Какой вид кристаллической решетки имеют щелочные металлы

Обновлено: 19.05.2024

К щелочным металлам относятся элементы первой группы, главной подгруппы: литий, натрий, калий, рубидий, цезий, франций .

Нахождение в природе

Из щелочных металлов наиболее широко распространены в природе натрий и калий. Но из-за высокой химической активности они встречаются только в виде соединений: Na-2,64% (по массе), K-2,5% (по массе), Li, Rb, Cs - значительно меньше, Fr - искусственно полученный элемент.

Основными источниками лития, натрия, калия являются:

Li

Na

NaCl – поваренная соль (каменная соль), галит

Na 2 SO 4 • 10H 2 O – глауберова соль (мирабилит)

NaNO 3 – чилийская селитра

K

KCl • NaCl – сильвинит

KCl • MgCl 2 • 6H 2 O – карналлит

K 2 O • Al 2 O 3 • 6SiO 2 – полевой шпат (ортоклаз)

Литий, натрий, калий, рубидий в свободном состоянии серебристо-белые металлы, цезий имеет золотисто-желтый цвет. Все металлы очень мягкие и пластичные. Наибольшей твердостью обладает литий, остальные металлы легко режутся ножом и могут быть раскатаны в фольгу.

В кристаллическом состоянии все они имеют объёмно-центрированную кристаллическую решетку с металлическим типом химической связи, что обуславливает их высокую тепло- и электропроводность.

Все щелочные металлы имеют небольшую плотность, самый легкий металл – литий, его плотность составляет всего 0,53 г/см 3 .

Металлы имеют достаточно низкие температуры плавления и кипения, причем с увеличением порядкового номера элемента температура плавления металла понижается.

Все металлы очень активны, поэтому их хранят в запаянных ампулах, под слоем вазелинового масла или керосина.

Некоторые физические свойства щелочных металлов приведены в таблице.

Электронное строение атомов

На внешнем энергетическом уровне атомы щелочных металлов имеют один электрон ns 1 . Поэтому для всех металлов группы IA характерна степень окисления +1.

Этим объясняется сходство свойств всех щелочных металлов.

Для них (сверху вниз по группе) с увеличением порядкового номера атомный радиус увеличивается, способность отдавать валентные электроны увеличивается, и восстановительная активность увеличивается.

Химические свойства

Типичные металлы, очень сильные восстановители. В соединениях проявляют единственную степень окисления +1.

Восстановительная способность увеличивается с ростом атомной массы. Все соединения имеют ионный характер, почти все растворимы в воде.

Гидроксиды ROH – щёлочи, сила их возрастает с увеличением атомной массы металла.

Воспламеняются на воздухе при умеренном нагревании. Продукты сгорания чаще всего пероксиды R 2 O 2 .

С водородом образуют солеобразные гидриды RH.

Восстановительная способность увеличивается в ряду Li–Na–K–Rb–Cs

РЕАКЦИИ С ПРОСТЫМИ ВЕЩЕСТВАМИ

1. Реакция с кислородом:

Для получения оксида из пероксида (надпероксида) щелочного металла:

На воздухе щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических растворителей (керосин и др.).

2. В реакциях с другими неметаллами образуются бинарные соединения:

2Li + Cl 2 → 2LiCl -1 (галогениды)

2Na + S → Na 2 S -2 (сульфиды)

2Na + H 2 → 2NaH -1 (гидриды)

6Li + N 2 → 2Li 3 N -3 (нитриды)

2Li + 2C → Li 2 C 2 -1 (карбиды)

РЕАКЦИИ СО СЛОЖНЫМИ ВЕЩЕСТВАМИ

1. Активно взаимодействуют с водой:

2Na + 2H 2 O → 2NaOH + H 2

2Li + 2H 2 O → 2LiOH + H 2

2. Реакция с кислотами - неокислителями (H 2 S, H 3 PO 4 , H 2 SiO 3 и др., исключение – HNO 3 ) :

2Na + 2HCl = 2NaCl + H 2

3. C кислотами-окислителями образуются три продукта-водород не вытесняется:

8Na + 5 H 2 SO 4 (конц.) = 4Na 2 SO 4 + H 2 S↑ + 4H 2 O,

8Na + 10 HNO 3 (конц.) = 8NaNO 3 + N 2 O↑ + 5H 2 O,

8Na + 9 HNO 3 (разб.) = 8NaNO 3 + NH 3 ↑ + 3H 2 O,

8Na + 10 HNO 3 (оч. разб.) = 8NaNO 3 + NH 4 NO 3 + 3H 2 O

4. Качественная реакция на катионы щелочных металлов - окрашивание пламени в следующие цвета:

K + , Rb + и Cs + – фиолетовый

Получение

Т.к. щелочные металлы - это самые сильные восстановители, их можно восстановить из соединений только при электролизе расплавов солей:

Кристаллические решетки. Строение вещества

Все молекулы состоят из мельчайших частиц – атомов. Все открытые на настоящий момент атомы собраны в таблице Менделеева.

Атом – это мельчайшая, химически неделимая частица вещества, сохраняющая его химические свойства. Атомы соединяются между собой химическими связями. Ранее мы уже рассматривали виды химических связей и их свойства. Обязательно изучите теорию по теме: Типы химических связей, перед тем, как изучать эту статью!

Теперь рассмотрим, как могут соединяться частицы в веществе.

В зависимости от расположения частиц друг относительно друга свойства образуемых ими веществ могут очень сильно различаться. Так, если частицы расположены друг от друга далеко (расстояние между частицами намного больше размеров самих частиц), между собой практически не взаимодействуют, перемещаются в пространстве хаотично и непрерывно, то мы имеем дело с газом .

Если частицы расположены близко друг к другу, но хаотично, больше взаимодействуют между собой, совершают интенсивные колебательные движения в одном положении, но могут перескакивать в другое положение, то это модель строения жидкости .

Если же частицы расположены близко к друг другу, но более упорядоченно, и больше взаимодействуют между собой, а двигаются только в пределах одного положения равновесия, практически не перемещаясь в другие положения, то мы имеем дело с твердым веществом .

Большинство известных химических веществ и смесей могут существовать в твердом, жидком и газообразном состояниях. Самый простой пример – это вода. При нормальных условиях она жидкая, при 0 о С она замерзает – переходит из жидкого состояния в твердое, и при 100 о С закипает – переходит в газовую фазу – водяной пар. При этом многие вещества при нормальных условиях – газы, жидкости или твердые. Например, воздух – смесь азота и кислорода – это газ при нормальных условиях. Но при высоком давлении и низкой температуре азот и кислород конденсируются и переходят в жидкую фазу. Жидкий азот активно используют в промышленности. Иногда выделяют плазму, а также жидкие кристаллы, как отдельные фазы.

12

Очень многие свойства индивидуальных веществ и смесей объясняются взаимным расположением частиц в пространстве друг относительно друга!

Данная статья рассматривает свойства твердых тел, в зависимости от их строения. Основные физические свойства твердых веществ: температура плавления, электропроводность, теплопроводность, механическая прочность, пластичность и др.

Температура плавления – это такая температура, при которой вещество переходит из твердой фазы в жидкую, и наоборот.

melting

Пластичность – это способность вещества деформироваться без разрушения.

Пластичность

Электропроводность – это способность вещества проводить ток.

Ток – это упорядоченное движение заряженных частиц. Таким образом, ток могут проводить только такие вещества, в которых присутствуют подвижные заряженные частицы. По способности проводить ток вещества делят на проводники и диэлектрики. Проводники – это вещества, которые могут проводить ток (т.е. содержат подвижные заряженные частицы). Диэлектрики – это вещества, которые практически не проводят ток.

electrocuted

В твердом веществе частицы вещества могут располагаться хаотично, либо более упорядоченно. Если частицы твердого вещества расположены в пространстве хаотично, вещество называют аморфным . Примеры аморфных веществ – уголь, слюдяное стекло.

Аморфный бор

Если частицы твердого вещества расположены в пространстве упорядоченно, т.е. образуют повторяющиеся трехмерные геометрические структуры, такое вещество называют кристаллом , а саму структуру – кристаллической решеткой . Большинство известных нам веществ – кристаллы. Сами частицы при этом расположены в узлах кристаллической решетки.

Кристаллические вещества различают, в частности, по типу химической связи между частицами в кристалле – атомные, молекулярные, металлические, ионные; по геометрической форме простейшей ячейки кристаллической решетки – кубическая, гексагональная и др.

В зависимости от типа частиц, образующих кристаллическую решетку , различают атомную, молекулярную, ионную и металлическую кристаллическую структуру .

Атомная кристаллическая решетка

diamond

Атомная кристаллическая решетка образуется, когда в узлах кристалла расположены атомы . Атомы соединены между собой прочными ковалентными химическими связями. Соответственно, такая кристаллическая решетка будет очень прочной, разрушить ее непросто. Атомную кристаллическую решетку могут образовывать атомы с высокой валентностью, т.е. с большим числом связей с соседними атомами (4 или больше). Как правило, это неметаллы: простые вещества — кремния, бора, углерода (аллотропные модификации алмаз, графит), и их соединения (бороуглерод, оксид кремния (IV) и др.). Поскольку между неметаллами возникает преимущественно ковалентная химическая связь, свободных электронов (как и других заряженных частиц) в веществах с атомной кристаллической решеткой в большинстве случаев нет. Следовательно, такие вещества, как правило, очень плохо проводят электрический ток, т.е. являются диэлектриками. Это общие закономерности, из которых есть ряд исключений.

атомные кристаллы

Связь между частицами в атомных кристаллах: ковалентная полярная или неполярная.

В узлах кристалла с атомной кристаллической структурой расположены атомы.

Фазовое состояние атомных кристаллов при нормальных условиях: как правило, твердые вещества.

Вещества , образующие в твердом состоянии атомные кристаллы:

  1. Простые веществас высокой валентностью (расположены в середине таблицы Менделеева): бор, углерод, кремний, и др.
  2. Сложные вещества, образованные этими неметаллами: кремнезем (оксид кремния, кварцевый песок) SiO2; карбид кремния (карборунд) SiC; карбид бора, нитрид бора и др.

Физические свойства веществ с атомной кристаллической решеткой:

прочность;

— тугоплавкость (высокая температура плавления);

— низкая электропроводность;

— низкая теплопроводность;

— химическая инертность (неактивные вещества);

— нерастворимость в растворителях.

Молекулярная кристаллическая решетка

suhoyled

Молекулярная кристаллическая решетка – это такая решетка, в узлах которой располагаются молекулы. Удерживают молекулы в кристалле слабые силы межмолекулярного притяжения (силы Ван-дер-Ваальса, водородные связи, или электростатическое притяжение). Соответственно, такую кристаллическую решетку, как правило, довольно легко разрушить. Вещества с молекулярной кристаллической решеткой – легкоплавкие, непрочные. Чем больше сила притяжения между молекулами, тем выше температура плавления вещества. Как правило, температуры плавления веществ с молекулярной кристаллической решеткой не выше 200-300К. Поэтому при нормальных условиях большинство веществ с молекулярной кристаллической решеткой существует в виде газов или жидкостей. Молекулярную кристаллическую решетку, как правило, образуют в твердом виде кислоты, оксиды неметаллов, прочие бинарные соединения неметаллов, простые вещества, образующие устойчивые молекулы (кислород О2, азот N2, вода H2O и др.), органические вещества. Как правило, это вещества с ковалентной полярной (реже неполярной) связью. Т.к. электроны задействованы в химических связях, вещества с молекулярной кристаллической решеткой – диэлектрики, плохо проводят тепло.

Модель Кристаллическая решетка йода купить солнечный-мир.рф

Связь между частицами в молекулярных кристаллах: межмолекулярные водородные связи, электростатические или межмолекулярные силы притяжения.

В узлах кристалла с молекулярной кристаллической структурой расположены молекулы.

Фазовое состояние молекулярных кристаллов при нормальных условиях: газы, жидкости и твердые вещества.

Вещества , образующие в твердом состоянии молекулярные кристаллы:

  1. Простые вещества-неметаллы, образующие маленькие прочные молекулы(O2, N2, H2, S8 и др.);
  2. Сложные вещества (соединения неметаллов) с ковалентными полярными связями(кроме оксидов кремния и бора, соединений кремния и углерода) — вода H2O, оксид серы SO3 и др.
  3. Одноатомные инертные газы (гелий, неон, аргон, криптони др.);
  4. Большинство органических веществ, в которых нет ионных связей — метан CH4, бензол С6Н6 и др.

Физические свойства веществ с молекулярной кристаллической решеткой:

— легкоплавкость (низкая температура плавления):

— высокая сжимаемость;

— молекулярные кристаллы в твердом виде, а также в растворах и расплавах не проводят ток;

— фазовое состояние при нормальных условиях – газы, жидкости, твердые вещества;

— высокая летучесть;

— малая твердость.

Ионная кристаллическая решетка

salt

В случае, если в узлах кристалла находятся заряженные частицы – ионы, мы можем говорить о ионной кристаллической решетке . Как правило, с ионных кристаллах чередуются положительные ионы (катионы) и отрицательные ионы (анионы), поэтому частицы в кристалле удерживаются силами электростатического притяжения . В зависимости от типа кристалла и типа ионов, образующих кристалл, такие вещества могут быть довольно прочными и тугоплавкими. В твердом состоянии подвижных заряженных частиц в ионных кристаллах, как правило, нет. Зато при растворении или расплавлении кристалла ионы высвобождаются и могут двигаться под действием внешнего электрического поля. Т.е. проводят ток только растворы или расплавы ионных кристаллов. Ионная кристаллическая решетка характерна для веществ с ионной химической связью. Примеры таких веществ – поваренная соль NaCl, карбонат кальция – CaCO3 и др. Ионную кристаллическую решетку, как правило, в твердой фазе образуют соли, основания, а также оксиды металлов и бинарные соединения металлов и неметаллов.

Связь между частицами в ионных кристаллах: ионная химическая связь.

В узлах кристалла с ионной решеткой расположены ионы.

Фазовое состояние ионных кристаллов при нормальных условиях: как правило, твердые вещества.

Химические вещества с ионной кристаллической решеткой:

  1. Соли (органические и неорганические), в том числе соли аммония (например, хлорид аммония NH4Cl);
  2. Основания;
  3. Оксиды металлов;
  4. Бинарные соединения, в составе которых есть металлы и неметаллы.

Физические свойства веществ с ионной кристаллической структурой:

— высокая температура плавления (тугоплавкость);

— растворы и расплавы ионных кристаллов – проводники тока;

— большинство соединений растворимы в полярных растворителях (вода);

— твердое фазовое состояние у большинства соединений при нормальных условиях.

Металлическая кристаллическая решетка

12

И, наконец, металлы характеризуются особым видом пространственной структуры – металлической кристаллической решеткой, которая обусловлена металлической химической связью . Атомы металлов довольно слабо удерживают валентные электроны. В кристалле, образованном металлом, происходят одновременно следующие процессы: часть атомов отдает электроны и становится положительно заряженными ионами; эти электроны хаотично перемещаются в кристалле; часть электронов притягивается к ионам. Эти процессы происходят одновременно и хаотично. Таким образом, возникают ионы , как при образовании ионной связи, и образуются общие электроны , как при образовании ковалентной связи. Свободные электроны перемещаются хаотично и непрерывно по всему объему кристалла, как газ. Поэтому иногда их называют « электронным газом ». Из-за наличия большого числа подвижных заряженных частиц металлы проводят ток, тепло. Температура плавления металлов сильно варьируется. Металлы также характеризуются своеобразным металлическим блеском, ковкостью, т.е. способностью изменять форму без разрушения при сильном механическом воздействии, т.к. химические связи при этом не разрушаются.

Металлическая кристаллическая решетка

Связь между частицами : металлическая химическая связь.

В узлах кристалла с металлической решеткой расположены ионы металлов и атомы.

Фазовое состояние металлов при обычных условиях: как правило, твердые вещества (исключение — ртуть, жидкость при обычных условиях).

Химические вещества с металлической кристаллической решеткой — простые вещества-металлы.

Физические свойства веществ с металлической кристаллической решеткой:

— высокая тепло- и электропроводность;

— ковкость и пластичность;

— металлический блеск;

— металлы, как правило, нерастворимы в растворителях;

— большинство металлов – твердые вещества при нормальных условиях.

Сравнение свойств веществ с различными кристаллическими решетками

Тип кристаллической решетки (или отсутствие кристаллической решетки) позволяет оценить основные физические свойства вещества. Для примерного сравнения типичных физических свойств соединений с разными кристаллическими решетками очень удобно использовать химические вещества с характерными свойствами. Для молекулярной решетки это, например, углекислый газ, для атомной кристаллической решетки — алмаз, для металлической — медь, и для ионной кристаллической решетки — поваренная соль, хлорид натрия NaCl.

Сводная таблица по структурам простых веществ, образованных химическими элементами из главных подгрупп таблицы Менделеева (элементы побочных подгрупп являются металлами, следовательно, имеют металлическую кристаллическую решетку).

Щелочные металлы. Химия щелочных металлов и их соединений


Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Электронное строение щелочных металлов и основные свойства

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность .


Физические свойства

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.


Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.


Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галит — NaCl — хлорид натрия


Сильвин KCl — хлорид калия


Сильвинит NaCl · KCl


Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия


Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:


Способы получения

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов .


Цвет пламени:
Li — карминно-красный
Na — жѐлтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный

Химические свойства

1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K + I2 = 2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na + S = Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

3K + P = K3P

2Na + H2 = 2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например , калий реагирует с водой очень бурно:

2K 0 + H2 + O = 2 K + OH + H2 0


Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например , натрий бурно реагирует с соляной кислотой :

2Na + 2HCl = 2NaCl + H2

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):

С разбавленной азотной кислотой образуется молекулярный азот:

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .

Например , при взаимодействии лития с аммиаком образуются амиды и водород:

Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2

Фенол с натрием реагирует с образованием фенолята натрия и водорода:

Метанол с натрием образуют метилат натрия и водород:

Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH + 2Li → 2CH3COOLi + H2

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например , хлорметан с натрием образует этан и хлорид натрия:

2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например , натрий взаимодействует в расплаве с хлоридом алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов

Оксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве:

1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

2. Взаимодействием натрия с пероксидом натрия :

3. Взаимодействием натрия с расплавом щелочи :

2Na + 2NaOН → 2Na2O + Н2

4. Оксид лития можно получить разложением гидроксида лития :

2LiOН → Li2O + Н2O

Химические свойства

Оксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами :

Например , оксид натрия взаимодействует с оксидом фосфора (V):

Оксид натрия взаимодействует с амфотерным оксидом алюминия:

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:

K2O + 2HCl → 2KCl + H2O

3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.

Например , оксид лития взаимодействует с водой с образованием гидроксида лития:

Li2O + H2O → 2LiOH

4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.

Пероксиды щелочных металлов

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .

Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

При нагревании пероксиды, опять-таки, диспропорционируют:

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.

Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:

Гидроксиды щелочных металлов (щелочи)

1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.

Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.

Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:

1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:

Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:

А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:

3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:

4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:

5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется щелочами до силиката и водорода:

Фтор окисляет щелочи. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфор — диспропорционируют в щелочах:

Сера взаимодействует с щелочами только при нагревании:

6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями .

С щелочами взаимодействуют соли тяжелых металлов.

Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с щелочами взаимодействуют соли аммония.

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Соли щелочных металлов

Нитраты и нитриты щелочных металлов

Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.

Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

Сильные окислители окисляют нитриты до нитратов.

Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

Кристаллическое строение металлов. Кристаллическая решетка металлов


Металлы – особая группа элементов в периодической таблице Менделеева. В отличие от неметаллов элементы этой группы являются исключительно восстановителями с положительной степенью окисления, а также обладают пластичностью, твёрдостью, упругостью, что обусловлено кристаллическим строением металлов.

Что такое щелочные металлы?

У щелочных металлов электронная конфигурация внешнего энергетического уровня : ns1, на внешнем энергетическом уровне находится 1 s-электрон.
Типичная степень окисления щелочных металлов в соединениях +1.

Располагаются сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1.

Валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа.

Поэтому для всех щелочных металлов характерны восстановительные свойства.

Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — самый низкий) и электроотрицательности (ЭО).

Однозарядные катионы

В большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов.

Однако существуют и соединения, где щелочные металлы представлены анионами (см. Алкалиды).

Общее строение

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Единица кристаллической решётки – элементарная кристаллическая ячейка, в условных узлах и на гранях которой находятся положительно заряженные ионы. Их удерживают вместе металлические связи, возникающие за счёт беспорядочного движения отделившихся от атомов электронов (благодаря чему атомы превратились в ионы).

Отрицательно заряженные электроны держат на равном расстоянии положительно заряженные электроны, предавая кристаллической решётке правильную геометрическую форму.

Схема металлической связи


Рис. 1. Схема металлической связи.

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

атомные и физические свойства щелочных металлов

Радиоактивные изотопы: 40K, T1/2 = 1,277·109 лет; 87Rb, T1/2 = 4,75·1010 лет; 223Fr, T1/2 = 21,8 мин; 224Fr, T1/2 = 3,33 мин.

Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней.

Многие минералы содержат в своём составе щелочные металлы. Например, ортоклаз, или полевой шпат, состоит из алюмосиликата калия K2[Al2Si6O16], аналогичный минерал, содержащий натрий — альбит — имеет состав Na2[Al2Si6O16]. В морской воде содержится хлорид натрия NaCl, а в почве — соли калия — сильвин KCl, сильвинит NaCl·KCl, карналлит KCl·MgCl2·6H2O, полигалит K2SO4·MgSO4·CaSO4·2H2O.

Химические свойства щелочных металлов Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.

Признаки

Все 14 видов элементарных ячеек обладают общими свойствами:

  • они являются простейшими повторяющимися структурами в кристалле;
  • каждый центр решетки состоит из одной частицы, называемый узлом решетки;
  • узлы ячейки соединяются между собой прямыми, которые формируют геометрию кристалла;
  • противоположные грани параллельны;
  • симметрия элементарной структуры соответствует симметрии всей кристаллической решетки.

При выборе структуры элементарной ячейки руководствуются некоторыми правилами. У нее должны быть:

  • наименьший объем и площадь;
  • наибольшее количество одинаковых ребер и углов между ними;
  • прямые углы (по возможности);
  • пространственная симметрия, отражающая симметрию всей кристаллической решетки.

Взаимодействие с кислородом

Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.

Только литий сгорает на воздухе с образованием оксида стехиометрического состава: <\mathsf <4\ Li+\ O_\longrightarrow 2\ Li_O)) При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2: <\mathsf <2\ Na+\ O_\longrightarrow \ Na_O_ <2))>В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды: <\mathsf Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:

<\mathsf <2\ Na+2\ NaOH\longrightarrow 2\ Na_O+\ H_\uparrow )) <\mathsf <2\ Na+\ Na_O_\longrightarrow 2\ Na_O)) <\mathsf <3\ K+\ KO_\longrightarrow 2\ K_O)) Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О2− 2 и надпероксид-ион O− 2.

Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО3. Все кислородные соединения имеют различную окраску, интенсивность которой увеличивается в ряду от Li до Cs:

Таблица формула

Формула кислородного соединенияЦвет
Li2OБелый
Na2OБелый
K2OЖелтоватый
Rb2OЖёлтый
Cs2OОранжевый
Na2O2Светло- жёлтый
KO2Оранжевый
RbO2Тёмно- коричневый
CsO2Жёлтый

Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:

<\mathsf <\mathsf

<\mathsf

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря электронной микроскопии, когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

строение кристаллической решетки металлов

Взаимодействие с другими веществами

Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованием гидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов, сульфидов, нитридов, фосфидов, карбидов и силицидов:

<\mathsf <2\ Na+\ H_<2>\longrightarrow 2\ NaH)) <\mathsf <2\ Na+\ Cl_<2>\longrightarrow 2\ NaCl)) <\mathsf <2\ K+\ S\longrightarrow \ K_<2>S)) <\mathsf <6\ Li+\ N_<2>\longrightarrow 2\ Li_N)) <\mathsf <2\ Li+2\ C\longrightarrow \ Li_<2>C_ <2))>При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) щелочные металлы реагируют с кислотами.

Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах:

<\mathsf <2\ Na+2\ NH_<3>\longrightarrow 2\ NaNH_+\ H_\uparrow )) При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака:

<\mathsf

<\mathsf <2\ Na+2\ CH_CH_OH\longrightarrow 2\ CH_CH_ONa+\ H_\uparrow )) <\mathsf <2\ Na+2\ CH_COOH\longrightarrow 2\ CH_COONa+\ H_\uparrow )) Качественное определение щелочных металлов Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:

Окраска пламени щелочными металлами и их соединениями

Щелочной металлЦвет пламени
LiКарминно-красный
NaЖёлтый
KФиолетовый
RbБуро-красный
CsФиолетово-красный

Получение щелочных металлов

Электролиз расплавов галогенидов

Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:

<\mathsf <2\ LiCl\longrightarrow 2\ Li+\ Cl_<2>\uparrow )) катод: +e\longrightarrow <\mathsf анод: -2e\longrightarrow <\mathsf \uparrow > Электролиз расплавов гидроксидов Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:

<\mathsf <4\ NaOH\longrightarrow 4\ Na+2\ H_O+\ O_\uparrow )) катод: +e\longrightarrow <\mathsf анод: -4e\longrightarrow <\mathsf <2H_O+O_<2))>\uparrow > Восстановление из галогенидов Щелочной металл может быть восстановлен из соответствующего хлорида или бромида кальцием, магнием, кремнием и др. восстановителями при нагревании под вакуумом до 600—900 °C:

<\mathsf <2\ MCl+\ Ca\longrightarrow 2\ M\uparrow +\ CaCl_<2))>Чтобы реакция пошла в нужную сторону, образующийся свободный щелочной металл (M) должен удаляться путём отгонки. Аналогично возможно восстановление цирконием из хромата. Известен способ получения натрия восстановлением из карбоната углём при 1000 °C в присутствии известняка.

Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из водных растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.

Соединения щелочных металлов

Гидроксиды

Для получения гидроксидов щелочных металлов в основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрия электролизом концентрированного водного раствора поваренной соли:

Добыча золота

Сегодня основным добытчиком золота является государство, которое добывает металл промышленным методом. В России первый самородок, а в последствии и рудник был найден в 1745 году. Сегодня добычей золота в России занимаются 16 компаний. Добыча ведется на территории Чукотки, Магаданской области, в Амурской и Иркутской области, в Хабаровском и Красноярском крае, в Челябинске.

Золотые самородки

Самыми крупными золотодобывающими странами являются Китай, Россия и Австралия.

Так процесс золотодобычи сложный и дорогостоящий, специалисты постоянно работают над его удешевлением. Наиболее распространенный способ – закрытие нерентабельных мест добычи.

За все время человечеством добыто около 170 тонн драгоценного металла.

Прежде щёлочь получали реакцией обмена:

<\mathsf

Гидроксиды щелочных металлов — белые гигроскопичные вещества, водные растворы которых являются сильными основаниями. Они участвуют во всех реакциях, характерных для оснований — реагируют с кислотами, кислотными и амфотерными оксидами, амфотерными гидроксидами:

Гидроксиды щелочных металлов при нагревании возгоняются без разложения, за исключением гидроксида лития, который так же, как гидроксиды металлов главной подгруппы II группы, при прокаливании разлагается на оксид и воду:

<\mathsf <2\ LiOH\longrightarrow \ Li_O+\ H_O)) Гидроксид натрия используется для изготовления мыла, синтетических моющих средств, искусственного волокна, органических соединений, например фенола.

Важным продуктом, содержащим щелочной металл, является сода Na2CO3. Основное количество соды во всём мире производят по методу Сольве, предложенному ещё в начале XX века. Суть метода состоит в следующем: водный раствор NaCl, к которому добавлен аммиак, насыщают углекислым газом при температуре 26—30 °C. При этом образуется малорастворимый гидрокарбонат натрия, называемый питьевой содой:

<\mathsf

<\mathsf <2\ NH_<4>Cl+\ Ca(OH)_\longrightarrow 2\ NH_\uparrow +\ CaCl_+2\ H_O)) Таким образом, при аммиачном способе получения соды единственным отходом является хлорид кальция, остающийся в растворе и имеющий ограниченное применение.

При прокаливании гидрокарбоната натрия получается кальцинированная, или стиральная, сода Na2CO3 и диоксид углерода, используемый в процессе получения гидрокарбоната натрия:

<\mathsf <2\ NaHCO_\longrightarrow \ Na_CO_+\ CO_\uparrow +\ H_O)) Основной потребитель соды — стекольная промышленность.

В отличие от малорастворимой кислой соли NaHCO3, гидрокарбонат калия KHCO3 хорошо растворим в воде, поэтому карбонат калия, или поташ, K2CO3 получают действием углекислого газа на раствор гидроксида калия:

<\mathsf <2\ KOH+\ CO_\longrightarrow \ K_CO_+\ H_O)) Поташ используют в производстве стекла и жидкого мыла.

Литий — единственный щелочной металл, для которого не получен гидрокарбонат. Причина этого явления в очень маленьком радиусе иона лития, который не позволяет ему удерживать довольно крупный ион HCO− 3.

Безопасность

Все щелочные металлы проявляют высокую активность при взаимодействии с водой, кислородом, галогенами и другими соединениями. Особенно опасны взаимодействия с водой, так как продуктами реакций являются едкие щёлочи, а также происходит огромное выделение энергии, сопровождаемое огненной вспышкой (в случае с калием) или взрывом (в случае с рубидием или цезием). Поэтому необходимо соблюдать правила безопасности при работе с ними. Работа должна проводиться исключительно в перчатках из латекса, также необходимо надевать защитные очки. В экспериментах используют только небольшие количества, манипуляции с которыми производят при помощи щипцов; в случае непрореагировавших остатков щелочных металлов (например, натрия или калия), применяют утилизацию в обезвоженном спирте. Рубидий и цезий ввиду чрезвычайно высокой химической активности (взрывоопасные) практически не применяют в опытах.

Примитивная ячейка

Элементарная ячейка называется примитивной, если ее частицы находятся только в вершинах решетки и отсутствуют в других местах. Ее объем является минимальным по сравнению с другими типами. На практике она оказывается часто низкосимметричной (примером может служить ячейка Вигнера-Зейтца).

У не примитивных ячеек атом в центре объема делит их на 2 или на 4 одинаковые части. В гранецентрированной структуре происходит разделение на 8 частей. В металлографии пользуются понятием элементарной, а не примитивной ячейки, так как симметрия первой позволяет более полноценно описать кристаллическую структуру материала.

Какой вид кристаллической решетки имеют щелочные металлы


Щелочные металлы. Элементы IA-группы

Ключевые слова конспекта: щелочные металлы, элементы IA-группы, литий, натрий, цезий, калий, рубидий, надпероксиды, пероксид натрия, щелочи, получение и применение щелочных металлов.

Щелочными металлами называют элементы IA-группы Периодической системы. Групповое название «щелочные» обусловлено тем, что растворимые в воде гидроксиды натрия и калия известны с древних времён, их называли щелочами. Важнейшие параметры этих элементов приведены в таблице.

Щелочные металлы. Элементы IA-группы

Вы видите, как меняются свойства элементов в подгруппе: от лития к цезию радиусы атомов увеличиваются, значения энергии ионизации и электроотрицательности уменьшаются, металлические свойства усиливаются.

Электронная конфигурация валентного электронного слоя атомов щелочных металлов ns 1 , где n – номер валентного энергетического уровня. Щелочные металлы являются s-элементами.

В соединениях щелочных металлов преобладает ионный характер связи. В своих соединениях щелочные металлы могут быть только одновалентны. Во всех своих соединениях щелочные металлы имеют степень окисления +1.

Высшими оксидами являются соединения состава Ме2O, они имеют ярко выраженный основный характер. Высшие гидроксиды щелочных металлов МеОН – типичные основания, щёлочи. Водородные соединения щелочных металлов – твёрдые гидриды состава МеН.

ЩЕЛОЧНЫЕ МЕТАЛЛЫ – ПРОСТЫЕ ВЕЩЕСТВА

Щелочные металлы – вещества немолекулярного строения, их кристаллическая решётка металлическая.

При обычных условиях щелочные металлы – твёрдые вещества, имеют металлический блеск на свежем срезе (быстро тускнеют вследствие окисления), лёгкие (литий – самый лёгкий металл, его плотность составляет 0,53 г/см 3 ), легкоплавкие, мягкие (легко режутся ножом).

При внесении щелочных металлов или их соединений в бесцветное пламя оно приобретает характерную окраску:

Элемент

Окраска пламени Элемент

Окраска пламени

Li

Rb

Na

Cs

К

Щелочные металлы являются активными восстановителями. В атмосфере хлора и фтора они воспламеняются при обычных условиях.

Взаимодействие щелочных металлов с жидким бромом сопровождается взрывом.

Нагретые щелочные металлы легко сгорают на воздухе или в кислороде, но только при сгорании лития образуется оксид: При сгорании натрия обычно образуется пероксид (Na2O2):

Пероксид натрия Na2O2 – кристаллы светло-жёлтого цвета – можно рассматривать как соль пероксида водорода H2O2.

При сгорании остальных щелочных металлов образуются надпероксиды (например, КO2). Получить оксиды Na2О, К2O, Rb2O, Cs2O можно восстановлением пероксидов и надпероксидов щелочными металлами, например, по реакции: КO2 + 3К = 2К2O

Щелочные металлы взаимодействуют с серой при нагревании.

Литий – единственный металл, который реагирует с азотом с образованием нитрида уже при комнатной температуре:

Остальные щелочные металлы с азотом не реагируют (натрий реагирует с азотом при 100 °С, при электрическом разряде).

При нагревании щелочные металлы взаимодействуют с водородом с образованием твёрдых гидридов:


Щелочные металлы активно взаимодействуют с водой с образованием щёлочи и водорода. При этом кусочек лития или натрия с шипением «бегает» по поверхности воды, при взаимодействии калия происходит возгорание выделяющегося водорода (бледно-фиолетовое пламя), рубидий и цезий взаимодействуют со взрывом:

Щелочные металлы активно реагируют с разбавленными кислотами с образованием соли и водорода, но при этом параллельно протекают реакции щелочного металла с водой и образовавшейся щёлочи с кислотой.


Иначе протекают реакции с концентрированными растворами кислот или с самими кислотами – сильными окислителями, например с азотной и серной. В этих реакциях происходит восстановление азота в высшей степени окисления (в HNO3) или серы в высшей степени окисления (в H2SO4). Образуется соль, продукт восстановления азота или серы и вода:

Щелочные металлы активно взаимодействуют с растворами солей, но при этом происходит не замещение металла, входящего в состав соли, щелочным металлом, а прежде всего взаимодействие щелочного металла с водой раствора.

Натрий получают электролизом расплава поваренной соли (с добавками СаCl2 для понижения температуры плавления смеси):

Щелочные металлы находят широкое применение в промышленности и в технике:

  • литий – в литий-ионных аккумуляторах, в термоядерной энергетике для получения изотопа водорода – трития, а также в качестве теплоносителя в ядерных реакторах;
  • натрий используют как теплоноситель в ядерных реакторах, для синтеза некоторых органических соединений (например, как катализатор в синтезе каучука, как активный восстановитель в других реакциях, часто в сплаве с калием), в металлотермии (натрийтермия);
  • цезий легко теряет электроны даже под действием света, поэтому он применяется в фотоэлементах.

Наиболее распространёнными соединениями щелочных металлов являются (приведены исторические названия):

NaOH – едкий натр (каустическая сода),
NaCl – поваренная соль,
NaNO3 – чилийская селитра,
Na2SO4 • 10H2O – глауберова соль,
Na2CO3 • 10H2O – сода кристаллическая,
КОН – едкое кали,
КCl – хлорид калия, входит в состав калийной соли (NaCl • КCl + КCl),
KNO3 – индийская селитра,
К2СO3 – поташ.

Конспект урока по химии «Щелочные металлы. Элементы IA-группы». Выберите дальнейшее действие:

Читайте также: