Пластичные свойства металла характеризует

Обновлено: 05.07.2024

Пластичность металлов также объясняется специфическими свойствами металлической связи. При механическом воздействии на твердое тело отдельные слои его кристаллической решетки смещаются относительно друг друга. В силу высшей степени делокализации электронов при смещении отдельных слоев кристаллической решетки происходит лишь некоторое перераспределение электронной плотности, связывающей друг с другом атомы металла, но разрыва химических связей не происходит - металл деформируется, не разрушаясь. [1]

Пластичность металла определяется способностью металла не разрушаясь деформироваться так, что деформации остаются и после окончания действия нагрузки. Пластичность металлов имеет очень большое практическое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку ( волочению), штамповке. Смещение заполненных атомами металла плоскостей в кристалле в определенных пределах не приводит к разрушению металлической связи. Механизм образования смещений связан с появлением и движением дислокаций. Хрупкими определенное время считались титан, вольфрам, хром, молибден, тантал, висмут, цирконий. Очищенные от примесей эти металлы - высокопластичные материалы, которые можно ковать, прессовать, прокатывать. В табл. 11.3 приведены значения относительного удлинения некоторых металлов, характеризующего их пластичность. [3]

Пластичность металлов , как и прочность, по-видимому, должна быть обусловлена двумя вкладами - решеточным и примесным ( см. гл. Второй вклад оказывается настолько большим, что зависимости пластичности от температуры и скорости деформации металлов с примесями сильно отличаются от зависимостей, относящихся к чистым металлам. Эти различия имеют место и для соответствующих зависимостей прочностных характеристик, но в этом случае они выражены значительно слабее. Возможно, наиболее важными факторами, которые следует учитывать при обсуждении закономерностей пластичности, являются подвижность дислокаций и скорость релаксации напряжений, причем первый влияет собственно на пластичности, а второй скорее на некоторую функцию ее относительного изменения. [4]

Пластичность металлов характеризуют следующие величины. [5]

Пластичность металла оценивается по углу загиба, образующемуся при испытании до момента появления первой трещины. [6]

Пластичность металла существенно зависит от схемы деформирования. При стыковой сварке металл деформируется по схемам всестороннего неравномерного сжатия ( фиг. [7]

Пластичность металлов характеризуется сужением и удлинением. Сужение определяют при испытании на растяжение как уменьшение площади поперечного сечения образца. [8]

Пластичность металла характеризуют две величины, которые определяются при испытании металла на растяжение - относительное удлинение и относительное сужение. [9]

Пластичность металла определяется по относительному удлинению и относительному сужению образцов в момент разрыва. [10]

Пластичность металлов определяют также при испытании на растяжение. Под действием нагрузки образцы металлов удлиняются, а их поперечное сечение становится меньше. [11]

Пластичность металлов характеризуется относительным удлинением б образца при разрыве по сравнению с его первоначальной длиной. [13]

Пластичность металлов также объясняется специфическими свойствами металлической связи. При механическом воздействии на твердое тело отдельные слои его кристаллической решетки смещаются относительно друг друга. В кристаллах с атомной структурой это приводит к разрыву ковалектных связей между атомами, принадлежащими различным слоям, и кристалл разрушается. В случае же металла при смещении отдельных слоев его кристаллической решетки происходит лишь некоторое перераспределение электронного газа, связывающего друг с другом атомы металла, но разрыва химических связей не происходит - металл деформируется, не разрушаясь. [15]

Лекция 9. Влияние различных факторов на пластичность металла. Влияние ОМД на структуру и свойства металлов. Основные законы теории пластических деформаций. Нагрев заготовок при ОМД

Пластичность характеризует способность материала деформироваться, или растягиваться, под воздействием нагрузки и не разрушаться при этом. Чем более пластичен металл, тем больше он может растягиваться, прежде чем наступит разрушение. Пластичность – это важное свойство металла, поскольку от нее зависит характер разрушения металла под воздействием нагрузки, которое может происходить постепенно или внезапно. Если металл обладает высокой степенью пластичность, он, как правило, разрушается и разрывается постепенно. Прежде чем наступит разрыв, пластичный металл изгибается, и это надежный признак происходящего превышения предела текучести. Металлы с низкой пластичностью хрупки, они разрушаются внезапно, с образованием излома и без предупреждающих признаков.

Пластичность металла прямо связана с его температурой. С ростом температуры пластичность материала возрастает, а по мере снижения температуры она снижается. Металлы, проявляющие свойства пластичности при комнатной температуре, могут становиться хрупкими и разрушаться внезапно при температуре ниже нуля.

Металлы с высоким уровнем пластичности называются пластичными, а металлы с низким уровнем пластичности называются хрупкими. Перед разрушением хрупкие материалы не претерпевают заметной или вообще какой-либо деформации. Удачным примером хрупкого материала может служить стекло. Хрупким металлом, имеющим широкое распространение, можно назвать чугун, в особенности белый чугун.

Пластичность – это свойство, которое позволяет нагружать несколько элементов, имеющих некоторый разброс по длине, не перегружая ни один из них до предела разрушения. Если один из элементов несколько короче, но пластичен, его деформация может быть достаточной для равномерного распределения нагрузки по всем элементам. Практическим примером этого может служить индивидуальное натяжение стальных тросов, из которых состоят канаты подвесных мостов. Поскольку этого нельзя сделать с достаточной точностью, тросы изготовляют из пластичного металла. Когда мости нагружен, те тросы, которые кратковременно оказываются под нагрузкой, превышающей их долю, могут растянуться и, следовательно, переложить часть груза на другие тросы.

Пластичность становится еще более важным свойством для металла, который должен подвергаться дополнительным операциям формоизменения. Например, металлы, которые используются для изготовления кузова автомобиля, должны иметь достаточную пластичность, позволяющую придавать материалу нужную форму.

Особенность, которая важна в связи с характеристиками пластичности и прочности, заключается в их зависимости от соотношения между направлением приложения силы и направлением прокатки материала в процессе его производства. Прокатанные металлы обладают ярко выраженными свойствами направленности. Прокатка удлиняет кристаллы или зерна в направлении прокатки гораздо больше, чем в поперечном ей направлении. В результате прочность и пластичность прокатанного металла, например, листовой стали, наиболее велики в направлении прокатки. В поперечном направлении прочность материала может снижаться даже на 30%, а пластичность – на 50%, по сравнению с параметрами в направлении прокатки. По толщине листа прочность и пластичность еще меньше. У некоторых сталей пластичность в этом направлении очень низкая. Каждому из трех указанных выше направлений присвоено буквенное обозначение. Направление прокатки обозначается буквой «X», поперечное направление – «Y», а направление по толщине – буквой «Z».

Возможно, Вам приходилось видеть испытание на загиб стального листа во время аттестации сварщиков, когда у контрольного образца появлялся излом в основном металле. Наиболее частая причина такого разрушения – параллельность направления прокатки листа и оси шва. Хотя металл может обладать отличными характеристиками в направлении прокатки, воздействие нагрузки в любом из двух других направлений может привести к преждевременному разрушению.

Пластичность металла обычно определяется при помощи испытания на растяжение, которое проводится во время измерения предела прочности металла. Пластичность обычно выражается двумя способами: в виде относительного удлинения и относительного сужения площади сечения.
Поделитесь этим материалом:

Физические свойства металлов

9. Фи­зические свойства металлов

Металлическая связь и особенности кристаллического строения обуславливают особые физические свойства металлов.

Металлическая связь основана на обобществлении электронов, входящих в состав атомов металла. Все электроны на внешних энергетических уровнях атомов металлов обобществленные,

т.е. принадлежат всем атомам вещества. И эти электроны легко отрываются и попадают на энергетические уровни таких же атомов металлов. Постоянно перемещаясь по кристаллической решетке, электроны компенсируют силы электростатического отталкивания между положительно заряженными ионами и тем самым связывают их в устойчивую металлическую решетку.

Металлическая связь
– это связь в металлах и сплавах между атом-ионами посредством обобществленных электронов.
Разобраться в том, какой электрон принадлежал какому атому, просто невозможно, так как все оторвавшиеся электроны становятся общими, соединяясь с ионами. Эти электроны временно образуют атомы, потом снова отрываются и соединяются с другим ионом. Этот процесс продолжается бесконечно. Таким образом, в металлических соединениях атомы непрерывно превращаются в ионы и наоборот.

Именно строением металлической связи обусловлены физические свойства металлов.

К физическим свойствам металлов относятся:

  1. Металлический блеск.
  2. Электропроводность и теплопроводность.
  3. Пластичность.
  4. Твердость.
  5. Высокая плотность и температура плавления.

Рассмотрим каждое из свойств более подробно.

Металлический блеск.

Металлический блеск обусловлен металлической связью между атомами, для которой свойственны обобществленные электроны. Они как раз и испускают под воздействием света свои, вторичные волны излучения, которые мы воспринимаем как металлический блеск.

В порошкообразном состоянии большинство металлов теряют металлический блеск и приобретают серую или черную окраску.

Металлический блеск в порошкообразном состоянии сохраняют алюминий и магний.

Прекрасно отражают свет палладий Pd

, ртуть
Hg
, серебро
Ag
, медь
Cu
.

Из алюминия, серебра и палладия, основываясь на их отражательной способности, изготавливают зеркала, в том числе и применяемые в прожекторах.

Электропроводность и теплопроводность.

Все металлы хорошо проводят электрический ток и имеют высокую теплопроводность, также благодаря наличию металлической связи. При нагревании металла, увеличивается скорость движения электронов. Быстро движущиеся по кристаллической решетке электроны выравнивают температуру по всей поверхности металла, проводя тепло. Высокая теплопроводность металлов используется для изготовления из них посуды.

Высокая электропроводность металлов обусловлена направленным движением электронов в кристаллической решетке при воздействии электрического тока. Серебро Ag

, медь
Cu
, золото
Au
и алюминий
Al
обладают наибольшей электропроводностью, поэтому медь
Cu
и алюминий
Al
используют в качестве материала для изготовления электрических проводов.

Наименьшей электропроводностью обладают марганец Mn

, свинец
Pb
, ртуть
Hg
и вольфрам
W
.

Пластичность.

Пластичность – это физической свойство вещества изменять форму под внешним воздействием и сохранять принятую форму после прекращения этого воздействия.

Большинство металлов пластично, так как слои атом-ионов металлов легко смещаются относительно друг друга и между ними не происходит разрыва связи.

Наиболее пластичные металлы – золото Au

, серебро
Ag
, медь
Cu
. Из золота
Au
можно изготовить тонкую фольгу толщиной 0,003 мм, которую используют для золочения изделий.

Именно на пластичности металлов основано кузнечное дело и возможность изготавливать различные предметы с помощью механического воздействия на металл.

Все металлы (кроме ртути) при нормальных условиях представляют собой твердые вещества. Твердость металлов различна. Наиболее твердыми являются металлы побочной подгруппы шестой группы Периодической системы Д.И. Менделеева. Наименее твердыми являются щелочные металлы.

По плотности металлы классифицируют на легкие (их плотность от 0,53 до 5 г/см3) и тяжелые (плотность этих металлов от 5 до 22,6 г/см3). Самым легким металлом является литий Li

, плотность которого 0,53 г/см3. Самыми тяжелыми металлами в настоящее время считают осмий
Os
и иридий
Ir
(плотность около 22,6 г/см3).

Температура плавления.

Температура плавления металлов находится в диапазоне от 39 (ртуть Hg

) до 3410оС (вольфрам
W
). Температура плавления большинства металлов высока, однако некоторые металлы, например, олово
Sn
и свинец
Pl
, можно расплавить на электрической плите.

Физические свойства металлов и в настоящее время широко используются в промышленности и электронике

В технике все металлы делятся на черные

, к ним относятся железо и его сплавы, и
цветные
.

Изделия из различных видов металлов используются повсеместно благодаря их пластичности, но чаще всего в сплавах.

К драгоценным металлам

относят золото, серебро, платину и некоторые другие редко встречающиеся металлы.

Свойства и методы испытания металлов

1.1. Свойства и методы испытания металлов

Свойства металлов принято подразделять на механические, физические, химические, технологические и эксплуатационные.

Механические свойства.

Механические свойства характеризуют способность материала сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность и др.

– способность тела сопротивляться деформации и разрушению под действием внешних нагрузок.

– способность материала сопротивляться проникновению в него другого, более твердого тела, не получающего остаточной деформации.

– способность материала сопротивляться разрушению под действием динамических нагрузок. Поскольку многие материалы, вязкие в условиях медленного нагружения, становятся хрупкими при быстром (ударном) приложении нагрузки, то широко применяется определение
ударной вязкости
.

– способность тела разрушаться под действием внешних сил практически без пластической деформации.

– свойство твердого тела восстанавливать свою форму и объем после снятия нагрузки, вызвавшей деформацию. В конструкциях упругость проявляет себя в жесткости – способности сопротивляться деформации.

Пластичность

– способность тела остаточно, не разрушаясь изменять свою форму и размеры под действием внешних сил.

Механические свойства металлов определяют при статическом (кратковременном и длительном) и динамическом нагружении, при циклическом приложении нагрузки и другими методами.

Статическое нагружение характеризуется медленным приложением и плавным возрастанием нагрузки от нуля до некоторого максимального значения. Статические испытания проводят на растяжение, сжатие, кручение, изгиб и твердость.

Наибольшее распространение получил метод растяжения – самый жесткий вид испытаний. Испытания проводятся на 5 или 10 кратных образцах (l0 = 5d0 или 10d0, где l0 – длина образца, а d0 – его диаметр), что позволяет соблюдать геометрическое подобие и получать сравнимые результаты для всех металлов. Испытания на растяжение дают информацию о прочности, упругости и пластичности материалов. Рассмотрим диаграмму растяжения малоуглеродистой отожженной стали (рис. 1.1а).


Рис. 1.1. Диаграмма растяжения малоуглеродистой стали

В начальной стадии диаграммы материалы испытывают только упругую деформацию, которая полностью исчезает после снятия нагрузки. До точки «a» эта деформация пропорциональна нагрузке или действующему напряжению:

где P — приложенная нагрузка, F0- начальная площадь поперечного сечения образца.

Теоретический предел пропорциональности

– максимальное напряжение, до которого сохраняется линейная зависимость между напряжением (нагрузкой) и деформацией:

Прямолинейную зависимость между напряжением и деформацией можно выразить законом Гука:

где ε = Δl/l0∙100% – относительная деформация, Δl – абсолютное удлинение, l0 – начальная длина образца; Е – коэффициент пропорциональности (tg α), характеризующий упругие свойства материала – называется модулем нормальной упругости, с его увеличением возрастает жесткость изделий, поэтому Е часто называют модулем жесткости

Теоретический предел упругости

– максимальное напряжение, до которого образец получает только упругую деформацию:

Прочность характеризуется пределом текучести физическим и условным.

Физический предел текучести

– напряжение, при котором происходит увеличение деформации при постоянной нагрузке:

На диаграмме пределу текучести соответствует участок «c –d», когда наблюдается пластическая деформация (удлинение) — «течение» металла при постоянной нагрузке.

Большая часть металлов и сплавов не имеет площадки текучести, и для них определяют условный предел текучести

– напряжение, вызывающее остаточную деформацию, равную 0,2% от начальной расчетной длины образца (рис. 1.1б):

При дальнейшем нагружении пластическая деформация все больше увеличивается, равномерно распределяясь по всему объему образца.

В точке «В», где нагрузка достигает максимального значения, в наиболее слабом месте образца начинается образование «шейки» – сужения поперечного сечения, и деформация сосредотачивается именно на этом участке, то есть из равномерной переходит в местную. Напряжение в этот момент называют пределом прочности.

Предел прочности (временное сопротивление)

при растяжении – напряжение, соответствующее максимальной нагрузке, которую выдерживает образец до разрушения:

За точкой «В» в связи с развитием шейки нагрузка уменьшается, в точке «к» при нагрузке «Рк» происходит разрушение образца.

Истинный предел прочности

(истинное сопротивление разрушению) – максимальное напряжение, выдерживаемое материалом в момент, предшествующий разрушению образца:

где Fк – конечная площадь поперечного сечения образца в месте разрушения.

Твердость измеряется путем вдавливания в испытуемый образец твердого наконечника различной формы. Определение твердости проводят тремя наиболее распространенными методами.

По методу Бринелля

под действием нагрузки в испытуемое тело внедряется стальной закаленный шарик. Число твердости обозначается
НВ
и представляет собой отношение статической нагрузки к площади поверхности отпечатка шарика.

По методу Роквелла

в испытуемую поверхность в два этапа нагружения вдавливается индентор – алмазный конус с углом при вершине 120°или стальной шарик с диаметром 1,588мм. Число твердости обозначается
НRС
(конус) или
НRВ
(шар) и характеризуется разницей глубин проникновения индентора при первом и втором этапах нагружения.

По методу Виккерса

в испытуемую поверхность вдавливается алмазная четырехгранная пирамида с углом α = 136° между противоположными гранями. Число твердости
HV
определяют так же, как и в способе Бринелля, отношением нагрузки к площади поверхности отпечатка пирамиды.

Пример расшифровки обозначений: Н –Hard (твердость), B – Brinell, R – Rokwell, V – Vikkers, B – Ball – (шар), C – Cone (конус)

При динамических испытаниях нагрузка прилагается с большой скоростью – ударом и определяется, таким образом, ударная вязкость

. Производят испытания на маятниковом копре на стандартных образцах с надрезом. Испытания при пониженных температурах позволяют определять склонность металла к
хладноломкости
– резкому возрастанию хрупкости.

Химические свойства.

К химическим свойствам относится способность материалов к химическому взаимодействию с другими веществами и агрессивными средами.

Технологические свойства.

Способность материала подвергаться различным методам горячей и холодной обработки определяют по его технологическим свойствам. К ним относятся литейные свойства, деформируемость, свариваемость и обрабатываемость режущим инструментом и др. Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства

определяются жидкотекучестью, усадкой и склонностью сплавов к ликвации.

Деформируемость

– способность металлов и сплавов принимать необходимую форму под влиянием внешней нагрузки без разрушения и при наименьшем сопротивлении нагрузки.

Свариваемость

– способность металлов и сплавов образовывать неразъемные соединения требуемого качества.

Эксплуатационные или служебные свойства.

В зависимости от условий работы машины или конструкции определяют служебные свойства: коррозийную стойкость, хладостойкость, жаропрочность, жаростойкость, износостойкость и др.

Коррозионная стойкость –

сопротивление сплава действию агрессивных сред (кислотных и щелочных).

Хладостойкость –

способность сплава сохранять пластические свойства при температурах ниже нуля.

Жаропрочность –

способность сплава сохранять механические свойства при высоких температурах.

Жаростойкость –

способность сплава сопротивляться окислению в газовой среде при высоких температурах.

Износостойкость

– способность материала сопротивляться разрушению поверхностных слоев при трении.

Технологические свойства металлов и сплавов -зависимость от химического состава

Все основные качества металлов и их сплавов можно классифицировать по целому ряду показателей, каждый из которых оказывает существенное влияние на определение сферы применения материала.

  • К физическим свойствам металлов относят их вес, теплоемкость, способность проводить электрический ток и другие подобные показатели. Всем понятно, что применение, например, чугуна невозможно в авиастроении, а любой металл, отлично проводящий электричество не применим в производстве изоляторов.
  • Механические свойства определяются способностью противостоять различным нагрузкам, к ним относятся твердость, пластичность, упругость и многие другие качества.
  • Эксплуатационные качества характеризуют возможность применения металла для эксплуатации в различных условиях — стойкость к истиранию, воздействию высоких и низких температур, и так далее.
  • Химические свойства металлов и сплавов определены способностью элементов, входящих в их состав, вступать в реакции с другими веществами. Так, например, всем известно, что золото не поддается воздействия кислот, чего не скажешь о других видах металла.
  • Технологические свойства материала определяют перечень производственных процессов, которые применимы к металлу в последующей обработке.

Металлы — технологические свойства

К основным технологическим свойствам стоит отнести следующие характеристики:

металлы - технологические свойства

  • Жидкотекучесть (литейность) — способность материала в расплавленном состоянии заполнять литейную форму, без оставления пустот.
  • Свариваемость — способность выполнять неразъемные соединения деталей под действием различных видов сварки (газовая, электрическая, давлением).
  • Ковкость (деформируемость) — возможность менять форму изделия в горячем состоянии или при нормальной температуре под воздействием давления.
  • Прокаливаемость — способность улучшения различных свойств металла путем закалки на различную глубину.
  • Возможность выполнения обработки металла при помощи режущего оборудования показывает возможность выполнения токарных и фрезерных операций.

Все эти технологические свойства металлов и сплавов в комплексе и определяют дальнейшую сферу применения.

1.3. Технологические и эксплуатационные свойства

К технологическим свойствам относят литейные свойства, ковкость, свариваемость и обрабатываемость режущим инструментом.

– способность металла или сплава заполнять литейную форму, обеспечивать получение отливки заданных размеров и конфигурации без пор и трещин во всех ее частях.

– способность металла или сплава деформироваться с минимальным сопротивлением под влиянием внешней приложенной нагрузки и принимать заданную форму. Ковкость зависит не только от структуры материала, но и от внешних факторов, например, температуры нагрева.

– способность материала образовывать неразъемные сварные соединения. Материалы бывают хорошо и ограниченно свариваемые. Свариваемость зависит от структуры материала и технологии сварки.

Обрабатываемость

– свойство материала поддаваться обработке резанием. Критериями обрабатываемости являются режимы резания и качество обработанной поверхности.

Работоспособность любой детали во многом определяется эксплуатационными свойствами материала. Эти свойства учитывают особенности эксплуатации машины в конкретных условиях.

Прокаливаемость

– способность стали воспринимать закалку; характеризуется глубиной проникновения закаленного (мартенсит, или полумартенсит) слоя в объем закаливаемого изделия. Прокаливаемость определяется критической скоростью закалки, зависящей от состава стали. Легированные стали, вследствие более высокой устойчивости переохлажденного аустенита и соответственно меньшей критической скорости охлаждения, прокаливаются на большую глубину, чем углеродистые. Сильно повышают прокаливаемость Mn, Mo, Cr, Ni. Существует много методик оценки прокаливаемости, наиболее применяемым из которых до настоящего времени является метод торцовой закалки, при котором определяют твердость, как функцию расстояния от охлаждаемого струей закалочной жидкости торца цилиндра с изолированной боковой поверхностью.

– способность материала сопротивляться поверхностному разрушению (истиранию) под действием внешнего трения.

Жаропрочность

– способность сплава сохранять высокие механические характеристики (ползучесть и прочность) при высоких температурах.

Глава 2. Черные и цветные металлы и сплавы

2.1. Общие сведения о стали

В технике значительно чаще применяют не чистые металлы, а сплавы, состоящие из двух или нескольких элементов. Основными конструкционными материалами для машиностроительного производства служат сталь, чугун и сплавы цветных металлов на основе меди, алюминия, магния, титана.

– сплав железа с углеродом (массовая доля С не более 2,14 %), в который добавляют легирующие элементы для создания сталей с требуемыми механическими, технологическими и особыми эксплуатационными свойствами.

В сталях также содержатся и вредные примеси: сера (вызывает красноломкость) и фосфор (вызывает хладноломкость). Эти примеси не удается полностью удалить со шлаком по природным и технологическим причинам.

Красноломкостью

называется свойство стали давать трещины при горячей обработке давлением (ковка, штамповка, прокатка) в области температур красного или жёлтого каления (850-1150 °С). Красноломкость обусловливается главным образом распределением некоторых примесей (серы и меди) по границам зёрен металла.

Хладноломкостью

называется склонность металла к переходу в хрупкое состояние при понижении температуры. Хладноломкостью обладают железо, вольфрам, цинк и другие металлы, имеющие объемно-центрированную кубическую или гексагональную плотноупакованную кристаллическую решетку.

Рассмотрим влияние температуры Т

(°C) на характер деформации материала, которая оценивается относительным удлинением δ (%) (рис. 5). При температурах материала менее значения
Т
н предел прочности на разрыв меньше предела текучести. В этом случае металл разрушается без предварительной деформации, то есть находится в хрупком состоянии. Переход из хрупкого состояния в вязкое осуществляется в интервале температур от
Т
н до
Т
в, где
Т
н – нижняя, а
Т
в – верхняя границы интервала. При достижении температуры
Т
в и выше, предел прочности металла становится больше предела текучести, что приводит сначала к деформированию, а затем и к разрушению материала. Такое состояние называется вязким.

Основными способами выплавки стали являются: конверторный (55 %), в дуговых электропечах (25 %) и в мартеновских печах (20 %).


Рис. 5. Влияние температуры на состояние материала

Конверторный способ

получения стали позволяет использовать в качестве шихты жидкий чугун, до 50 % металлического лома, руду, флюс. Сжатый воздух под давлением (0,3-0,35 МПа) поступает через специальные отверстия. Теплота, необходимая для нагрева шихты, получается за счет химических реакций окисления углерода и примесей, находящихся в чугуне.

Производство стали в конверторах постепенно вытесняет производство ее в мартеновских печах. Вместимость современных конверторов достигает 600 тонн. Наибольшее развитие получает кислородно-конверторное производство стали, так как использование кислорода обеспечивает резкое (на 40 %) повышение производительности. Недостатки способа: повышенный расход огнеупорных материалов и высокий угар (потеря) металлов.

Огнеупорные материалы – это материалы, отличающиеся повышенной прочностью при высоких температурах и химической инертностью. Они применяются для производства печей, используемых в металлургических процессах, и других высокотемпературных агрегатов (реакторов, двигателей, и т.д.). Состав огнеупорных материалов представляют собой керамическую смесь тугоплавких окислов, силикатов, карбидов, нитридов, боридов, обладающих огнеупорностью не ниже 1580 °C.

Угар – уменьшение массы металлов в процессе плавки. При этом образуются химические соединения металла с веществами, находящимися в зоне плавления, которые переходят затем в шлак и газовую фазу.

Производство стали в электрических печах

– наиболее совершенный способ получения специальных и высококачественных сталей. Сталь выплавляют в дуговых или индукционных электропечах. Наиболее распространены дуговые электропечи вместимостью до 270 тонн. При плавке стали в электропечах используют как стальной скрап (металлические отходы, поступающие в переплавку для изготовления годного металла) и железную руду, так и жидкие стали, поступающие из мартеновской печи или конвертера.

Лом металлов (цветных, чёрных) –

это различные металлические изделия и конструкции, подлежащие повторной переработке. Металлоломом называют также пришедшие в негодность металлические вещи либо специально собираемый на пунктах сбора и приема металлический мусор.

Технологические свойства стали

Сталь считается одним из самых распространенных металлов, ее технологические свойства зависят от химического состава, различные примеси, входящие в нее, могут улучшить или ухудшить данные характеристики.

    Увеличение в составе стали углерода значительно повышает ее прокаливаемость, в тоже время она понижает ее пригодность к ковке. Для

Технологические свойства сплавов и металлов


выполнения этой операции, а также прокатки, содержание углерода не должно превышать 1,4%.

технологические свойства металлов и сплавов

К негативным примесям, существенно влияющим на технологические характеристики, можно отнести серу и фосфор. Излишек данных веществ может привести к красноломкости и хладноломкости соответственно. То есть сталь с избытком серы становится хрупкой при нагреве, а если в ней присутствует большое количество фосфора, то она будет ломаться при отрицательных температурах. Именно поэтому при выплавке стали многие усилия направлены на снижение данных примесей в металле, но, к сожалению, избавиться от них полностью не выходит.

Как видите, химические составляющие стали оказывают огромное значение на ее технологические свойства, поэтому при выборе метода обработки должен выполняться тщательный анализ состава сплава, в противном случае могут возникнуть проблемы, как в производстве, так и при эксплуатации изделия.

Общая характеристика металлических изделий

Современная металлургическая промышленность предлагает большое разнообразие видов металлических изделий. К самым распространенным из них относится металлический прокат, то есть изделия, которые производят на специальных станках методом горячей либо холодной прокатки.

Все разновидности металлического проката объединяются общим понятием «сортамент». Сортамент принято разделять на четыре группы: листовой, сортовой, трубы и специальные виды проката. К последним относятся бандажи, колеса, шары, периодические и гнутые профили. По способу обработки поверхности выделяют калиброванный, шлифованный, зеркальный и матовый сортамент.

Говоря о свойствах металлических изделий, стоит отметить, что сортовой прокат обладает самой разнообразной номенклатурой, где принято выделять простые и фасонные профили.

Прокатные цеха изготавливают примерно две тысячи размеров простых профилей, более тысячи фасонных общего потребления, а также около полутора тысяч размеров профилей специального назначения. Простыми называют профили с сечением в виде геометрических фигур, таких как круг, полукруг, овал, сегмент, шестигранник, квадрат, треугольник, полоса плоского сечения, пр.

Прокат сложного поперечного сечения обозначают как фасонные профили. В данной группе выделяют профили общего или массового потребления и специального назначения. К первым относятся уголки, швеллеры, двутавровые балки, шестигранные профили, пр. Тогда как вторые представлены трамвайными и железнодорожными рельсами широкой и узкой колеи, профилями сельскохозяйственного машиностроения, нефтяной и электропромышленности, пр. Из цветных металлов обычно производятся простые профили.

Размеры являются еще одним важным нюансом, о котором не стоит забывать, говоря на тему свойств металлических изделий. Сортовой прокат делят на:

  • Крупный. Сюда относят круглую сталь диаметром 80–250 мм, квадратную со стороной 70–200 мм, периодические арматурные профили № 70–80, угловая сталь с шириной полок 90–250 мм, швеллеры и двутавровые балки обычные и облегченные высотой 360–600 мм. Также в эту категорию входят специальные широкополочные двутавры и колонные профили высотой в пределах 1 000 мм, шестигранная сталь до № 100, железнодорожные рельсы массой 43–75 кг на метр длины изделия, полосовая сталь шириной не более 250 мм, пр.
  • Средний. Речь идет о круглой стали диаметром 32–75 мм, квадратной со стороной 32–65 мм и шестигранной до № 70. Здесь же представлен стальной периодический арматурный профиль № 32–60, двутавровые балки высотой до 300 мм, швеллеры высотой 100–300 мм, рельсы узкой колеи Р18 – Р24, штрипсы с сечением до 8×145 мм и фасонные профили.
  • Мелкий. Такая круглая сталь имеет диаметр 10–30 мм, квадратная со стороной 3,2–31 мм, сюда же относят периодический арматурный профиль.

В качестве элементов строительных конструкций применяют листовую и сортовую сталь. Нередко используют вторичные профили, то есть сварные, для изготовления которых соединяют полосы или листы, и гнутые. Для изготовления вторых прибегают к холодной гибке полос и листов.

Большая Энциклопедия Нефти и Газа

Пластические свойства металлов характеризуются относительным удлинением, S [ ( 1К - 1) / 1ц ] 100 % и с у ж е н и-е м, ц / [ ( А - Aic) / A0 ] 100 %, где 1, 1К и Ап, Ак - соответственно длина и площадь поперечного сечения образца до и после разрушения. [2]

Пластические свойства металлов и сплавов: - ударная вязкость, относительное удлинение и сужение - изменяются неоднозначно. Металлы с гранецентрированной кубической решеткой ( медь, никель, алюминий и др.) сохраняют высокие пластические свойства при низких температурах, тогда как металлы-с объемно-центрированной кубической и гексагональной решеткой становятся хрупкими. [3]

Пластические свойства металла шва и зоны влияния улучшают путем прокатки или продольной деформации. Дополнительное улучшение свойств сварных соединений достигается путем термообработки. [4]

Обычно пластические свойства металлов и сплавов с ростом температуры повышаются, а с ростом скорости деформации - - снижаются. Однако в ряде экспериментальных исследований отмечаются отклонения от этого закона при испытаниях самых различных материалов. [5]

Пластические свойства металлов зависят от типа их кристаллической структуры, которая определяет количество плотноупакованных направлений и плоскостей, пригодных для скольжения. Поэтому одни металлы более, а другие менее пластичны. [6]

Пластические свойства металла труб и способность его выдерживать различную деформацию проверяют технологическими испытаниями: сплющиванием, раздачей, бортованием и загибом в холодном или в горячем состоянии. [8]

Однако пластические свойства металла недостаточно полно определяются такими показателями, как удлинение при разрыве и сужение шейки разрываемого образца. Большое значение имеет также характер разрушения. Если при испытании на разрыв в одном из образцов обнаружен вязкий излом, а в другом - хрупкий ( при той же величине деформации), то можно утверждать, что пластическое состояние этих образцов различное и при некоторых определенных условиях эта разница скажется. Губкин для оценки пластического состояния предложил пользоваться комбинированным показателем который учитывал бы одновременно и степень деформации и вид разрушения. Такой комбинированный показатель называется деформируемостью. [9]

Восстанавливаются пластические свойства металла термической обработкой его путем отжига при температуре 600 - 700Э С в специальных печах. После термической обработки металл очищают путем травления или специальной обработки песком или дробью. [10]

На прочность и пластические свойства металлов влияют температура и давление. При нагревании прочность металла обычно понижается, пластичность увеличивается. Так, цинк при нагревании до 150 С становится ковким. Повышение давления оказывает такое же влияние, как и температура. Сталь, например, при давлении в несколько тысяч атмосфер становится такой же пластичной, как и свинец. [12]

При горячей деформации пластические свойства металла выше, а сопротивление деформации ниже, чем при холодной деформации, поэтому горячая деформация сопровождается меньшими энергетическими затратами, чем холодная. Вследствие этого холодную деформацию применяют только в том случае, если горячая деформация неприменима. [13]

Этим методом определяют пластические свойства металла . [14]

При горячей деформации пластические свойства металла выше, а сопротивление деформации ниже, чем при холодной деформации, поэтому горячая деформация с точки зрения энергетических затрат на деформирование более выгодна, чем холодная. [15]

Пластичность металлов

Пластичность металлов

Пластичность металлов проявляется под воздействием высокой температуры. При этом материал деформируется или растягивается под воздействием силы, но не разрушается. Это свойство активно применяется при изготовлении разнообразных деталей.

Высокая пластичность металла характеризуется постепенным разрушением с предварительным образованием изгиба, при низкой – материал ломается внезапно. О том, какими показателями пластичности обладают разные металлы и как это свойство используется в промышленности, расскажем далее.

Что такое пластичность металлов

Рассмотрим для начала определение пластичности металлов. Пластичностью называют способность металлов меняться под воздействием внешних факторов с сохранением изменений после окончания этого влияния. Специалисты называют это свойство обратной упругостью металлов. Высокая пластичность позволяет легко обрабатывать материалы (штамповать, ковать и пр.).

Существует прямая зависимость пластичности от температуры, до которой нагревают материал. Пластичность металлов увеличивается при нагревании, а при уменьшении температуры мягкость снижается. Если вы имеете дело с металлами, показывающими высокую пластичность в условиях комнатной температуры, то существует возможность их разрушения в случае охлаждения ниже нуля градусов по Цельсию.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Для большинства металлов характерна пластичность. У одних она высокая – это так называемые пластичные материалы, а у других низкая – это хрупкие. При этом последние не показывают какой-либо деформации при разрушении или перед ним. Хрупким может быть, например, стекло – один из самых часто встречающихся материалов. Или чугун (особенно белый) – это уже металл, причем широкого использования.

При необходимости обработки (изменении формы) пластичность металла будет очень важным свойством. Как на практике можно использовать пластичность металлов? Кузова автомобилей, например, изготавливают из материалов с достаточной пластичностью для того, чтобы была возможность придать им необходимую форму.

Характеристика пластичности металлов прочно связана с соотношением направления, куда была приложена сила, и направления, в котором происходила прокатка материала. Катаные металлы имеют свойство направленности из-за удлинения структурных кристаллов/зерен вдоль прокатки. Соответственно, пластичность будет выше в том же направлении. Это характерно и для листовой стали.

Что такое пластичность металлов

В поперечном же направлении прочность материала снижается, иногда до 30 %. Пластичность в том же направлении может упасть на 50 %. А по толщине материала эти свойства падают еще больше. Некоторые виды стали показывают очень низкую пластичность в поперечном направлении. Итак, мы имеем три направления. Им присваиваются следующие обозначения. Продольное (направление прокатки) обозначается X, поперечное – Y, по толщине – Z.

При проведении аттестации сварщиков, к примеру, при проверке навыка загиба листа стали, частенько можно увидеть излом основного металла. Он возникает из-за того, что ось шва идет параллельно с направлением прокатки металла. Несмотря на хорошие характеристики материала в направлении X, возникновение нагрузки в направлении Y или Z способно разрушить металл.

Проверка пластичности происходит с помощью теста на растяжение. Его производят в тот момент, когда испытывают металл на предел его прочности. Выражается данное свойство, как относительные удлинение и сужение сечения материала.

Существует несколько факторов, влияющих на пластичность металлов. Подробнее остановимся на каждом из них.

Зависимость пластичности металлов от химического состава

Высокую пластичность металлов обеспечивает их чистота. Мягкость чистых металлов выше, чем у сплавов. Примером может служить медь, у которой это свойство выше, чем у бронзы (сплав с оловом). Пластичность больше выражена у сплавов, которые создают твердые растворы, нежели у тех, что образуют смеси (механические) и химические соединения. Чем больше разница в пределах текучести и прочности, тем более прочными являются металлы.

Зависимость пластичности металлов от химического состава

Пластичность металлов обусловлена в том числе компонентами сплавов:

  1. Высокое содержание углерода приводит к уменьшению пластичности. Если в материале более полутора процентов углерода, то сталь плохо поддается ковке.
  2. Пластичность стали падает с появлением в ее составе кремния. Именно поэтому холодная штамповка и глубокая вытяжка используются для обработки малоуглеродистой стали с небольшим количеством кремния. Это такие марки, как 08кп или 10кп.
  3. Благодаря ванадию и никелю пластичность легированной стали повышается, а из-за присутствия вольфрама, хрома падает.
  4. Хрупкой сталь делает соединение серы и железа, в результате которого появляется сульфид железа в виде эвтектики. Он размещается на границах зерен и плавится в процессе нагрева до +1 000 С, разрушая связи зерен. Данный процесс получил название красноломкости.
  5. Для нейтрализации негативного воздействия серы используется марганец, который создает тугоплавкое соединение.
  6. Фосфор двояко воздействует на сталь. С одной стороны в металле возрастают пределы текучести/прочности, с другой – появляется хладноломкость из-за снижения пластичности/вязкости металла при низкой температуре.

Крупнозернистая структура литого металла создает более низкую пластичность, а в деформированном мелкозернистом она выше. Пластичность падает из-за присутствия в материале макро- и микротрещин, пор, пузырьков.

Влияние температуры на пластичность металлов

Пластичность металлов во многом зависит от температуры. Но не все так однозначно. Высокие значения повышают пластичность мало- и среднеуглеродистой стали. А, например, высокоуглеродистые более пластичны при низких значениях. При этом для шарикоподшипниковых температура вообще не влияет на пластичность.

Влияние температуры на пластичность металлов

Существуют также сплавы, у которых пластичность повышается в определенных температурных интервалах. От +800–1 000 °С для технического железа – это температура понижения пластичности металла. А при достижении градуса плавления металла происходит увеличение хрупкости, поскольку возрастает вероятность пережога/перегрева.

У углеродистой стали существует зона синеломкости. Это температура от +100 °С до +300 °С, когда прочность материала увеличивается, а пластичность падает. Объясняется это тем, что малые части карбидов выпадают по направлению плоскости скольжения во время деформации металла. Также уменьшение пластичности происходит при фазовых превращениях.

Влияние скорости деформации на пластичность металлов

Скорость деформации представляет собой изменение ее степени за определенный промежуток времени. При возрастании скорости происходит падение пластичности. Это особенно заметно в случае с высоколегированной сталью, сплавами меди и магния.

Объясняется это наличием двух разнонаправленных процессов при работе с нагретым материалом. С одной стороны, при деформации происходит его упрочение. С другой – ослабление прочности из-за рекристаллизации. Если мы имеем высокие скорости деформации, то упрочнение происходит быстрее, чем разупрочнение.

Но при еще большей скорости деформации (например, штамповке взрывом), пластичность снова начинает расти. Происходит это по причине увеличения температуры вследствие выработки теплоты при деформации. Она не может столь быстро рассеяться и приводит к возрастанию пластичности.

Как напряженное состояние влияет на пластичность металлов

Напряженное состояние определяется схемой расположения главных напряжений, которые действуют в малых объемах деформируемого металла.

Как напряженное состояние влияет на пластичность металлов

Главными напряжениями считаются нормальные, которые действуют на трех площадках, перпендикулярных друг другу, где напряжения по касательной взаимно уничтожаются (0). Существует 9 таких схем. Две из них линейные, три – плоские, четыре – объемные. Обработка давлением приводит к появлению двух объемных схем:

  • Трехосное сжатие – когда напряжения распространяются по трем осям. Присутствует при таких видах обработки металла, как прокатка, свободная ковка, прессовка, объемное штампование.
  • Напряженное состояние – когда две оси имеют напряжение сжатия, а одна – растяжения. Появляется при листовой штамповке (не всегда), а также при волочении.

Пластичность металла хорошо видна на схемах главных напряжений. Повышение роли напряжения сжатия приводит к увеличению пластичности в ходе обработки материала. Следовательно, пластичность при волочении ниже, чем при прессовании. Сжимая инструментом заготовку с боков при обработке давлением, можно увеличить напряжение сжатия металла.

В элементарно малом объеме деформация определяется схемой главных ее частей. Основными считаются те, что происходят по трем перпендикулярным осям, где касательное напряжение равно нулю. В ходе обработки давлением появляются три схемы главных деформаций:

  1. По двум осям происходят главные деформации сжатия, а по одной идет тот же процесс растяжения. Схема хорошо заметна при волочении, прессовании.
  2. По одной оси идет главная деформация сжатия, по двум видны процессы растяжения. Так происходит при прокатке (в калибрах, узкой полосы…), объемной штамповке или ковке.
  3. Первая ось – это главная деформация сжатия, вторая – главная деформация растяжения, на третьей ничего не происходит. Схема работает при штамповке листов, прокатке широких полос.

Информацию о зернах и волокнах металла, а также характере их формирования можно определить из схемы главных деформаций. При обработке давлением свойства материала (физические, механические), а также текстуру определяет максимальная главная деформация.

Примеры металлов, обладающих высокой пластичностью

Пластичность металлов объясняется в том числе чистотой металлов, но не только. Самыми высокими показателями обладают платина (серебряного цвета), золото (желтого) и медь (розово-оранжевого). Чуть более низкую пластичность имеют:

  • сталь – зависит от различных добавок и углеродистого состава;
  • латунь и прочие сплавы;
  • свинец – достаточно высокая пластичность проявляется в диапазонах температуры.

Примеры металлов, обладающих высокой пластичностью

Пластичность металла можно определить, только применяя ранее приобретенные знания или проводя эксперименты. Она зависит от того, каким образом различные добавки работают с металлическим стеклом, а также от степени чистоты металла.

Рекомендуем статьи

Важную роль играют и иные переменные. Например, количество электронов, а также молекулярных орбиталей, которые принимают участие в связях материала. Кроме того, расположение кристалла, размер зерен.

Не существует стандартных правил. Для каждого металла нужно найти связи между различными переменными (электронными, микроскопическими), проанализировать их, используя многомерный анализ. Все это приводит к тому, что даже похожие по свойствам и характеристикам материалы могут не быть одинаково пластичными.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Читайте также: