Из какого металла делают обшивку самолета

Обновлено: 28.09.2024

Обшивка самолета – оболочка, формирующая оперение и внешнюю поверхность корпуса воздушного судна. Она необходима для придания самолету обтекаемой формы. От того, насколько качественной будет обшивка, во многом зависят аэродинамические показатели самолета.

Материал обшивки

Современная обшивка самолетов производится из панелей или отдельных листов из алюминиевых сплавов (или титана и нержавеющей стали), отформованных по поверхности крыльев или фюзеляжа. Несъемные панели или листы чаще всего крепятся к каркасу потайной клепкой, съемные же соединяются с помощью винтов с головкой «впотай». Листы обшивки соединяются встык. Нередко для обшивочных фюзеляжей используются крупномонолитные оребренные панели и слой обшивки с сотовым заполнителем. Обтекатели антенн (радиопрозрачные элементы обшивки) выполняются из сотового или монолитного композиционного материала. Также в последнее время композиты применяются в качестве панелей обшивки и силовых узлов.

Обшивка самолета 223

В зависимости от используемого материала для строительства воздушного судна обшивка самолета может быть:

  • металлическая: сталь, алюминиевые сплавы, титан;
  • деревянная (шпон или фанера);
  • перкальная (полотняная);
  • композитные материалы;
  • ламинированная пленка.

История обшивки самолета

Первые летательные аппараты имели обшивку, выполненную из полотна, которое пропитывалось лаком (отсюда, собственно, и появилось само название), фюзеляжи довольно часто и вовсе не имели обшивки. Позже обшивку начали делать из древесины – фанеры и шпона, которые тоже пропитывались лаком.

С развитием технологий обшивка делалась из алюминия, гладкого и гофрированного. На сегодняшний день используется исключительно гладкая металлическая обшивка. Правда, на легких летательных аппаратах еще можно встретить полотняную обшивку. Это крайне редкое явление, так как ее эффективно заменяют полимерными пленками.

Виды обшивок

В авиации существует два типа обшивки – мягкая «неработающая» и жесткая «работающая». В наше время преимущество имеет жесткая металлическая обшивка, так как она полностью соответствует требованиям прочности, аэродинамики, массы и жесткости. Она воспринимает нагрузки в виде крутящих и изгибающих моментов, внешние аэродинамические нагрузки и нагрузки перерезывающих сил, воздействующих на каркас самолета. Материалы для производства работающей обшивки: титановые, алюминиевые и стальные сплавы, авиационная фанера, композиционные материалы. Титан и сталь чаще всего встречаются в конструкциях сверхзвуковых самолетов.

Обшивка самолета 32

Несиловая обшивка не включается в силовую схему, так как нагрузка с обшивки сразу же передается на каркас. Материалом для ее изготовления может служить перкаль (полотно).

Обшивка крыла

В зависимости от типа конструкции обшивка оперения и крыла может быть толстой, состоящей из монолитной фрезерованной или прессованной панели, трехслойной или тонкой, подкрепленной специальным стрингерным набором. При этом в межобшивочном пространстве находится специальный заполнитель (соты из пенопласта, фольги или специальной гофры). Важно, чтобы обшивка крыла сохраняла заданную форму и была жесткой. Образование складок на ней провоцирует аэродинамическое сопротивление.

Верхняя обшивка крыла под действием изгибающего момента нагружена циклическими сжимающими усилиями, а нижняя, соответственно, растягивающими. По этой причине для верхних сжатых панелей, как правило, используются высокопрочные материалы, прекрасно продемонстрировавшие себя на сжатие. В свою очередь для нижней растянутой обшивки применяют материалы, характеризующиеся высокими усталостными характеристиками. Материал обшивки для сверхзвуковых самолетов выбирается с учетом нагревания в полете – обычные алюминиевые сплавы, теплостойкие алюминиевые сплавы, сталь или титан.

Обшивка самолета старая

Для повышения прочности и живучести обшивки по длине крыла самолета количество стыков, имеющих меньший ресурс по сравнению с главным полотном обшивки, стремятся максимально сократить. Вес обшивки крыла – 25-50% от всей массы.

Обшивка фюзеляжа

Сразу стоит отметить, что она выбирается с учетом действующей нагрузки. Нижняя зона обшивки воспринимает сжимающие нагрузки той частью, которая присоединена к стрингерам, а верхняя воспринимает растягивающие усилия абсолютно всей площадью обшивки. Толщина обшивки в герметичном фюзеляже выбирается в зависимости от внутреннего избыточного давления. Для улучшения живучести фюзеляжа на обшивке нередко используют ленты-стопперы, исключающие распространение трещин.

Соединение обшивки и элементов каркаса

Прибегают к трем способам соединения каркаса с обшивкой:

  • обшивка крепится к шпангоутам;
  • обшивка крепится к стрингерам;
  • обшивка крепится и к шпангоутам, и к стрингерам.

Во втором случае формируются только продольные заклепочные швы, при этом поперечные отсутствуют, что положительно сказывается на аэродинамике фюзеляжа. Незакрепленная обшивка на шпангоутах при меньших нагрузках теряет устойчивость, что увеличивает массу конструкции. Для того чтобы этого избежать, обшивку связывают дополнительной накладкой (компенсатор) со шпангоутом. Первый способ крепления применяется исключительно в бесстрингерных (обшивочных) фюзеляжах.

К шпангоутам крепится сотовидная обшивка. Она включает сердцевину и две металлические панели. Сотовая конструкция – материал шестиугольного вида, состоящий из металла. В сердцевине находится клей, который позволяет вовсе не использовать заклепки. Эта конструкция способна передавать напряжение по всей поверхности и характеризуется высоким сопротивлением деформации.

Конструкции легких самолетов: дерево, алюминий, сталь, композиты и свойства каждого.

01.jpg

Однонаправленные материалы в основном состоят из тонких, относительно гибких, длинных волокон, которые очень прочны на растяжение (например: нить, веревка, многожильный стальной трос и т. д.)
Для конструкции самолета также характерна симметричность. Это означает, что нагрузки вверх и вниз почти равны друг другу (или, по крайней мере, соизмеримы). Нагрузка на хвостовое оперение может уменьшаться или увеличиваться в зависимости от того, поднимает ли пилот или опускает нос самолета, потянув или нажав ручку управления самолетом; руль направления может отклоняться вправо и влево (боковые нагрузки на фюзеляж). Порывы воздушного потока на крыло могут быть положительными или отрицательными, вызывая повышающие или понижающие нагрузки, которые испытывают пассажиры, когда их толкают в сиденье или они висят на ремнях.
Из-за этих факторов, разработчик должен использовать конструкционный материал, который может выдерживать как растяжение, так и сжатие. Однонаправленные волокна могут иметь превосходные параметры по растяжению, но из-за их малого поперечного сечения они имеют очень небольшую сопротивляемость сжатию. В качестве иллюстрации: вы не можете загрузить нить, веревку или цепь на сжатие.
Чтобы сделать тонкие волокна прочными на сжатие, их нужно «склеить» какой-то основой (матрицей). Таким образом, мы можем воспользоваться преимуществами их прочности на растяжение и избавляемся от их низкой прочности при сжатии, так как они становятся более устойчивыми к сжатию, помогая друг другу не сгибаться. Основа или матрица обычно представляет собой смолу, удерживающую волокна вместе и позволяющую им выдерживать требуемые нагрузки сжатия. Это очень хороший конструкционный материал.

Дерево
Исторически дерево использовалось в качестве первого однонаправленного конструкционного материала. Природа, в своей мудрости, дала прекрасный однонаправленный материал, заставляя определенные деревья расти в определенных условиях: они должны быть высокими и прямыми, а их древесина должна быть прочной и легкой. Поперечное сечение ствола дерева показывает годовые кольца, чтобы мы могли посчитать возраст дерева. Темные полосы (поздняя древесина) содержат много волокон, тогда как светлые полосы (ранняя древесина) содержат гораздо больше «смолы». Таким образом, чем шире темные полосы, тем сильнее и тяжелее древесина. Если темные полосы очень узкие, а светлые - довольно широкие, дерево светлое, но не очень прочное. Чтобы получить наиболее эффективное соотношение прочности и веса для дерева, нам нужно определенное количество полос на дюйм. Фактически, мы хотим получить хороший баланс «ранней» и «поздней» древесины, или, другими словами, очень особых условий выращивания, то есть географической высоты, где рост дерева зависит от широты и местных климатических условий. Хотя это очень интересная тема, мы не будем вдаваться в такие подробности, кроме как упомянуть, что именно природа снабжает нас очень эффективным материалом из своего растительного царства. Помните, что вопреки строго минеральному миру, безнадежно подверженному гравитации, растягивающей все вокруг, растение имеет в себе силу, которая заставляет его расти против силы тяжести вверх. Если бы мы могли использовать эти жизненные силы в наших машинах, мы могли бы подняться без помощи двигателя. Авиации еще многое предстоит открыть.

Еще одна тема, которую мы не будем касаться - это испытания древесины Есть несколько простых тестов (влажность, динамика, устойчивость), но кажется, что никто их больше не знает.

Некоторые из наших авиационных конструкций двумерные (длина и ширина большие по толщине). Для таких структур часто используется фанера. Несколько тонких листов шпона склеены между собой так, что волокна разных слоев пересекаются под разными углами: обычно под 90 градусов, также можно 30 и 45). Фанера весьма эффективно работает на сдвиг, если конструктор правильно ее использует.

Чтобы завершить эту дискуссию о древесине, давайте прямо заявим, что наша нынешняя цивилизация использует так много бумаги, что мы истощаем планету от деревьев, не пересаживая их правильно. Сегодня хорошую древесину для строительства самолетов очень трудно найти. Вместо того, чтобы использовать одну хорошую доску для лонжерона, мы должны использовать ламинирование, потому что большие куски дерева практически недоступны, и мы больше не можем доверять качеству древесины. Мы должны использовать много слоистых материалов, чтобы получить необходимую прочность без слишком большого перетяжеления. С точки зрения доступности нам просто нужна замена того, что природа снабжала нас до сих пор.

Алюминиевые сплавы
Итак, поскольку дерево может быть не таким доступным, как было раньше, мы смотрим на другой материал, который является прочным, легким и легко доступным по разумной цене: алюминиевые сплавы. Нет смысла обсуждать титан - он просто слишком дорогой. Мы обсудим свойства алюминиевых сплавов, которые используются в конструкции легких самолетов, более подробно позже. Пока мы будем рассматривать алюминий как конструкционный материал.
Экструдированные алюминиевые сплавы: благодаря процессу производства алюминия мы получаем однонаправленный материал, который в продольном направлении немного прочнее, чем в поперечном, при этом прочный и на сжатие. Если характеристики растяжения и сжатия практически одинаковы для алюминиевых сплавов, то дерево, с другой стороны, имеет предел прочности при растяжении, примерно вдвое превышающий его прочность на сжатие; соответственно, необходимо использовать специальные методы анализа напряжений, и для того, чтобы избежать концентрации напряжений, необходимо хорошее понимание работы древесины под нагрузкой!
Алюминиевые сплавы в тонких листах (0,016-0,125 дюйма или 0,4-3,1 мм) представляют собой превосходный двумерный материал, широко работающий на сдвиг, с подкрепляющими элементами и без, а также в качестве элементов растяжения-сжатия, когда они надлежащим образом согнуты.
Стоит помнить, что алюминий - это искусственный металл. Алюминий получают путем электролиза из боксита (оксид алюминия), который затем смешивают с различными добавками, повышающими прочность. В следующей статье мы увидим, какие добавки используются, и почему и как мы можем повысить прочность алюминия путем холодного упрочнения или закалки. Все обычно используемые алюминиевые сплавы, которые доступны на рынке. По запросу при покупке вы можете получить сертификат, который гарантирует химические и физические свойства в соответствии стандартами.
Как правило, алюминий в три раза тяжелее, но и в три раза прочнее дерева. Сталь снова в три раза тяжелее и прочнее алюминия.

Стали
Таким образом, следующим материалом для конструкции самолета будет сталь, которая имеет такую же удельную прочность, как дерево или алюминия.
Мы в основном используем хром-молибденовый сплав под названием 4130.
Распространенным полуфабрикатами являются трубы и листовой материал. Сталь из-за большого удельного веса не используется в качестве обшивки, так как алюминиевые листы или фанера. Если из прочностных соображений, там, где нам понадобится фанера толщиной 0,1 дюйма (2,5 мм), нам потребуется алюминиевый лист 0,032 дюйма (0,8 мм), стальной же лист в этой ситуации должен иметь толщину 0,01 дюйма (0,25 мм), который слишком тонок. Вот почему стальной фюзеляж использует трубы в качестве элементов ферменной конструкции для передачи сжатия или растяжения, и вся конструкция затем покрывается легкой тканью, чтобы придать ей необходимую аэродинамическую форму или желаемый вид. Следует отметить, что этот метод включает в себя два метода: обработка стали и покрытие ткани.
Преимущество стальной конструкции состоит в том, что ее можно легко сваривать. Это особенно относится к Северной Америке, где сварщик не должен быть аттестован, как некоторых других странах. Исторически эта разница в нормативных документах связана с «духом пионеров» и объясняет, почему сварные стальные фюзеляжи так распространены здесь и практически нигде больше.
Мы будем обсуждать трубы и сварные стальные конструкции более подробно позже, а теперь перейдем к «искусственной древесине» или композитным конструкциям.

Композиционные материалы
Разработчик композитного самолета просто использует волокна в нужном направлении именно там, где требуется. Волокна залиты смолой, чтобы удерживать их на месте и обеспечивать необходимую опору для предотвращения коробления. Вместо фанеры или листового металла, который допускает только одну кривизну, композитный конструктор использует ткань, где волокна уложены в двух направлениях, также встроенные в смолу. Это имеет преимущество свободы формы в двойной кривизне, как того требуют оптимальные аэродинамические формы и очень привлекательный внешний вид.
Современные волокна (стеклянные, нейлоновые, кевларовые, углеродные или монокристаллические волокна различного химического состава) очень прочные, поэтому конструкция становится очень легкой. Недостаток - очень маленькая жесткость низкая устойчивость. Конструкция нуждается в подкреплении, которое достигается либо обычными незаметными ребрами жесткости, либо более элегантно с многослойной структурой: два слоя тонких однонаправленных или двунаправленных волокон разделяются легким наполнителем (пенопластом или «сотами»). Это позволяет конструктору достичь необходимой жесткости.
С инженерной точки зрения этот метод очень привлекателен и поддерживается многими органами власти, поскольку он позволяет новые разработки, которые необходимы в случае войны. (США, не имеющие титана или хрома, нуждаются в разработке практических альтернатив.) Но этот метод также имеет свои недостатки для жилищного строительства: необходима форма, и необходим строгий контроль качества для правильного количества волокон и смолы и для хорошей адгезии. между обоими, чтобы предотвратить слишком «сухую» или «мокрую» структуру. Также отверждение смолы довольно чувствительно к температуре, влажности и давлению. Наконец, смолы являются активными химическими веществами, которые будут вызывать не только хорошо известные аллергии, но также химические вещества, которые воздействуют на наш организм (особенно глаза и легкие), и они обладают неблагоприятным свойством кумулятивного повреждения и в результате (в частности, ухудшения глаз) появляется только через несколько лет после первого контакта.
Другим недостатком смол является их ограниченный срок хранения, то есть, если смола не используется в течение указанного промежутка времени после изготовления, результаты могут быть неудовлетворительными и небезопасными.
Наконец, если формы не очень хорошо спроектированы, изготовлены и обслуживаются, внешняя часть конструкции нуждается в сложной и трудоемкой финальной отделке. Также следует проявлять большую осторожность, так как слишком много шлифования может привести к ослаблению силовой конструкции. Исторически сложилось, что композиты достигли своего пика несколько лет назад. Сегодня доказано, что только опытные специалисты могут создать надежную и совершенную конструкцию, при этом рисковать своим здоровьем.

Подведем итоги
• Природа предоставляет сырье, прекрасно подходящее для авиационных конструкций. К сожалению, мы эксплуатируем природу, и сегодня трудно найти запасы древесины и фанеры необходимых размеров и качества.
• Алюминиевые сплавы в экструдированной и ламинированной форме являются привлекательной альтернативой, особенно потому, что их легко поставлять с гарантированными свойствами.
• Стальные трубы по-прежнему очень популярны в Северной Америке, поскольку сварка, кажется, не создает никаких проблем, как это опасается в других частях мира. Трубчатая структура покрыта тканью.
• Композиты можно рассматривать как «искусственное дерево» со структурной точки зрения. Как и все искусственное, оно может быть лучше, чем натуральный продукт, но производитель должен учитывать в процессе производства мудрость, присущую природе, и / или качество, обеспечиваемое другими производителями сырья (алюминий, сталь). Это в дополнение к опасностям для нашего собственного здоровья (и здоровья нашей семьи при строительстве в гараже).

Оригинал статьи на английском языке.
Специальное спасибо переводчику Google, ведь с каждым днем он становится комфортым.

Ну и немного о себя
Так получилось, что период моего обучения на авиационного инженера пришелся на середину и конец восьмидесятых. Это было пиком развития отечественной авиационной промышленности. Дерево, великолепный конструкционный материал, особенно для легких самолетов, использовался исключительно при изготовлении макетов. Наиболее распространенными были алюминиевые сплавы: Д-16Т, В95, АК4-1 и тому подобные: легко обрабатываемые и со стабильными характеристиками. Сталь 30ХГСА применялась в высоконагруженных конструкциях и сварных узлах. Ее отличием и недостатком одновременно, по сравнению с хромолибденовой американской сталю, является обязательная необходимость термообработки (закалки или нормализации), а процесс этот не очень простой технологически. Крис Хайнц обходит стороной титан. У нас же денег никто тогда не считал, вот почему титановые рессоры на легких самолетах были нормой. О композитах хочу сказать отдельно. Тогда, в 80-х было четкое мнение, которое спустя сорок лет прочно сидит в сознании многих не только обывателей, но и инженеров: металлические конструкции (кроме титана и нержавеющей стали, естественно) – неэффективные и устаревшие, а вот композитные – уникальные, высокоэффективные, современные и, позволю себе сказать, модные. Такое мнение поддерживалось везде, на всех уровнях.
Пару лет назад, готовя публикацию о самолете Cessna 400, я обнаружил следующее. Прежде чем прекратить выпуск данной модели самолета в 2018 году из-за низких продаж, собирали его, как и положено в США, а вот производство композитных агрегатов было перенесено в Мексику из-за проблем с экологией и общей вредностью композитного производства.
Если посмотреть с точки зрения материалов на самолеты, которые выпускает компания Zenith Aircraft, то заметны следующие принципы. Основной конструкционный материал – алюминиевые сплавы, сталь в ферменных конструктивных элементах и сложных узлах. Композиты – в несиловых конструкциях сложной формы: капоты и обтекатели шасси. При чем такой здравомыслящий подход заметен в конструкциях многих современных легких самолетов: не это ли «инженерная мудрость»?

Фюзеляж самолета

Под термином «фюзеляж» принято понимать корпус самолета. Именно к фюзеляжу летательного аппарата крепится оперение, крылья и в некоторых моделях шасси. Основным предназначением фюзеляжа является размещение экипажа, груза, пассажиров и оборудования. В фюзеляже самолета могут быть размещены топливные баки, силовая установка и шасси.

Фюзеляж выступает телом каждого самолета. В нем размещается кабина пилотов, баки с топливом, в зависимости от типа самолета могут также быть оборудованы: багажные отделения, салон с креслами пассажиров и т.д. Схема корпуса самолета состоит из поперечных, продольных элементов и обшивки. Поперечные элементы силовой конструкции корпуса представлены шпангоутами, а продольные системой – стрингерами и лонжеронами. Что касается обшивки, то она изготовляется из металлических листов, для снижения массы и повышения прочности широко используют дюралюминий.

Фюзеляж самолета сборка

Современное авиастроение использует балочный и ферменный тип фюзеляжа. Ранее создавались летательные аппараты с бескаркасным – моноковым фюзеляжем. Впервые такой самолет был создан еще в 1910 году. Особенностью было использование гнутых трубчатых колец, к которым крепилась изогнутая фанера.

Общие сведения о фюзеляжах самолетов

Фюзеляж выступает строительной основой каждого летательного аппарата, он позволяет соединить в единое целое все составляющие части. Каждый тип самолета выдвигает свои требования к характеристикам корпуса, при этом нужно сохранить аэродинамику, необходимую форму и максимально снизить массу, не теряя прочности конструкции. Все это достигается за счет:

Выбора форм и параметров строения фюзеляжа, за счет которого можно достичь минимального лобового сопротивления при полете. Подобрать полезный объем и определиться с общими габаритами корпуса.

Корпус должен создавать подъемную силу агрегата до 40% в интегральных схемах летательного аппарата. Это позволяет снизить массу и площадь крыльев.

Повышение плотности общей компоновки позволяет рационально использовать внутренний объем и размещение грузов возле центра тяжести. Размещение грузов возле центра массы позволяет достичь лучших летных характеристик самолета. Сужение диапазонов центровки аппарата при различных вариантах расположения топлива, боеприпасов и их расходование в процессе полета должно обеспечивать стабильность машины.

Продуманная силовая схема компоновки всего самолета. При этом нужно обеспечить качественное крепление оперения, силовой установки, крыльев, шасси.

При обслуживании самолета должен быть продуман удобный подход к каждому агрегату. Удобный выход пассажиров и экипажа, выброс десантных групп, погрузка и разгрузка, швартовка машины. Фюзеляж должен обеспечить жизненные условия для пилотов и пассажиров, а именно: нормальное давление, звукоизоляция и теплоизоляция. Для пилотов самолета должен быть отличный обзор. В аварийных ситуациях продумано покидание машины.

Фюзеляж самолета внутри

Нагрузки, воздействующие на фюзеляж при посадке:

Силы от присоединенных частей и деталей самолета, таких как шасси, крылья, оперение, силовые установки.

Инерционные силы узлов, агрегатов, оборудования, общая масса конструкции.

Силы аэродинамики, которые воздействуют на весь корпус в полете.

Избыточное давление в герметичных отсеках, салонах, кабине и каналах воздухозаборников.

Все эти виды нагрузок учитываются с помощью принципа Д’Аламбера, это позволяет привести все силы в равновесие.

В строительной механике корпус аппарата принято рассматривать как балку коробчатого типа, которая закреплена на крыле и получает все виды нагрузок, перечисленные выше. Данный тип фюзеляжа принято называть балочным. На каждую часть сечения фюзеляжа воздействует крутящий и изгибающий момент. На герметичные отсеки дополнительно действует избыточное давление внутренней части.

Основные виды фюзеляжей самолетов:

Внешний облик и формы фюзеляжа

Наиболее выгодной формой корпуса самолета выступает осесимметричное тело вращения, которое имеет плавное сужение к хвостовой и носовой части. Это позволяет минимизировать площадь при заданных габаритах конструкции. Соответственно снижается общая масса обшивки и минимизируется трение фюзеляжа при сопротивлении в полете.

Сечение круглой формы тела вращения наиболее выгодно по массе при воздействии внутреннего давления гермокабин. При создании и компоновке летательных аппаратов конструкторы отступают от подобной идеальной формы. Плавность обвода нарушают фонари кабины пилотов, антенны БРЭО, воздухозаборники, при этом растет масса корпуса и сопротивление конструкции в полете. В большинстве случаев форма сечения фюзеляжа самолета зависит от большого количества факторов.

Силовая схема конструкции фюзеляжа

Все нагрузки и воздействующие силы на корпус снижаются за счет снижения веса аппарата. Тонкостенная обшивка летательного аппарата изнутри имеет силовой каркас, который позволяет противостоять всем воздействиям. Силовой каркас машины позволяет удовлетворить все требования компоновки, простоты, надежности и живучести фюзеляжа при эксплуатации.

Ранее более распространенными были ферменные типы фюзеляжа, но они значительно проигрывают балочному типу. Нужно отметить, что ферма значительно затрудняет компоновку и расположение грузов в корпусе. В современном авиастроении ферменный тип фюзеляжа используется только на небольших и тихоходных самолетах. В силу этого ферменный тип является невостребованным.

Фюзеляж самолета 2

Современные фюзеляжи балочного типа подразделяют на такие разновидности:

Балочный фюзеляж состоит из набора продольных стрингеров и лонжеронов. Стоит отметить, что основным отличием является большее поперечное сечение и площадь лонжерона. Что касается стрингеров, то они имеют немного другую форму и меньшее сечение. Обшивочная часть корпуса не имеет продольных элементов. Корпус имеет и поперечный набор, который представлен набором шпангоутов. Они позволяют сохранить форму конструкции и распределить нагрузку по всему фюзеляжу. В местах крепления больших деталей и узлов, таких как крылья, используется усиленный тип шпангоутов.

За счет внутреннего каркаса обшивки стало возможным распределение нагрузок более равномерно по всей поверхности фюзеляжа. В свою очередь внешние силы приносят минимальный урон целостности самолета.

Силовой набор фюзеляжа

Как правило, продольные части каркаса, такие как стрингеры и лонжероны, проходят через всю длину летательного аппарата. Они представлены как гнутый профиль с разным сечением среза. Основной задачей стрингера является распределение нагрузок. Что касается лонжеронов, то они обеспечивают общую жесткость конструкции.

Поперечные детали каркаса состоят из простых и усиленных шпангоутов. Они позволяют сохранить форму фюзеляжа при внешних и внутренних воздействиях. Усиленные шпангоуты устанавливают возле больших вырезов в корпусе или в месте крепления узлов.

Фюзеляж самолета 3

Обшивка летательных аппаратов изготовляется из листового металла, который и формирует поверхности фюзеляжа. Обшивка самолета крепится к силовому каркасу. Стыки листов обшивки расположены на поперечных и продольных частях силового каркаса. В современном авиастроении для снижения массы летательных аппаратов все больше используют композиционные материалы.

Соединение обшивки с элементами силового каркаса

В авиастроении выделяют три основных способа крепления:

Листы обшивки прикрепляются к стрингерам. В этом случае на корпусе образуются продольные швы из заклепок. Данный тип крепления значительно повышает аэродинамические свойства машины.

Листы обшивки крепятся исключительно к шпангоутам. Подобный вариант крепления влечет за собой увеличение общей массы конструкции и значительное снижение устойчивости самолета. Проблемы решаются путем использования дополнительных накладок, которые называются компенсаторами.

Листы обшивки прикреплены к шпангоутам и стрингерам. Этот тип обеспечивает крепление к продольным и поперечным деталям силового каркаса.

В большинстве случаев обшивка крепится к каркасу заклепками. В последнее время некоторые конструкторы используют шестиугольные металлические материалы, которые имеют внутри специальный клей. Такое крепление отлично противостоит деформационным процессам и передает нагрузки на всю поверхность фюзеляжа.

Крепление основных агрегатов к фюзеляжу самолета

Крепление крыльев

Особенность соединения крыла и корпуса заключается в уравновешивании моментов изгиба крыльевых консолей в месте крепления. Наиболее эффективным уравновешиванием является соединение между собой крыльев через фюзеляж. В лонжеронных крыльях это сделать довольно просто, стоит только пустить через корпус от одного крыла лонжерон к другому крылу.

Фюзеляж самолета внутри

Что касается кессонных крыльев, то через фюзеляж пускают все силовые панели. В случае когда пропуск через корпус невозможен, используют замыкание колебаний на силовых шпангоутах. К силовым шпангоутам так часто крепятся и бортовые нервюры от крыла.

Крепление киля

Крепление киля, так же как и крыла, требует передачи изгибающего момента на корпус. Для получения этого используется рамный или сеточный силовой шпангоут. В большинстве случаев используется крепление лонжеронов в двух точках, которые разнесены по силовому шпангоуту. В точке, где пересекается лонжерон со шпангоутом, лонжерон киля имеет излом, именно здесь необходимо усиление конструкции с помощью дополнительной нервюры.

Силовые установки могут крепиться как к самому силовому каркасу, так и к пилонам на крыльях.

Гермоотсеки в самолете

За счет наличия герметических кабин и отсеков современные самолеты имеют возможность летать и перевозить пассажиров на очень больших высотах. При этом в кабинах создается особый микроклимат с избыточным давлением в 45-60 КПа. Гермоотсеки могут иметь различную форму, но наиболее рациональной считается сферическая или цилиндрическая.

Стык сферического сегмента с гермоотсеком цилиндрической формы должен быть усилен шпангоутом, поскольку здесь возникают очень высокие сжимающие нагрузки.

В конструкции отсеков должна быть обеспечена отличная герметизация по швам заклепок и других соединений. Для абсолютной герметизации швов используют специальные ленты, которые пропитываются герметиком. Кроме этого, швы промазывают жидким герметиком с дальнейшей горячей сушкой. Также небольшой шаг между заклепками позволяет повысить надежность обшивки и герметизации отсеков.

Конструкторы отдельное внимание уделяют герметизации люков, дверей, фонарей, окон. Для этого используют специальные прокладки, ленты и жгуты.

Из какого материала делают самолеты

Конструкционные материалы, из которых изготавливают самолеты, прошли стремительную эволюцию вместе с развитием самой авиации. От полотняных аэропланов в начале прошлого века до современных стальных птиц. За 100 лет существования авиации, материалы, из которых изготавливают авиалайнеры, существенно изменились.

Немного истории

Самые первые самолеты (братьев Райт, США – 1903 г.; «Вуазен», Франция – 1905г; «Блерио», Франция – 1906 г.; «Рой», Англия – 1908 г.) изготавливались из тонких стальных труб, обтянутых материей, или имели деревянную конструкцию и полотняную обшивку поверхностей. Следующим шагом совершенствования конструкций самолета следует считать замену тканей на обшивку фанерой. Для повышения прочности фанерных конструкций, их стали делать в несколько слоев, скрепленных клеем.

Из какого металла делают самолеты

Однако, деревянные конструкции были довольно неуклюжими, имели большое сопротивление во время полета. С увеличением скоростей самолетов, повышением нагрева конструкций и элементов двигателей, их использование стало небезопасным. Конструкторы стали постепенно заменять деревянные детали на металлические. Но полностью металлические самолеты появились не сразу.

Несовершенная технология производства металла на первых этапах его применения в авиации, делала конструкции из него, тяжелее деревянных, поэтому переход на металл происходил не быстро. Первые пробные аэропланы целиком из металла были изготовлены немцами в начале второго десятилетия прошлого века. По весу они превышали деревянные конструкции в несколько раз, и их летные данные оставляли желать лучшего.

Большинство аэропланов, использовавшихся в Первой мировой войне (1914—1918 гг.), были деревянными с тканевой обшивкой.

Из чего делают самолеты

После войны основной причиной развития металлических самолетов послужило появление пассажирской авиации, потребовавшей производства большого количества самолетов с длительными сроками эксплуатации. Деревянные конструкции набухали под действием неблагоприятных атмосферных явлений (влаги, температуры). При определенных условиях они начинали подгнивать. Все это приводило к их быстрому выходу из строя, и не удовлетворяло требованиям гражданской авиации.

Где в России делают самолеты

Ученые многих стран трудились над совершенствованием металлических материалов для авиастроения и технологии их изготовления. В СССР, одним из основоположников металлического самолетостроения стал знаменитый авиаконструктор Андрей Николаевич Туполев.

В 30-е годы прошлого столетия металл почти полностью вытеснил дерево в конструкции самолетов. Однако деревянные конструкции еще некоторое время применялись в отдельных случаях. В частности, в конструкциях советских истребителей Лагг-3, И-16, Як-1 и других, участвовавших в Великой Отечественной войне, использовались деревянные элементы. Это было сделано из соображений экономии, так как деревянные конструкции в изготовлении обходились дешевле металлических.

С появлением реактивной авиации в 50-х годах прошлого века, деревянные конструкции самолетов перестали использоваться.

Нагрузки, воздействующие на самолет

Чтобы понять, из чего делают самолеты, необходимо рассмотреть их отдельные конструктивные составляющие и выяснить, какие нагрузки приходятся на каждую из них. К основным частям конструкции самолета относятся:

  • фюзеляж;
  • крылья;
  • хвостовое оперение;
  • двигатель;
  • шасси.

Каждая из этих частей самолета имеет свое функциональное назначение. Фюзеляж самолета объединяет все элементы конструкции в единое целое. Крыло создает подъемную силу. Двигатели создают необходимую для полета тягу. Хвостовое оперение обеспечивает аэроплану горизонтальную и вертикальную управляемость. Шасси необходимы для совершения взлета и посадки.

В процессе полета и на земле все эти составные части самолета испытывают разнообразные, характерные только для них нагрузки.

Все нагрузки, которые приходится выдерживать самолету подразделяются :

  • нагрузки от воздействия набегающего потока воздуха при различных скоростях полета самолета и при его маневрах (подъемная сила и сила лобового сопротивления);
  • весовые нагрузки, за счет веса бортового оборудования, топлива, пассажиров, полезного груза, двигателей, шасси и др.;
  • инерционные нагрузки, связанные с инерцией, которую набирают элементы конструкции самолета и груз при изменении скоростей;
  • термические нагрузки, возникающие под воздействием скоростного напора воздуха, а также внутри работающего двигателя.

Для современных реактивных самолетов важна также и звуковая нагрузка, которая возникает при работе двигателя.

Потому как прилагаются эти нагрузки их можно подразделить на те, что влияют сразу на многие части самолета, и на те, что сосредоточены в определенном месте. Кроме того, есть нагрузки, которые действуют постоянно, с определенной динамикой или частотой.

Исходя из учета влияния указанных нагрузок на конкретные составные части самолета, выбираются материалы, из которых они изготавливаются. Однако, есть одно свойство, которое применимо ко всем без исключения материалам, это их максимально легкий вес при прочих равных достоинствах.

Из какого металла делают самолеты

Материалы, из которых делают самолет

К основным материалам, из которых делаются самолеты, относятся различные металлы, их сплавы и композиционные материалы. Рассмотрим подробнее принципы работы с этими материалами.

Алюминий

Большая часть конструкции самолета изготавливается из алюминия и его сплавов. Он идеально для этого подходит, прежде всего, из-за своего небольшого веса, а также из-за широких возможностей менять свои свойства в сочетании с различными добавками.

Так, для изготовления планеров, подвергающимся небольшим аэродинамическим нагревам, используется дуралюмин, представляющий собой высокопрочный алюминиевый сплав с примесью меди, марганца и магния. Для температурно нагружаемых оболочек планера и силовых элементов скелета самолета используются сплавы алюминия повышенной жаропрочности, с добавлением магния. Такие сплавы также используются для изготовления отдельных элементов конструкции двигателя, работающих в умеренном тепловом режиме (лопатки, крыльчатки, диски компрессора первого контура).

Из чего делают самолеты

Алюминиевые сплавы с добавлением кремния применяют для литья сложных по форме деталей, с небольшой нагруженностью. Эти сплавы обладают хорошей текучестью и заполняемостью в нагретом состоянии. Из них изготавливают: кронштейны, рычаги, фланцы. Их также используют для изготовления некоторых деталей двигателя: корпуса компрессоров, картеры, различные патрубки и др.

В общей сложности на алюминиевые конструкции самолета приходится до 80% от его общей массы.

Титан

Титан и титановые сплавы представляет особый интерес в авиастроении, в первую очередь, из-за своих возможностей выдерживать высокие температуры.

Из титана изготавливаются корпуса сверхзвуковых самолетов, передние края крыльев и стабилизаторов. Титановые сплавы широко применяются в конструкциях шасси, узлах крепления закрылков, в силовых элементах. В реактивных двигателях из титана изготавливаются детали, подвергающиеся высокотемпературным нагрузкам: лопатки компрессоров и диски компрессоров второго контура, кожухи камер сгорания, сопла реактивных двигателей.

Сталь

Сталь представляет собой сплав железа и углерода. Она довольно широко используется при изготовлении самолетов. В авиации в основном применяется конструкционная сталь с содержанием от 0,05 до 0,55% углерода. Из стали изготавливают отдельные элементы силового набора конструкции, детали шасси, болты, заклепки. Жаропрочная сталь идет на изготовление обшивок самолетов, развивающих большие скорости.

Композиционные материалы

Широкое применение при производстве самолетов нашли композиционные материалы (композиты), представляющие собой основу и распределенные в ней армирующие материалы. В качестве армирующих материалов используются органические волокна, а в качестве основы — различные металлические сплавы.

Детали, изготовленные из композитов, обладают небольшим весом, могут выдерживать высокие температуры. Их используют для изготовления обшивок крыла, оперения, створок шасси, радиопрозрачных обтекателей и др.

Где в России делают самолеты

При рассмотрении материалов, из которых делаются самолеты нельзя забывать и о таких важных материалах, как резина и пластмассы. Резина применяется при изготовлении колес шасси, трубопроводов, шлангов, прокладок, уплотнителей, амортизаторов. Различные по своим свойствам пластмассы применяются для изготовления силовых элементов конструкции самолета, остекления кабины пилота, декоративной отделки пассажирского салона, в качестве электро- и теплоизоляции. Химически стойкие пластмассы используются для изготовления топливных баков.

Пожалуй, мы рассмотрели все основные наиболее используемые для производства самолетов материалы. То, из какого металла делают самолеты, во многом отражается и на их летных возможностях. Так, легкие алюминиевые сплавы используются для производства планеров дозвуковых самолетов, титан и сталь – для достижения сверхзвуковых и гиперзвуковых скоростей.

Для всех авиационных материалов важной характеристикой является их технологичность, то есть способность их изготовления серийно, а не только в одном экземпляре. Самолеты производятся большими партиями, все их детали изготавливаются многократно. В ходе повторяющегося процесса изготовления они не должны терять своих основных свойств.

Для этого разрабатываются специальные технологические процессы, которые представляют собой последовательные изменения свойств материала на различных этапах его производства, вплоть до его получения с заданными свойствами. Все основные технологические процессы по изготовлению материалов для самолетов стандартизированы, что гарантирует их производство с одинаковыми свойствами. Изготовление авиационных материалов, основных конструктивных частей самолета и его окончательная сборка производятся на авиастроительных заводах.

Основные авиазаводы России

Чтобы увидеть, где в России делают самолеты, нужно открыть карту. География расположения авиазаводов на территории России представлена весьма разнообразно, от западных границ до Дальнего Востока.

Из какого металла делают самолеты

В Южном административном округе, в Ростове –на-Дону и в Таганроге производят вертолеты Ми-26, Ми-28, Ми-35, самолеты-амфибии Бе-200. В Московской области – МиГ-29, Ил-103. В Центральной части России, в Воронежской и Смоленской областях — Ил-96-300, Ан-148, Ил-96-400, Ил-112, Як-18Т, СМ-92Т. На Волге расположены заводы по производству Ан-140,Ту-204, Ил-76, Ан-140, МиГ-29, МиГ-31, МиГ-35. В Республике Татарстан делают Ту-214, Ансат, Ми-17, Ми-38. В Сибири — Су-34, Су-30, Як-130, МС-21, Як-152, Су-25УБ, Су-25УБМ , Ми-8АМТ, Ми-171, Ми-171А2, Ми-8АМТШ. В республике Башкортостан – Ка-226, Ка-27, Ка-31, Ка-32. На Дальнем Востоке расположено производство Сухой Суперджет-100, Су-27, Су-30, Су-33, Су-35, Т-50 (ПАК ФА) и вертолетов Ка-52, Ка-62.

Резюме

Широта представленных авиазаводов по территории России, а также номенклатура изготавливаемой техники, говорит о развитом авиастроительном производстве России. Основы его были заложены знаменитыми учеными, конструкторами и инженерами прошлого века. В наше время новое поколение разработчиков авиационной техники успешно продолжает начатое ими дело. Иллюстрацией этому служат новые российские разработки самолетов и вертолетов, признанные во всем мире.

Читайте также: