестве замедлителя нейтронов. Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики

Графит — (шунгит) – пигмент серовато черного цвета. Высокое содержание углерода (до 95%). Отличаются высокой химической стойкостью, достаточно высоким сопротивлением истиранию, морозостойкостью.Используют для приготовления масляных красочных веществ,… … Энциклопедия терминов, определений и пояснений строительных материалов

ГРАФИТ — ГРАФИТ, темно серая, мягкая кристаллическая форма УГЛЕРОДА, встречающаяся в природе в месторождениях с разной степенью содержания примесей. Синтетически производится путем нагревания нефтяного кокса. Используется для изготовления карандашей… … Научно-технический энциклопедический словарь

ГРАФИТ — ГРАФИТ, графита, муж. (от греч. grapho пишу). 1. Минерал черного цвета, мелкокристаллический углерод, употр. для изготовления карандашей (минер.). 2. Изготовленный из этого минерала или какого нибудь красящего материала стержень внутри карандашей … Толковый словарь Ушакова

ГРАФИТ — ГРАФИТ, а, муж. 1. Минерал тёмно серого или чёрного цвета, употр. для изготовления карандашных стержней, огнеупорных тиглей, смазочных материалов и в других технических целях. 2. Стержень внутри карандаша, грифель. | прил. графитный, ая, ое и… … Толковый словарь Ожегова

Графит

графит

Графит — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Распространенный в природе минерал. Встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию графита. Различают месторождения кристаллического графита, связанного с магматическими горными породами или кристаллическими сланцами, и скрытокристаллического графита, образовавшегося при метаморфизме углей.

алмаз

СТРУКТУРА

структура графита

Гексагональная кристаллическая полиморфная (аллотропная) модификация чистого углерода, наиболее устойчивая в условиях земной коры. Слои кристаллической решетки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный вид симметрии), до тригональной (дитригонально-скаленоэдрический в.с.). Кристаллическая решетка графита – слоистого типа. В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

СВОЙСТВА

графит

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного твёрже, и становится очень хрупким. Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 278,4 до 2435 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры.

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300—1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

МОРФОЛОГИЯ

графит

Хорошо образованные кристаллы редки. Кристаллы пластинчатые, чешуйчатые, кривогранные, обычно имеют пластинчатую несовершенную форму. Чаще бывает представлен листочками без кристаллографических очертаний и их агрегатами. Образует сплошные скрытокристаллические, листоватые или округлые радиально-лучистые агрегаты, реже – сферолитовые агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто наблюдается треугольная штриховка на плоскостях (0001).

ПРОИСХОЖДЕНИЕ

графит

Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах – кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов.
Сопутствующие минералы: кварц, пирит, гранаты, шпинель.

ПРИМЕНЕНИЕ

графит

Для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.
Применяется в электродах, нагревательных элементах — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
Для получения химически активных металлов методом электролиза расплавленных соединений, твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках, наполнитель пластмасс.

Является замедлителем нейтронов в ядерных реакторах, компонентом состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином).
Используется для получения синтетических алмазов, в качестве эталона длины нанометрового диапазона для калибровки сканеров сканирующего туннельного микроскопа и атомно-силового микроскопа, для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт, для изготовления тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов.

Феррит (твердый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твердый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза

Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твердый раствор углерода в α-железе с объемно-центрированной терагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)

Графи́т (от др.-греч. γράφω — пишу) — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально-скаленоэдрический). Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода. Кристаллы пластинчатые, чешуйчатые. Образует листоватые и округлые радиально-лучистые агрегаты, реже — агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто треугольная штриховка на плоскостях (0001).

Содержание

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1—2 по шкале Мооса). Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. В кислотах не растворяется. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 278,4 до 2435 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры [1] .

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном - в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300-1300 К, причем положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

Химические свойства

Со многими веществами (щелочными металлами, солями) образует соединения включения.

Реагирует при высокой температуре с воздухом, сгорая до углекислого газа. Фторированием в контролируемых условиях можно получить (CF)x.




Каждый атом углерода ковалентно связан с тремя другими окружающими его атомами углерода.

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

Условия нахождения в природе

Сопутствующие минералы: пирит, гранаты, шпинель. Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов. С помощью ионной масс-спектрометрии российским учёным удалось обнаружить в составе графита золото, серебро и платиноиды (платина, палладий, иридий, осмий и проч.) в форме металлоорганических нанокластеров.

Искусственный синтез

Искусственный графит получают разными способами:

  • Ачесоновский графит: нагреванием смеси кокса и пека до 2800 °C;.
  • Рекристаллизованный графит: термомеханической обработкой смеси, содержащей кокс, пек, природный графит и карбидообразующие элементы.
  • Пирографит: пиролизом из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит; в электротехнической промышленности применяется наименование «электрографит»).
  • Доменный графит: выделяется при медленном охлаждении больших масс чугуна.
  • Карбидный графит: образуется при термическом разложении карбидов.

Переработка

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Переработкой графита получают различные марки графита и изделия из них.

Товарные сорта графита получают обогащением графитовых руд. В зависимости от степени очистки графитовые концентраты классифицируют на промышленные марки по областям применения, каждая из которых выдвигает специфические требования к физико-химическим и технологическим свойствам графитов.

В свете последних открытий российских учёных появилась перспектива получения из графитовых руд золота и платиноидов.

Переработка графита в терморасширенный графит

На первом этапе исходный кристаллический графит окисляют. Окисление сводится к внедрению молекул и ионов серной или азотной кислоты в присутствии окислителя (перекись водорода, перманганат калия и др.) между слоями кристаллической решетки графита. Окисленный графит отмывают и сушат. Затем окисленный графит подвергают термообработке до Т=1000 °C со скоростью 400-600 °C/с. Благодаря чрезвычайно высокой скорости нагрева происходит резкое выделение газообразных продуктов разложения внедренной серной кислоты из кристаллической решетки графита. В результате межслойное расстояние увеличивается примерно в 300 раз, а число маленьких частиц графита и объём пробы увеличивается в 60-400 раз. В полученном материале остается некоторое количество оксидов серы или азота в зависимости от применяемой технологии. Далее полученный терморасширенный графит прокатывают, иногда армируют, добавляют присадки и прессуют для получения изделий.

Переработка графита для получения различных марок искусственного графита

Для производства искусственного графита используют в основном нефтяной кокс как наполнитель и каменноугольный пек как связующее. Для конструкционных марок графита в качестве добавок к наполнителю применяют природный графит и сажу. Взамен каменноугольного пека как связующего или пропитывающего вещества используют некоторые синтетические смолы, например, фурановые или фенольные.

Производство искусственного графита складывается из следующих основных технологических этапов:

  • подготовки кокса к производству (предварительного дробления, прокаливания, размола и рассева кокса по фракциям);
  • подготовки связующего;
  • приготовления углеродной массы (дозировки и смешивания кокса со связующим);
  • формования так называемых «зелёных» (необожжённых) заготовок в глухую матрицу или через мундштук прошивного пресса;
  • обжига заготовок;
  • графитации заготовок;
  • механической обработки заготовок до размеров изделий.

Кокс дробят до величин кусков 30-40 мм, затем прокаливают в специальных прокалочных печах при 1300 °C. При прокаливании достигается термическая стабильность кокса, уменьшается содержание в нем летучих веществ, увеличиваются его плотность, электро — и теплопроводность. После прокаливания кокс размалывают до необходимой крупности. Порошки кокса дозируют и смешивают с пеком в смесильных машинах при 90-130 °C.

В смесильную машину вначале загружают сухие компоненты, а затем добавляют жидкий пек. После смешивания массу равномерно охлаждают до температуры прессования (80-100 °C). Заготовки прессуют или методом выдавливания массы через мундштук, или в пресс-форме. При прессовании холодных порошков изменяют технологию подготовки помола и смешения.

Для карбонизации связующего и скрепления отдельных зёрен в монолитный материал заготовки обжигают в многокамерных газовых печах при температуре 800—1200 °C. Продолжительность цикла обжига (нагрев и охлаждение) составляет 3-5 недель в зависимости от размера и плотности заготовок. Графитация — окончательная термическая обработка — превращает углеродный материал в графит. Графитацию проводят в печах сопротивления Ачесона или в печах прямого нагрева Кастнера при температурах 2400-3000 °C. При графитировании углеродистых нефтяных заготовок идет процесс укрупнения кристаллов углерода. Из мелкокристаллического «амфорного» углерода получается крупнокристаллический графит, атомная решетка которого ничем не отличается от атомной решетки природного графита.

Некоторые изменения технологического процесса получения искусственного графита зависят от требуемых свойств конечного материала. Так, для получения более плотного материала углеродные заготовки пропитывают (после обжига) в автоклавах один или несколько раз пеком с последующим обжигом после каждой пропитки и графитацией в конце всего технологического процесса. Для получения особо чистых материалов графитацию проводят одновременно с газовой очисткой в атмосфере хлора.

Переработка графита для получения композиционных материалов

Антифрикционные углеродные материалы изготавливают следующих марок: обожженный антифрикционный материал марки АО, графитированный антифрикционный материал марки АГ, антифрикционные материалы, пропитанные баббитом, оловом и свинцом марок АО-1500Б83, АО 1500СО5, АГ-1500Б83, АГ-1500СО5, Нигран, Химанит и графитопластовые материалы марок АФГМ, АФГ- 80ВС, 7В-2А, КВ, КМ, АМС.

Антифрикционные углеродные материалы изготавливают из непрокаленного нефтяного кокса, каменноугольного пека с добавкой природного графита. Для получения плотного непроницаемого антифрикционного материала применяют пропитку его металлами. Таким методом получают антифрикционные материалы марок АГ-1500 83, АГ-1500СО5 АМГ-600Б83, АМГ-600СО5 и им подобные. Допустимая рабочая температура на воздухе и в газовых средах, содержащих кислород для АО — 250—300 °C, для АГ — 300 °C (в восстановительных и нейтральных средах 1500 и 2500 °C соответственно). Углеродные антифрикционные материалы химически стойки во многих агрессивных газовых и жидких средах. Они стойки почти во всех кислотах (до температуры кипения кислоты), в растворах солей, во всех органических растворителях и ограниченно стойки в концентрированных растворах едких щелочей.

Графит как золотосодержащее сырьё

Содержание найденного с помощью ионной масс-спектрометрии золота до десятков раз превышает содержание, выявляемое ранее при помощи химического анализа. В изученных российскими учёными пробах графита содержание золота было до 17,8 г/т – это уровень богатых золотых приисков. О перспективности добычи золота из графитовых руд говорит то, что графитовые месторождения данного типа (позднедокембрийского-раннепалеозойского возраста, если уж совсем точно) широко распространены и в России, и в мире. Они есть в Европе, США, Австралии, Африке – в сущности, легче перечислить где их нет. При этом практически все они когда-то разрабатывались, а сегодня находятся в хорошо обжитых местах. С развитой инфраструктурой, в том числе промышленной. Что это значит? Что для запуска добычи в них золота и других благородных металлов не нужно затевать стройку на пустом месте, не нужно бороться с суровыми условиями заполярной тундры или экваториальной пустыни. Это уже облегчает, ускоряет, а главное, удешевляет производство. [1]


Использование графита основано на ряде его уникальных свойств.

  • для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов
    , нагревательных элементов — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
  • Для получения химически активных металлов методом электролиза расплавленных соединений. В частности, при получении алюминия используются сразу два свойства графита:
  1. Хорошая электропроводность, и как следствие — его пригодность для изготовления электрода
  2. Газообразность продукта реакции, протекающей на электроде — это углекислый газ. Газообразность продукта означает, что он выходит из электролизёра сам, и не требует специальных мер по его удалению из зоны реакции. Это свойство существенно упрощает технологию производства алюминия.
  • твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках
  • наполнитель пластмасс
  • замедлитель нейтронов в ядерных реакторах
  • компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином)
  • для получения синтетических алмазов
  • для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт.
  • как токопроводящий компонент высокоомных токопроводящих клеёв

Интересные факты

Графит обладает высоким диамагнетизмом [2]

Литература

  • Графит // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб. , 1890—1907.
  • Klein, Cornelis and Cornelius S. Hurlbut, Jr. (1985) Manual of Mineralogy: after Dana 20 th ed. ISBN 0-471-80580-7

Примечания

Ссылки

См. также

sp 3 : Алмаз • Лонсдейлит • sp 2 : Графит • Графен • Фуллерен • Наноконусы • Нанотрубки • Астралены • sp: Карбин • смешанные sp 3 /sp 2 : Стеклоуглерод • Нанопена • другие: Нановолокна • гипотетические: Чаоит • связанные: Сажа • Технический углерод • Уголь (Ископаемый • Древесный • Активированный)

  • Минералы по алфавиту
  • Графит
  • Простые вещества
  • Фазы железоуглеродистых сплавов

Wikimedia Foundation . 2010 .

Полезное

Графит – от карандаша до ядерного реактора

Этот минерал знаком каждому с детства. Сердцевина карандаша – не что иное, как камень графит.

Минерал задействован и в серьезных сферах деятельности, включая науку, оборонный комплекс и ядерный сектор.

Графит

Что такое графит

Как выглядит графит, знает каждый. Это грифель-сердцевинка обычного простого карандаша:

  • Минерал мягок, в чем несложно удостовериться: от неосторожного обращения карандаши ломаются.
  • Жирноват на ощупь, наделен разной твердостью и плотностью, на что указывают марки карандаша – от мягкой до твердой.
  • Цвета и оттенки – полная серая гамма с матовым или металлическим отблеском.

Возможность написания или рисования создает слоистая структура минерала.

Графит – это минерал, природная кристаллическая модификация углерода. Ближайшие родичи – алмаз, лонсдейлит, чароит. Их отличает структура. У графита она слоистая.

алмаз-графит

Графит можно превратить в алмаз, разогрев до 2000°C и поместив под давление в сотни атмосфер.

углерод графит алмаз

В природе «чистый» минерал не замечен, среди примесей обнаружены редкие, ценные металлы.

Налажено производство искусственного графита.

История

История и время формирования графита остается загадкой для науки: он слишком похож на другие минералы по описанию.

Единственная зацепка – глиняная утварь культуры Боян-Марицы (территория современных Болгарии и Румынии, 6 тыс. лет назад). Изделия раскрашены графитовыми красками.

Графитом минерал предложил именовать Абраам Вернер. Этот прославленный химик, «окрестивший» десятки камней, взял за основу свойство минерала оставлять четкий красящий след.

Древнегреческий термин γράφω означает «пишу».

На территории России графит найден в 1826 году на Урале.

В истории, литературе минерал фигурирует также как черный/серебристый свинец, карбидное железо.

Физико-химические характеристики

По химической номенклатуре минерал графит – это чистый углерод с формулой из одного символа (C).

серый графит

Состав иногда дополняют абсорбированный газ, битум, вода, механические примеси.

Формула C (углерод)
Цвет Серый, чёрный стальной
Цвет черты Чёрная
Блеск Металловидный
Прозрачность Непрозрачный
Твёрдость 1–2
Спайность Совершенная по
Плотность 2,09–2,23 г/см³
Сингония Гексагональная (планаксиальная)

Класс минерала по международной номенклатуре – самородный элемент. По систематике СССР это неметалл, но наделен характеристиками, присущими металлам, – электропроводностью, магнетизмом.

Где и как добывается

Залежи графита промышленных объемов есть на всех континентах:

  • Обе Америки – США, Канада, Бразилия;
  • Европа – ФРГ, Гренландия, Италия;
  • Австралия.

Сырье каждого графитового рудника можно отличить по структуре, цвету, другим признакам.

Россия располагает тремя крупнейшими месторождениями:

  • Бурятия – качественное плотнокристаллическое сырье.
  • Краснодарский край (два) – плотно-, мелкокристаллический, чешуйчатый, графитовые сланцы.

Графиты формируются каменноугольным пиролизом либо под влиянием экстремально высоких температур и давления. Например, излияниями магмы на отложения каменного угля.

камень графит

Его добывают наземным или подземным способами. Графитовые кристаллы находят в сланцах, мраморах, других органических породах.

Ежегодный мировой объем добычи графита – 600 тыс. тонн.

Разновидности

Природный графит многообразен, поэтому разработана классификация по нескольким признакам.

По составу и сферам применения:

  • Коллоидный. Техническая разновидность, порошок из искусственного графита. Используется промышленностью.
  • Пиролитический. Материал искусственного происхождения. Нашел применение как основа инструментария для исследований микроструктур.
  • Силицированный. Графит, обогащенный кремнием. Устойчив к коррозии.

Природный графит по структуре подразделяют на волокнистый, плотнокристаллический, чешуйчатый, графитовый сланец. Выделяют также разновидности – графитит и графитовую слюдку.

Искусственный графит

Графит синтезируют из кокса и пека. Это продукты переработки каменного угля, нефтяных смол, угольного дегтя. На них воздействуют химически и механически при высоких температурах. Исходное сырье предварительно сортируют, затем прокаливают, пропитывают. Получается материал почти абсолютной чистоты.

Искусственный графит

Искусственный графит применяют везде, от безобидного пластика до ядерного оборудования. Самые востребованные марки:

  • аккумуляторный;
  • карандашный;
  • литейный;
  • смазочный;
  • электроугольный;
  • элементный;
  • ядерный.

Под каждую марку, сферу использования графита подбирается точная пропорция пека и кокса.

Отличить рукотворные образцы несложно. Например, по треугольной штриховке на плоскостях. Она есть только у минерала природного происхождения.

Где используется

Графит почти универсален. В этом нет ничего необычного: необходимые характеристики закладываются на стадии его обработки. Так, одним требуется повышенная теплопроводность, другим – электропроводность. Третьих интересуют прочностные свойства графита.

применение графита

С учетом кондиций готового продукта минерал востребован для следующих целей:

  • Производство тугоплавких емкостей.
  • Смазка при выплавке стали, сплавов.
  • Стержни ядерных реакторов на АЭС, других агрегатах.

Самое известное применение графита – сердцевина карандашей.

Московские ученые создали из графита лекарство для лечения кожных заболеваний.

графит используется

Как ухаживать за графитом

Графит имеет малую твердость, плотность, слоится, крошится. Эти свойства нужно иметь в виду, чтобы ухаживать за коллекционными образцами и другими изделиями правильно.

Главное – исключить механическое воздействие, падения, удары. Коллекционные образцы лучше сразу покупать с боксом.

Минерал инертен к большинству других веществ, поэтому загрязнения можно удалять теплой водой с моющими средствами.

Лечебное влияние

Первыми оценили графит гомеопаты. Они установили, что минерал подходит для лечения кожных патологий (экземы, псориаз, лишай, другие).

Сегодня список расширен:

  • Нарушение обмена веществ.
  • Сбой в работе щитовидной железы.
  • Заболевания дыхательных путей (ринит, бронхиальная астма).
  • Проблемы ЖКТ (гастрит, язва желудка, 12-перстной кишки, колиты).
  • Женские недуги (аменорея, хроническое воспаление яичников, мастопатия).
  • Конъюнктивит, катаракта, ячмень.

Минерал «курирует» также эмоциональное здоровье. Его прописывают при утренней головной боли, неврастении, апатии, депрессии.

Магические свойства

Эзотерики утверждают: магия графита создает для владельца мощный щит от внешнего негатива (сглаза, порчи, проклятия).

Изделие или первозданный камень подойдёт как оберег дома, офиса.

Графит по Зодиаку

Астрологи установили, что графит – талисман Овнов. Влияние на остальные знаки Зодиака нейтральное.

Стоимость

В Сети представлено сырье технического назначения и коллекционный материал.

При формировании цены сырья значение придается разновидности, габаритам, проценту углерода. В среднем это 43-47 руб. за кг. Коллекционный материал дороже. Так, образцы минерала 2,5-4,5 см из российских месторождений можно купить за 780-920 руб.

Серый, черный, стальной

Хорошо проводит электрический ток, относительно мягкий, имеет металлический блеск, устойчив при нагревании, скользкий на ощупь и хорошо известен своей чешуйчатой структурой – все это свойства графита. С этим минералом мы знакомимся еще в детстве, когда к нам в руки попадает простой карандаш. Но помимо стержней у графита еще множество полезных применений. О свойствах, характеристиках, способах переработки и применения графита читайте в нашем материале.

История о первом карандаше

Графит

Ученые не могут понять, когда древние люди впервые начали использовать графит. Все дело в том, что по своим красящим свойствам он напоминает другие минералы. В частности – молибденит. Так что рисовать и чертить люди могли с помощью разных ископаемых. А вот первое точно зафиксированное применение графита – древняя посуда культуры Боян-Марица, раскрашенная графитом за 4000 лет до н. э. Однако старинные карандаши появились, увы, не в эпоху неолита.

Широкое применения графита в рисовании началось после происшествия в Англии. В середине XVI века в графстве Камберленд была сильная буря. Много старых и грузных деревьев были повалены вверх корнями. В образовавшихся ямах пастухи нашли твердое красящее вещество, напоминающее уголь. Местные ремесленники решили, что это разновидность олова и прозвали минерал «рисовальным оловом». Свое нынешнее название графит обрел лишь в 1789 году, благодаря немецкому геологу Абрааму Вернеру. В основе – древнегреческое слово «γράφω», что означает «я пишу».

Свойства и характеристики

Строение β-графита

Графит обладает рядом полезных свойств, которые сегодня активно применяются в промышленности. Чтобы не вдаваться в подробности, для знакомства с графитом достаточно основных характеристик:

  1. Проводит электрический ток;
  2. Обладает низкой твердостью (1 по шкале Мооса);
  3. Плотность 2,08—2,23 г/см³;
  4. Цвет серый, черный, стальной/ блеск металлический;
  5. Устойчив при нагревании в отсутствие воздуха;
  6. Жирный, скользкий на ощупь (содержит 10—12 % примесей глин и окислов железа);
  7. При трении расслаивается на отдельные чешуйки (например, след карандаша на бумаге – последовательно уложенные чешуйки графита).

Происхождение и добыча

Природный графит образуется при высокой температуре в вулканических и магматических горных породах, а именно – пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и другими минералами. Широко распространен в кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате термического разложения каменного угля на каменноугольные отложения. Известное месторождение графита – Тунгусский бассейн. В горных породах, где есть графит, часто встречаются сопутствующие минералы: кварц, пирит, гранаты, шпинель. В очень малых количествах графит присутствует в составе метеоритов.

Помимо природного графита, есть графит искусственный. Его ученые научились получать разными способами.

  • Ачесоновский графит. Производится из смеси кокса и пека при нагревании до 2800 °C;
  • Рекристаллизованный графит. Основной способ – термомеханическая обработка смеси кокса, пека, природного графита и карбидообразующих элементов.
  • Пиролитический графит. Производится путем пиролиза (термического разложения) из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим увеличением температуры до 2500—3000 °C при давлении 50 Мпа. В результате получается пиро- или электрографит.
  • Доменный графит. Выделяется при медленном охлаждении больших масс чугуна.
  • Карбидный графит. Образуется при термическом разложении карбидов.

Применение и переработка

Графитовый порошок

У графита много областей применения. Он используется в производстве нагревательных элементов, так как обладает высокой электропроводностью и стойкостью практически к любым агрессивным водным растворам. В твердых смазочных материалах, при производстве токосъемников, тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов. О некоторых вариантах применения графита на практике расскажем подробнее.

Ученые научились не только синтезировать графит, но и перерабатывать его в другие вещества с улучшенными качествами. Так, например, появился терморасширенный графит. Технология производства такая: исходный кристаллический графит окисляют с помощью молекул и ионов серной или азотной кислоты в присутствии окислителя. Окисленный графит отмывают и сушат, а затем подвергают высокой термической обработке на большой скорости. Благодаря скорости процесса происходит разложение внедренной серной кислоты из кристаллической решетки графита и дальнейшее выделение газообразных продуктов. Они давят на межкристальное пространство и расклинивают структуру графита, расширяя его. Далее материал прокатывают, армируют (увеличивают прочность с помощью дополнительной арматуры), добавляют присадки для улучшения свойств и прессуют. Терморасширенный графит отличается высокой удельной прочностью и низкой насыпной плотностью. Выглядит как порошок. Его используют в атомной промышленности для отверждения отходов радиоактивных масел.

В ядерной промышленности графит также играет важную роль при замедлении нейтронов. Однако природный графит для этих целей не подходит, так как в нем слишком много примесей. Реакторный графит получают из смеси нефтяного кокса и каменноугольной смолы. Из них прессуют блоки и термически их обрабатывают при высокой температуре. Замедлители нейтронов при ядерной реакции крайне важны, без них реакция может не состояться.

Существует также пиролитический графит, который используется в сфере микроскопических исследований в качестве калибровочного материала. Этот вид создан искусственно при нагревании кокса и пека. Чаще всего его используют в сканирующей туннельной и атомно-силовой микроскопии.

Наполнение для пластмасс

Графитопласты – это композиционные материалы на основе углеграфитовых наполнителей и полимерных связующих. В состав могут входить природный, тигельный или коллоидный графиты. Графитопласт используется для производства скользящих электроконтактов, узлов трения сельскохозяйственной техники, насосов, компрессоров без смазки, сепараторов водоэмульсионных сред, химически стойких узлов оборудования, теплообменников для агрессивных сред.

Из графита возможно получить алмазы синтетического происхождения

Из графита возможно получить алмазы синтетического происхождения

Золото и алмазы

Российские ученые изучили пробы графита и выяснили, что содержание золота достигло 17,8 г/т. Это сравнимо с уровнем золотых приисков и делает графитовые руды перспективным местом добычи золота, так как чаще всего месторождения находятся в районах с развитой инфраструктурой, а не в местах с суровыми природными условиями. Из графита возможно получить и алмазы синтетического происхождения.

Читайте также: