Карбоновые кислоты взаимодействуют с металлами

Обновлено: 20.09.2024

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH - РРРРРМНМНННННННН--ННН
F - РМРРРМННММНННРРРРР-НРР
Cl - РРРРРРРРРРРРРРРРРНРМРР
Br - РРРРРРРРРРРРРРРРРНММРР
I - РРРРРРРРРР?Р?РРРРНННМ?
S 2- МРРРР---Н--Н-ННННННННН
HS - РРРРРРРРР?????Н???????
SO3 2- РРРРРННМН?-Н?НН?ММ-Н??
HSO3 - Р?РРРРРРР?????????????
SO4 2- РРРРРНМРНРРРРРРРРМ-НРР
HSO4 - РРРРРРРР-??????????Н??
NO3 - РРРРРРРРРРРРРРРРРРРР-Р
NO2 - РРРРРРРРР????РМ??М????
PO4 3- РНРР-ННННННННННННННННН
CO3 2- РРРРРНННН??Н?ННННН?Н?Н
CH3COO - РРРРРРРРР-РР-РРРРРРР-Р
SiO3 2- ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:


Скопируйте эту ссылку, чтобы разместить результат запроса " " на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно.

На данный момент доступна упрощенная авторизация через VK.
В будущем добавлю авторизацию через Гугл и Яндекс.

Здесь вы можете выбрать параметры отображения органических соединений.

Эти параметры действуют только для верхнего изображения вещества и не применяются в реакциях.

Размер шрифта
Отображение гетероатомов

Корректная работа сайта обеспечена на всех браузерах, кроме Internet Explorer.

Если вы пользуетесь Internet Explorer, смените браузер.

На сайте есть сноски двух типов:

Подсказки - помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация - такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Получение карбоновых кислот

1. Окисление спиртов, алкенов и алкинов

При окислении спиртов, алкенов, алкинов и некоторых других соединений подкисленным раствором перманганата калия образуются карбоновые кислоты.

Например, при окислении этанола в жестких условиях образуется уксусная кислота


2. Окисление альдегидов

Альдегиды реагируют с раствором перманганата или дихромата калия в кислой среде при нагревании, а также с гидроксидом меди при нагревании.

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота.


Например, при окислении альдегидов гидроксидом меди (II) также образуются карбоновые кислоты


3. Щелочной гидролиз тригалогенидов

Тригалогеналканы, в которых три атома галогена расположены у одного атома углерода, с избытком щелочи образуется соль кислоты. При этом сначала происходит замещение галогенов на группы ОН.


Образуется неустойчивое вещество, которое распадается с отщеплением воды:


Так как щелочь в избытке, то образуется не сама кислота, а её соль:


4. Получение карбоновых кислот из солей

Карбоновые кислоты можно получить из солей действием минеральной кислоты на раствор соли:


Например, муравьиную кислоту можно получить, подействовав на формиат натрия раствором серной кислоты:


5. Гидролиз сложных эфиров

Сложные эфиры подвергаются гидролизу в кислой среде при нагревании:


Например, метилацетат гидролизуется в кислой среде:


6. Получение муравьиной кислоты из угарного газа

Соль муравьиной кислоты получают нагреванием оксида углерода (II) с твёрдым гидроксидом натрия под давлением:

7. Каталитическое окисление бутана

Уксусную кислоту в промышленности получают каталитическим окислением бутана:


8. Получение бензойной кислоты

Бензойную кислоту получают окислением гомологов бензола раствором перманганата калия в кислой среде.

Например, при окислении толуола образуется бензойная кислота:


9. Взаимодействие реактива Гриньяра с углекислым газом

При взаимодействии реактивов Гриньяра (алкилгалогенидов магния) с углекислым газом и последующем гидролизе образовавшегося промежуточного продукта образуется карбоновая кислота.

Химические свойства карбоновых кислот

Карбоновые кислоты реагируют с большинством оснований. При взаимодействии карбоновых кислот с основаниями образуются соли карбоновых кислот и вода.

CH3COOH + NaOH = CH3COONa + H2O

Карбоновые кислоты реагируют с щелочами, амфотерными гидроксидами, водным раствором аммиака и нерастворимыми основаниями.

Например, уксусная кислота растворяет осадок гидроксида меди (II)


Например, уксусная кислота реагирует с водным раствором аммиака с образованием ацетата аммония

1.2. Взаимодействие с металлами

Карбоновые кислоты реагируют с активными металлами. При взаимодействии карбоновых кислот с металлами образуются соли карбоновых кислот и водород.

Например, уксусная кислота взаимодействует с кальцием с образованием ацетата кальция и водорода .


1.3. Взаимодействие с основными оксидами

Карбоновые кислоты реагируют с основными оксидами с образованием солей карбоновых кислот и воды.

Например, уксусная кислота взаимодействует с оксидом бария с образованием ацетата бария и воды .

Например, уксусная кислота реагирует с оксидом меди (II)

2СН3СООН + CuO = H 2О + ( CH 3 COO )2 Cu

1.4. Взаимодействие с с солями более слабых и летучих (или нерастворимых) кислот

Карбоновые кислоты реагируют с солями более слабых, нерастворимых и летучих кислот.

Например, уксусная кислота растворяет карбонат кальция


Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими гидрокарбонатами. В результате наблюдается выделение углекислого газа


2. Реакции замещения группы ОН

Для карбоновых кислот характерны реакции нуклеофильного замещения группы ОН с образованием функциональных производных карбоновых кислот: сложных эфиров, амидов, ангидридов и галогенангидридов.

2.1. Образование галогенангидридов

Под действием галогенагидридов минеральных кислот-гидроксидов (пента- или трихлорид фосфора) происходит замещение группы ОН на галоген.

Например, уксусная кислота реагирует с пентахлоридом фосфора с образованием хлорангидрида уксусной кислоты


2.2. Взаимодействие с аммиаком

При взаимодействии аммиака с карбоновыми кислотами образуются соли аммония:


При нагревании карбоновые соли аммония разлагаются на амид и воду:


2.3. Этерификация (образование сложных эфиров)

Карбоновые кислоты вступают в реакции с одноатомными и многоатомными спиртами с образованием сложных эфиров.


Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):


2.4. Получение ангидридов

С помощью оксида фосфора (V) можно дегидратировать (то есть отщепить воду) карбоновую кислоту – в результате образуется ангидрид карбоновой кислоты.

Например, при дегидратации уксусной кислоты под действием оксида фосфора образуется ангидрид уксусной кислоты


3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе

Карбоксильная группа вызывает дополнительную поляризацию связи С–Н у соседнего с карбоксильной группой атома углерода (α-положение). Поэтому атом водорода в α-положении легче вступает в реакции замещения по углеводородному радикалу.

В присутствии красного фосфора карбоновые кислоты реагируют с галогенами.

Например, уксусная кислота реагирует с бромом в присутствии красного фосфора


4. Свойства муравьиной кислоты

Особенности свойств муравьиной кислоты обусловлены ее строением, она содержит не только карбоксильную, но и альдегидную группу и проявляет все свойства альдегидов.

4.1. Окисление аммиачным раствором оксида серебра (I) и гидроксидом меди (II)

Как и альдегиды, муравьиная кислота окисляется аммиачным раствором оксида серебра. При этом образуется осадок из металлического серебра.


При окислении муравьиной кислоты гидроксидом меди (II) образуется осадок оксида меди (I):


4.2. Окисление хлором, бромом и азотной кислотой

Муравьиная кислота окисляется хлором до углекислого газа.

4.3. Окисление перманганатом калия

Муравьиная кислота окисляется перманганатом калия до углекислого газа:

4.4. Разложение при нагревании

При нагревании под действием серной кислоты муравьиная кислота разлагается с образованием угарного газа:

5. Особенности бензойной кислоты

5.1. Разложение при нагревании

При нагревании бензойная кислота разлагается на бензол и углекислый газ:


4.2. Реакции замещения в бензольном кольце

Карбоксильная группа является электроноакцепторной группой, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.


6. Особенности щавелевой кислоты

6.1. Разложение при нагревании

При нагревании щавелевая кислота разлагается на угарный газ и углекислый газ:


6.2. Окисление перманганатом калия

Щавелевая кислота окисляется перманганатом калия до углекислого газа:


7. Особенности непредельных кислот (акриловой и олеиновой)

7.1. Реакции присоединения

Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:


К непредельным кислотам можно присоединять галогены и водород. Например, олеиновая кислота присоединяет водород:


6.2. Окисление непредельных карбоновых кислот

Непредельные кислоты обесцвечивают водный раствор перманганатов. При этом окисляется π-связь и у атомов углерода при двойной связи образуются две гидроксогруппы:

Acetyl

Читайте также: