Коррозия металла в нейтральной среде

Обновлено: 18.05.2024

Коррозией называется разрушение металлов в результате их физико-химического взаимодействия с окружающей средой. При этом металлы окисляются и образуются продукты коррозии, состав которых зависит от условий коррозии.

Коррозия приводит к большим потерям металлов в результате разрушения трубопроводов, цистерн, металлических частей машин, корпусов судов, морских сооружений и пр. Безвозвратные потери металлов от коррозии составляют 10% от ежегодного их выпуска. По ориентировочным подсчетам, мировая потеря металла от коррозии выражается величиной 20 миллионов тонн в год. Однако, затраты на ремонт или на замену деталей судов, автомобилей, аппаратуры химических производств, приборов во много раз превышают стоимость металла, из которого они изготовлены. Таким образом, борьба с коррозией представляет собой важную народнохозяйственную проблему.

Различают химическую и электрохимическую коррозию.

Химическая коррозия характерна для сред, не проводящих электрический ток. По условиям протекания коррозионного процесса различают: а) газовую коррозию – в газах и парах без конденсации влаги на поверхности металла, обычно при высоких температурах; б) коррозию в неэлектролитах – агрессивных органических жидкостях, таких как, например, сернистая нефть и др.

Газовая коррозия протекает по схеме: n Me + m/2O2 = MenOm;

Коррозию в серусодержащих неэлектролитах можно выразить схемой: Me + S = MeS.

Электрохимическая коррозия может протекать: а) в водных растворах электролитов, то есть солей, кислот и щелочей; б) в атмосфере любого влажного газа; в) в почве.

Рекомендуемые материалы

Задача 209:В задачах (206-225) определите, используя приведенные ниже экспериментальные данные, структурный тип

Выполнение домашних заданий по курсу химии : метод. указания / [C.Ю. Богословский и др.]. — М. : Изд-во МГТУ им. Н.Э. Баумана, 2013. — 98

В воде обычно содержится растворенный кислород, способный к восстановлению по схеме: О2 + 4Н + + 4е = 2 Н2О, или в нейтральной среде: 2Н2О +О2 + 4е = 4ОН - (1);

Кроме того, в воде присутствуют ионы водорода, также способные к восстановлению: 2Н + + 2е = Н2 или (в нейтральной среде) Н2О + 2е = Н2 + ОН - (2). Коррозия с участием кислорода называется коррозией с поглощением кислорода, или коррозией с кислородной деполяризацией. Коррозия с участием ионов водорода называется коррозией с водородной деполяризацией.

Потенциал, отвечающий электродному процессу (1), равен 1,229в – 0,059рН. В нейтрально среде он равен около 0,8в. Следовательно, растворенный в воде или нейтральных растворах кислород будет окислять те металлы, потенциал которых меньше, чем 0,8в. Эти металлы расположены в ряду напряжений, начиная от его начала, до серебра.

Потенциал электродного процесса (2) в нейтральной среде равен приблизительно –0,41в. Следовательно, ионы водорода в нейтральных водных растворах могут окислить только те металлы, потенциал которых меньше, чем 0,41в. Это металлы от начала ряда напряжений до кадмия.

Пример 1. Рассмотрим электрохимическую коррозию железа в кислой среде.

На анодных участках происходит окисление железа: (а) Fe – 2e = Fe +2 ;

На катодных участках происходит восстановление водорода: 2Н + + 2е = Н2.

Пример 2. Если гвоздь вбить во влажное дерево, то коррозии подвергается (покрывается ржавчиной) та его часть, которая находится внутри дерева. Это объясняется тем, что влага древесины содержит растворенный кислород, то есть, происходит коррозия железа по схеме:

(а) Fe –2e = Fe 2+ ; (к) О2 + 2Н + + 4е = 2Н2О;

Продуктами коррозии являются вода и оксид железа (II), который в присутствии кислорода окисляется до оксида трехвалентного железа Fe2O3.

Кадмий и металлы, близкие к нему в ряду напряжений, имеют на своей поверхности защитную оксидную пленку, которая препятствует взаимодействию этих металлов с водой. Поэтому количество металлов, которые может окислить водород в нейтральной среде, еще меньше.

Таким образом, вода, содержащая растворенный кислород (в воде его обычно содержится от 0 до 14 мг/л), значительно опаснее в коррозионном отношении, чем вода, способная окислять металлы только за счет ионов водорода.

При использовании металлических материалов очень важным является вопрос о скорости их коррозии. Кроме природы металла и окислителя и содержания последнего, на скорость коррозии могут влиять различные примеси, содержащиеся как в самом металле, так и в коррозионной среде: атмосфере или растворе. Могут иметь место различные случаи электрохимической коррозии.

Атмосферная коррозия – это коррозия во влажном воздухе при обычных температурах. Поверхность металла, находящегося во влажном воздухе, бывает покрыта пленкой воды, содержащей различные газы и, в первую очередь, кислород. Скорость атмосферной коррозии зависит от многих факторов. В частности, на нее влияет влажность воздуха и содержание в нем газов, образующих с водою кислоты (например, СО2 или SО2). Большое значение имеет также состояние поверхности металла: скорость атмосферной коррозии резко возрастает при наличии на поверхности шероховатостей, микрощелей, пор, зазоров и других мест, облегчающих конденсацию в них влаги.

Коррозия в грунте (почвенная коррозия) приводит к разрушению проложенных под землей трубопроводов, оболочек кабелей, деталей строительных сооружений. Металл в этих условиях соприкасается с влагой грунта, содержащей растворенный кислород. В зависимости от состава грунтовых вод, а также минералогического состава грунта, скорость этого вида коррозии может быть весьма различной.

Контактная коррозия протекает, когда два металла в различными потенциалами соприкасаются друг с другом либо в влажной среде, либо при наличии влаги, конденсирующейся из воздуха. Если изделие состоит из различных металлов, то при наличии контакта между ними в присутствии растворителя изделие становится подобным работающему гальваническому элементу. Электрохимическая коррозия включает процессы анодного растворения металла и катодного восстановления окислителя. При этом металл, обладающий более отрицательным электродным потенциалом (более активный металл), окисляется (разрушается) так, словно он является анодом работающего гальванического элемента.

Пример 3. Хром находится в контакте с медью. Какой из металлов будет окисляться, если эта пара металлов попадет в кислую среду? Составьте схему образующегося при этом гальванического элемента.

Хром более активный металл, чем медь (потенциал хрома равен –0,744в, а меди +0,337в), поэтому в образующейся гальванической паре он будет анодом, а медь – катодом. Хромовый анод растворяется: (а) 2Cr – 6e = 2Cr 3+ ;

на медном катоде выделяется водород: (к) 6Н + + 6е = 3Н2.

Схема образующегося гальванического элемента:

(-) 2Cr/Cr 3+ //HCl/(Cu)3H2/6H + (+)

Основным отличием процессов контактной электрохимической коррозии от процессов, происходящих в гальваническом элементе, является отсутствие внешней электрической цепи. Электроны в процессе коррозии не выходят за пределы коррозирующего металла, а двигаются внутри него. Химическая энергия преобразуется в данном случае не в электрохимическую энергию, а в тепловую. Если изделие состоит из различных металлов, то при наличии контакта между ними в присутствии растворителя изделие становится подобным работающему гальваническому элементу. Электрохимическая коррозия включает процессы анодного растворения металла и катодного восстановления окислителя. При этом металл, обладающий более отрицательным электродным потенциалом (более активный металл), окисляется (разрушается) так, словно он является анодом работающего гальванического элемента.

На поверхности металла могут быть участки, на которых катодные процессы протекают быстрее (катализируются). Такие участки называют катодными. На других участках будет происходить анодное растворение металла, поэтому они называются анодными участками. Катодные и анодные участки имеют очень малые размеры, однако, они чередуются и образуют коррозионные микроэлементы. Таким образом, при наличии неоднородности поверхности металла коррозионный процесс заключается в работе огромного числа коррозионных микроэлементов. Если металл включения имеет больший потенциал, чем основной металл, то последний становится анодом в образующемся гальваническом микроэлементе и скорость его коррозии возрастает. Так, например, алюминий, содержащий включения железа или меди, коррозирует значительно быстрее, чем алюминий высокой чистоты.

Пример 4. Атмосферная коррозия алюминия в нейтральной среде протекает по схеме:

(а) 2Al – 6e = 2Al 3+; (к) 3Н2О + 3е = 3Н2 + 3ОН - . Продуктами коррозии являются в данном случае водород и гидроксид алюминия.

Пример 5. Медь не вытесняет водород из разбавленных кислот вследствие того, что ее потенциал более положительный, чем потенциал водорода. Однако если к медной пластинке, опущенной в кислоту, прикоснуться цинковой пластинкой, то на меди начинается бурное выделение водорода. Это происходит потому, что образуется гальваническая пара, в которой более активный металл (цинк) служит анодом. На аноде происходит окисление цинка по схеме: (а) Zn – 2e = Zn 2+ ; На меди, ставшей катодом, происходит восстановление водорода: (к) 2H + + 2e = H2.

Соотношение между потенциалами контактирующих металлов зависит не только от природы металлов, но и от природы растворенных в воде веществ и температуры. Так, в случае контакта железо-цинк, последний интенсивно коррозирует при комнатной температуре, но в горячей воде полярность металлов изменяется, и коррозировать начинает железо.

Для защиты от коррозии и предупреждения ее применяются различные методы. К важнейшим из них относятся следующие методы:

1) Легирование металлов. При легировании в состав сплава вводят компоненты, вызывающие пассивацию основного металла и повышение его устойчивости к коррозии. В качестве таких легирующих компонентов применяют хром, никель, вольфрам и другие металлы. Легирование металлов – эффективный, хотя и дорогой способ защиты от коррозии.

2) Защитные покрытия. Слои различных материалов, создаваемые на поверхности металлических изделий и сооружений для защиты от коррозии называются защитными покрытиями. Материалами для защитных покрытий могут быть как чистые металлы цинк, кадмий, алюминий, никель, медь, хром, серебро, так и их сплавы (бронза, латунь и др.).

Защитные покрытия делятся на катодные и анодные покрытия. К катодным покрытиям относятся такие металлические покрытия, потенциалы которых имеют более положительное значение, чем потенциал основного металла. Примерами катодного покрытия на стальных изделиях являются медь, серебро, никель. При повреждении покрытия или при наличии в нем пор возникает коррозионный элемент, в котором основной материал служит анодом и растворяется (коррозирует), а материал – катодом, на котором выделяется водород или поглощается кислород. Таким образом, катодные покрытия могут защищать основной металл от коррозии лишь при отсутствии на нем повреждений или пор.

Анодные покрытия имеют более отрицательный потенциал, чем потенциал основного металла. Примером анодного покрытия может служить цинковое покрытие на стальных изделиях. При повреждении покрытия анодом будет служить металл покрытия, а основной металл, в качестве катода, разрушению подвергаться не будет. Потенциалы металлов зависят от состава растворов, поэтому, например, покрытие стали оловом (лужение) в растворе серной кислоты является катодным, а в растворе органических кислот – анодным.

Пример 6. Железное изделие покрыли кадмием. Какое это покрытие – катодное или анодное? Составьте уравнения анодного и катодного процессов коррозии этого изделия во влажном воздухе и в соляной кислоте. Какие продукты коррозии образуются в первом и во втором случае?

Кадмий (потенциал –0,403в) менее активный металл, чем железо, (потенциал –0,440в) и в случае образование коррозионного элемента будет служить катодом поэтому данное покрытие является катодным. При коррозии происходит анодное растворение железа:

(а) Fe – 2e = Fe 2+ ;

Катодным процессом в случае атмосферной коррозии во влажном воздухе будет восстановление кислорода:

Продуктами коррозии в данном случае являются гидроксид железа.

В кислой среде происходит катодное восстановление ионов водорода:

Продуктами коррозии в этом случае являются хлорид железа (II) и водород.

Пример 7. Две железные пластинки, частично покрытые одна оловом, другая медью, находятся во влажном воздухе. На какой из этих пластинок быстрее образуется ржавчина? Составьте уравнения анодного и катодного процессов коррозии и укажите, какие продукты коррозии образуются.

Ржавчиной быстрее покроется железная пластинка, покрытая медью, так как в паре железо (потенциал –0,440в) – медь (потенциал +0,337в) железо является анодом и разрушается по схеме:

(а) Fe – 2e = Fe 2+ ;

На катоде происходит восстановление растворенного в воде кислорода по схеме:

Продуктами коррозии является гидроксид железа.

В паре железо-олово (потенциал +0,150в) железо также является более активным металлом, а, следовательно, анодом. Анодный процесс состоит в окислении железа по схеме:

(а) Fe –2e = Fe 2+ ;

Вместе с этой лекцией читают "5 Сетевые модели".

Катодный процесс протекает аналогично предыдущему. Продуктами коррозии является гидроксид железа.

ЭДС первого коррозионного элемента равен +0,337 – (-0,440) = +0,777 в. ЭДС второго коррозионного элемента равен +0,150 – (-0,440) = +0,590 в. Следовательно, в первом случае коррозия железа будет протекать быстрее.

3) Электрохимическая защита. Этот метод защиты от коррозии основан на торможении анодных или катодных реакций коррозионных процессов. К защищаемой конструкции присоединяют металл с более отрицательным электродным потенциалом, чем потенциал металла конструкции. Этот металл называется протектором, а защита от коррозии – протекторной защитой. При хорошем контакте защищаемый металл (например, железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие в соответствии с их положением в ряду активности металлов. Железо поляризуется катодно, а цинк – анодно. В результате на железе идет процесс окисления того окислителя, который вызывает коррозию (это обычно растворенный в воде кислород), а цинк окисляется. Протекторы широко применяются для защиты морских судов. Ясно, что убытки, связанные с ремонтом громадного судна вследствие коррозии его конструкций во много раз превысили бы стоимость протекторов.

Используется также катодная или анодная поляризация за счет приложенного извне тока. Сущность катодной защиты заключается в том, что защищаемое изделие присоединяется к отрицательному полюсу внешнего источника постоянного тока и становится вследствие этого катодом. Анодом обычно служит стальной вспомогательный электрод, который растворяется. Анодную защиту применяют к металлам, способным легко пассивироваться (образовывать оксидную пленку) при смещении их потенциала в положительную сторону. Анодную защиту применяют, например, для предотвращения коррозии нержавеющих сталей в серной кислоте.

4) Изменение свойств коррозионной среды. Для снижения агрессивности среды уменьшают концентрацию в ней компонентов, опасных в коррозионном отношении. В нейтральных средах, например, коррозия протекает обычно с поглощением кислорода. Кислород удаляют кипячением или вытеснением его из раствора при помощи инертного газа (барботаж инертным газом) или восстанавливают соответствующими реагентами (сульфиты, гидразин). Агрессивность кислых сред можно снизить подщелачиванием (нейтрализацией).

Для защиты от коррозии широко применяют вещества, при добавлении которых в соответствующую среду значительно уменьшается скорость коррозии. Такие вещества называются ингибиторами коррозии. По составу ингибиторы делятся на органические и неорганические. Так как активность ингибиторов зависит от рН среды, их также делят на кислотные, щелочные и нейтральные. По механизму действия ингибиторы можно разделить на анодные, катодные и экранирующие. Анодные замедлители, например, нитрит натрия или дихромат калия, тормозят анодные процессы. Катодные замедлители снижают скорость коррозионного процесса за счет снижения интенсивности катодного процесса. К ним относятся такие органические вещества, как диэтиламин, уротропин, формальдегид и пр. Экранирующие ингибиторы (амины с небольшой молекулярной массой с добавлением группы -NO3 или -СО3) адсорбируются на поверхности металла, предохраняя его от контакта с агрессивными средами, вызывающими коррозию металла.

Коррозия металла в нейтральной среде

8.2 ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ

Причиной электрохимической коррозии * является возникновение на поверхности металла короткозамкнутых гальванических элементов *.

В тонком слое влаги, обычно покрывающем металл, растворяются кислород, углекислый, сернистый и другие газы, присутствующие в атмосферном воздухе. Это создает условия соприкосновения металла с электролитом *. Различные участки поверхности любого металла обладают разными потенциалами. Причинами этого могут быть наличие примесей в металле, различная обработка отдельных его участков, неодинаковые условия (окружающая среда), в которых находятся различные участки поверхности металла. При этом участки поверхности металла с более электроотрицательным потенциалом становятся анодами и растворяются.

Электрохимическая коррозия может развиваться в результате контакта различных металлов. В этом случае будет возникать не микр о- , а макрогальванопара , и коррозия называется контактной (см. детальную классификацию видов коррозии). Сочетания металлов, сильно отличающихся значениями электродных потенциалов *, в технике недопустимы (например, алюминий – медь). В случае коррозии, возникающей при контакте какого-либо металла со сплавом, последний имеет потенциал, соответствующий наиболее активному металлу, входящему в состав сплава. Например, при контакте латуни (сплав цинка и меди) с железом корродировать будет латунь за счет наличия в ней цинка.

Представим схематично работу короткозамкнутого гальванического элемента, возникающего на поверхности металла, подверженного коррозии в электролите * (рисунок 8.1). Анодный участок имеет более электроотрицательный потенциал, поэтому на нем идет процесс окисления металла. Образовавшиеся в процессе окислен ия ио ны переходят в электролит, а часть освободившихся при этом электронов может перемещаться к катодному участку (на рисунке 8.1 показано стрелками). Процесс коррозии будет продолжаться в том случае, если электроны, перешедшие на катодный участок, будут с него удаляться. Иначе произойдет поляризация электродов *, и работа коррозионного гальванического элемента прекратится.

Рисунок 8.1 – Схема электрохимической коррозии. Д – деполяризатор

Процесс отвода электронов с катодных участков называется деполяризацией. Вещества, при участии которых осуществляется деполяризация, называются деполяризаторами. На практике чаще всего приходится встречаться с двумя типами деполяризации: водородной и кислородной. Тип деполяризации (катодный процесс) зависит от реакции среды раствора электролита.

В кислой среде электрохимическая коррозия протекает с водородной деполяризацией. Рассмотрим коррозию железной пластинки с примесями меди во влажной хлористоводородной атмосфере Имеется в виду атмосфера с примесью газообразного HCl. . В этом случае железо будет анодом (E ° = –0,44В), а медь – катодом (E ° =+0,34В). На анодном участке будет происходить процесс окисления железа, а на катодном – процесс деполяризац ии ио нами водорода, которые присутствуют в электролите:

А: Fe – 2e → Fe 2+ – окисление

К: 2 H + + 2e → H2 ↑ – восстановление

Схема возникающего короткозамкнутого гальванического элемента выглядит следующим образом:

A (–) Fe | HCl | Cu (+) К

В нейтральной среде коррозия протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Этот вид коррозии наиболее широко распространен в природе: он наблюдается при коррозии металлов в воде, почве и в незагрязненной промышленными газами атмосфере. Если коррозии во влажном воздухе подвергается железо с примесями меди, то электродные процессы можно записать в виде:

(А) Fe – 2e → Fe 2+ – окисление

(К) 2 H2O + O2 + 4e → 4 OH – – восстановление

У поверхности металла в электролите протекают следующие реакции:

Fe 2+ + 2 OH – → Fe( OH)2

Основная масса черных металлов разрушается вследствие процесса ржавления, в основе которого лежат вышеуказанные реакции.

Коррозия металла в результате неравномерного доступа кислорода . Случаи электрохимической коррозии, возникающей вследствие неравномерной аэрации кислородом различных участков металла, очень часто встречаются в промышленности и в подземных сооружениях. Примером может служить коррозия стальной сваи, закопанной в речное дно (рис 8.2).

Рисунок 8.2 – Коррозия в результате неравномерного доступа кислорода. Б – техническое сооружение; А – анодный участок; К – катодный участок.

Часть конструкции, находящаяся в воде, омывается растворенным в ней кислородом и, в случае возникновения условий для электрохимической коррозии, будет выполнять роль катода. Другая же часть конструкции, находящаяся в почве, будет анодом и подвергнется разрушению.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ_коррозия металлов (Коррозия и защита металлов (защита из нового сборника))

Файл "ТЕОРЕТИЧЕСКАЯ ЧАСТЬ_коррозия металлов" внутри архива находится в папке "Коррозия и защита металлов". Документ из архива "Коррозия и защита металлов (защита из нового сборника)", который расположен в категории " ". Всё это находится в предмете "химия" из раздела "", которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лабораторные работы", в предмете "химия" в общих файлах.

Онлайн просмотр документа "ТЕОРЕТИЧЕСКАЯ ЧАСТЬ_коррозия металлов"

Текст из документа "ТЕОРЕТИЧЕСКАЯ ЧАСТЬ_коррозия металлов"

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Коррозией называют физико-химическое взаимодействие металла с окружающей средой, приводящее к разрушению металла. При коррозии происходит гетерогенное окисление металла, сопровождаемое восстановлением окислителя, находящегося в окружающей среде. Если среда электропроводна, то коррозия протекает по электрохимическому механизму, если не электропроводна, то по механизму гетерогенной химической реакции. По механизму процесса различают коррозию химическую и электрохимическую.

Наибольшую опасность представляет электрохимическая коррозия. Протекающие при этом процессы во многом аналогичны процессам в гальваническом элементе. На поверхности металла при наличии на ней электролита образуются микрогальванические элементы, анодами в которых являются структурные составляющие металла, обладающие более низким электродным потенциалом, катодами — участки, электродный потенциал которых более положителен по сравнению с потенциалом анода. Коррозионные элементы могут возникать при контакте двух различных металлов, а также в результате любой микронеоднородности металлической поверхности или неоднородности распределения окислителя в окружающей среде.

При электрохимической коррозии разрушению повергаются лишь анодные участки поверхности, на которых происходит переход ионов металла в электролит:

Анодный процесс:

Например, при коррозии железа на аноде протекает следующий процесс:

Катодные процессы определяются типом окислителя и средой.

В аэрированных нейтральных и щелочных средах осуществляется процесс ионизации кислорода, растворенного в объеме электролита или в тонкой пленке влаги на поверхности металла:

В аэрированной кислотной среде процесс протекает иначе:

В деаэрированных нейтральных и щелочных средах окислителем является вода:

в деаэрированной кислотной среде восстанавливаются ионы водорода:

Процессы восстановления растворенного в электролите кислорода называются кислородной деполяризацией, восстановление ионов водорода или воды, в результате которых образуется H2, — водородной деполяризацией. В водных средах выделение водорода происходит при более низких значениях потенциала по сравнению с равновесным значением потенциала водородного электрода, и может протекать с высокой скоростью. Скорость восстановления кислорода значительно меньше по причине его малой растворимости в воде. Скорость коррозии, реакция которой является гетерогенной, может лимитироваться скоростью анодного или катодного процессов. Анодный процесс может замедляться в результате взаимодействия продуктов коррозии, образующих на поверхности нерастворимые пленки. Например, при коррозии железа образуется гидроксид железа (II):

который в присутствии влаги и кислорода окисляется в гидроксид железа (III):

называемый ржавчиной, состав которой можно выразить формулой mFeO·nFe2O3 ·pH2O. Возможность коррозии металла можно теоретически определить по изменению энергии Гиббса ∆rG в электрохимическом процессе:

где Z — общее количество электронов, участвующих в токообразующей реакции;

F — число Фарадея F = 96 484 Дж/моль экв;

E — ЭДС коррозионного гальванического элемента, определяемая как разность потенциалов окислителя и восстановителя, или, что то же самое, потенциалов катода, на котором восстанавливается окислитель, и анода, на котором окисляется восстановитель — корродирующий металл:

Потенциал металлического электрода рассчитывают по уравнению Нернста при температуре Т = 298 K:

Потенциалы окислителей O2, H2O, H + рассчитывают по уравнению Нернста для кислородного или водородного электродов при температуре Т = 298 K и относительном давлении p = 1:

Электрохимическая коррозия может быть значительно ускорена в присутствии некоторых веществ, называемых ускорителями, или стимуляторами. Активными стимуляторами коррозии являются ионы галогенов: Cl – , Br – , I – , которые способствуют разрушению оксидной пленки на поверхности металла.

Электрохимическая коррозия может быть замедлена в присутствии небольших количеств веществ, называемых в соответствии с характером их действия замедлителями, или ингибиторами.

Ингибиторы коррозии бывают неорганического и органического происхождения, часто используются хроматы, нитриты, некоторые органические вещества, содержащие полярные группы, и многие другие. Механизм их действия различен, условно их подразделяют на адсорбционные и пассивирующие. Адсорбционные ингибиторы уменьшают скорость коррозии в результате поляризации анодных или катодных участков. Пассивирующие ингибиторы способствуют образованию на металле пленок (оксидных, гидроксидных и пр.), переводящих металл в пассивное состояние.

Защита металлов от коррозии представляет собой комплекс мероприятий, основными из которых являются обработка среды, создание защитных слоев, применение электрохимической защиты.

Обработка среды заключается в удалении активаторов, регулировании рН среды и введении ингибиторов коррозии.

Защитные покрытия изолируют поверхность металла от коррозионной среды, они подразделяются на металлические, неорганические и органические. Металлические покрытия по характеру защиты могут быть анодными или катодными. Анодными называют такие покрытия, металл которых по сравнению с защищаемым металлом имеет более отрицательное значение электродного потенциала. В случае повреждения анодного покрытия возникает коррозионный элемент, в котором анодом является металл покрытия. Например, при коррозии оцинкованного железа разрушению подвергается цинк

, а на основном металле — железе

протекает катодный процесс. Анодное покрытие защищает металл от коррозии электрохимически.

Катодными называют покрытия, металл которых по сравнению с защищаемым металлом имеет более положительное значение электродного потенциала, например, слой олова

на железе При работе коррозионного элемента, составленного из таких металлов, разрушению будет подвергаться основной металл. Следовательно, катодное покрытие защищает металл от коррозии только механически.

Сущность электрохимической защиты заключается в том, что всю поверхность защищаемого металлического изделия искусственно делают катодом.

Используют в основном два способа:

1) катодную защиту наложенным током — защищаемое изделие присоединяют к катоду внешнего источника постоянного тока. В качестве анода используют дополнительный электрод (металлический), который подвергается разрушению, предохраняя от коррозии защищаемое сооружение;

2) катодную защиту с жертвенным анодом, или протекторную защиту — защищаемое изделие приводят в контакт с металлом, имеющим более отрицательный электродный потенциал, чем защищаемый. Деталь из более активного металла называется протектором. В образовавшейся гальванической паре протектор является анодом, а защищаемое металлическое изделие — катодом. В этих условиях разрушается протектор, а коррозия конструкции практически прекращается.

X Международная студенческая научная конференция Студенческий научный форум - 2018


Машины и аппараты, изготовленные из металлов и сплавов, при эксплуатации в природных или технологических средах, подвержены коррозии.

Коррозия – самопроизвольное разрушение материалов вследствие их физико-химического взаимодействия с окружающей средой (агрессивной атмосферой, морской водой, растворами кислот, щелочей, солей, различными газами и т.п.).

Актуальность темы работы: коррозия металлов наносит государству большой экономический ущерб и может приводить к аварийным ситуациям, угрожающим жизни и здоровью людей.

Разработка эффективных методов защиты металлов от коррозии приведет к уменьшению материальных потерь в результате коррозии трубопроводов, деталей машин, судов, мостов, морских конструкций и т.д. Не менее важной задачей является повышение надежности оборудования, которое в результате коррозии может разрушаться с катастрофическими последствиями, к примеру, паровые котлы, металлические контейнеры, сосуды высокого давления, мосты, детали самолётов. Надёжность является важнейшим условием при разработке оборудования АЭС и систем захоронения радиоактивных отходов. Большое значение имеет сохранность металлического фонда, мировые ресурсы которого ограничены. Кроме того, человеческий труд, затрачиваемый на проектирование и реконструкцию металлического оборудования, пострадавшего от коррозии, может быть направлен на решение других общественно полезных задач.

Цель работы: изучить сущность электрохимической коррозии металлов и способы защиты металлов от коррозии.

- изучить виды коррозии металлов;

- изучить механизм электрохимической коррозии;

- изучить методы защиты металлов от коррозии;

- провести экспериментальное исследование процесса коррозии металлов.

Теоретическаячасть

Электрохимическая коррозия – взаимодействие металла с коррозионной средой, при котором ионизация металла и восстановление окислителя протекают раздельно, но являются сопряженными процессами, сопровождающимися протеканием электрического тока. Электрохимическая коррозия следует законам электрохимической кинетики, и её скорость зависит от величины электродного потенциала. Электрохимическая коррозия может иметь место только в электропроводных системах материал – среда, т.е. для металлических материалов – в растворах и расплавах электролитов.

Причиной ее возникновения является химическая, энергетическая и другие виды неоднородности поверхности любого металла или сплава, т.е. разделение на катодные и анодные участки. Последние, имея очень малые размеры и чередуясь друг с другом, в токопроводящей среде представляют собой совокупность огромного числа короткозамкнутых микрогальванических элементов, поэтому электрохимическую коррозию часто называют гальванической коррозией.

Процессы электрохимической коррозии протекают в водных растворах. При соприкосновении металлической поверхности с раствором электролита происходит взаимодействие металла с заряженными частицами раствора и переход ионов металла в раствор. Согласно теории А.Н. Фрумкина, при взаимодействии металла и раствора протекают два сопряженных процесса:

1. Переход ионов из металла в раствор с образованием гидратированных ионов (анодный процесс): Me + mН2O = Меn + · mН2O + ne

2. Переход ионов из раствора с выделением их на поверхности металла в виде нейтральных атомов, входящих в состав кристаллической решетки металла (катодный процесс): Меn + · mН2O + ne = Ме + mН2O

Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют его электрохимическому разрушению.

Отличительными особенностями электрохимического процесса коррозии являются следующие:

– одновременное протекание двух раздельных процессов − окислительного (растворение металла) и восстановительного (выделение водорода, восстановление кислорода, выделение металла из раствора и др.);

– процесс растворения металла сопровождается направленным перемещением электронов в металле и ионов в электролите, т.е. возникновением электрического тока;

– продукты коррозии образуются в результате вторичных реакций.

Окислительно−восстановительные процессы, протекающие при электрохимической коррозии, могут быть представлены в виде следующих реакций:

Ме − nē→ Меn + (анодный процесс) (1)

R(ox) + nē → Rn - (катодный процесс), (2)

где R(ox) – окислитель;

Rn - (red) – восстановленная форма окислителя;

nē – количество переданных электронов.

В качестве примера электрохимической коррозии можно привести процесс окисления (ржавления) железа под воздействием воды:

А(–) Fe − 2ē → Fе 2+ (анодный процесс – растворение железа) К(+) H2O + ½О2 +2ē → 2OH - (катодный процесс – восстановление кислорода)

Fe 2+ + 2OH - → Fe(OH)2 (образование продуктов коррозии)

Реакции (1) и (2) протекают сопряженно, но подчиняются своим кинетическим закономерностям. При этом необходимо соблюдение условий стационарности процесса, т.е. равенства скоростей окисления металла и восстановления окислителя. Данные реакции могут быть территориально разделены – протекать на разных участках поверхности. Из условий стационарности вытекает, что достаточно затормозить одну из сопряженных реакций, чтобы скорость всего процесса уменьшилась.

Виды электрохимической коррозии:

Коррозия в кислой среде.

Железо в кислой среде окисляется до Fe 2+ .

Процессы окисления-восстановления на электродах:А (–) Fe 0 - 2ē → Fe 2+ │1 - процесс окисления на аноде К (+) 2Н + + 2ē → Н2↑ │1 - процесс восстановления на катоде

Суммируя реакции на аноде и катоде, получаем уравнение, которое в ионной форме, выражает происходящую в гальванической паре реакцию: Fe 0 + 2H + → Fe 2+ + Н2

Уравнение электрохимической коррозии в молекулярной форме:Fe + H2SO4 → FeSO4 + Н2

Схема коррозионного элемента: А (–) Fe | Fe 2+ ||2H + | H2 (+) К

Коррозия в атмосфере влажного воздуха.

Процессы окисления-восстановления на электродах: А (–) Fe 0 - 2ē → Fe 2+ │2 - процесс окисления на аноде К (+) 2H2O + О2 + 4ē → 4OH - │1 - процесс восстановления на катоде

Суммируя реакции на аноде и катоде, получаем уравнение, которое в ионной форме, выражает происходящую в гальванической паре реакцию:2Fe 0 + 2H2O + О2 → 2Fe 2+ + 4OH -

Уравнение электрохимической коррозии в молекулярной форме:2Fe + 2H2O + О2 → 2Fe(OH)2

Схема коррозионного элемента:

Коррозия в морской воде.

А (–) Fe 0 -2ē → Fe 2+

Схема коррозионного элемента: А (–) Fe | Fe 2+ ||2H2O | H2; 2OH - (+) К

Основным отличием процессов электрохимической коррозии от процессов в гальваническом элементе является отсутствие внешней цепи. Электроны в процессе коррозии не выходят из корродирующего металла, а двигаются внутри металла.

Процесс отвода электронов с катодных участков называется деполяризацией. Вещества, при участии которых осуществляется деполяризация, называются деполяризаторами. На практике чаще всего приходится встречаться с двумя типами деполяризации: водородной и кислородной.

В кислой среде электрохимическая коррозия протекает с водородной деполяризацией. Рассмотрим коррозию железной пластинки с примесями меди во влажной хлористоводородной атмосфере. В этом случае железо будет анодом (E°= –0,44В), а медь – катодом (E°=+0,34В). На анодном участке будет происходить процесс окисления железа, а на катодном – процесс деполяризации ионами водорода, которые присутствуют в электролите:

А (–) Fe – 2ē → Fe 2+ – окисление

К (+) 2H + + 2ē → H2↑ – восстановление

К (+) 2H2O + O2 + 4ē → 4OH - – восстановление

Схема короткозамкнутого гальванического элемента:

Методы защиты металлов от коррозии

При разработке методов защиты от коррозии используют различные способы снижения скорости коррозии, которые выбираются в зависимости от характера коррозии и условий ее протекания. Выбор того или иного способа определяется его эффективностью, а также экономической целесообразностью.

В зависимости от причин, вызывающих коррозию, различают следующие методы защиты.

1) Легирование. Применяется для изменения или улучшения физических и химических свойств металлов, сплавов. В особенности, для придания металлам и сплавам повышенной коррозионной стойкости. Металл, подвергшийся легированию, называется легированным.

2) Наиболее распространены неметаллические защитные покрытия эмали, лаки, краски, пластмассы, различные смолы, полимеры. Защитное действие этих покрытий сводится в основном к изоляции металлов от окружающей среды. Достоинство этого способа защиты – простота технологии их нанесения. Недостаток – легко разрушаются из-за хрупкости и растрескивания при тепловых и механических ударах; эти покрытия защищают до тех пор, пока сохраняется их целостность.

3) Металлические защитные покрытия.

Классифицируя металлопокрытия по способу защиты основного металла, их обычно подразделяют на катодные и анодные.

Анодные покрытия. Если на металл нанести покрытие из другого, более электроотрицательного металла, то в случае возникновения условий для электрохимической коррозии разрушаться будет покрытие, т.к. оно будет выполнять роль анода. В этом случае покрытие называется анодным. Примером анодного покрытия может служить хром, нанесенный на железо. В случае нарушения целостности покрытия при контакте с влажным воздухом будет работать гальванический элемент:

на аноде: Cr – 2ē → Cr 2+

Cr 2+ + 2 OH – → Cr(OH)2

Гидроксид хрома (II) окисляется кислородом воздуха до Cr(OH)3:

Катодные покрытия. У катодного покрытия стандартный электродный потенциал более положителен, чем у защищаемого металла. Пока слой покрытия изолирует металл от окружающей среды, электрохимическая коррозия не протекает. При нарушении целостности катодного покрытия оно перестает защищать металл от коррозии. Более того, оно даже интенсифицирует коррозию основного металла, т.к. в возникающей гальванопаре анодом служит основной металл, который будет разрушаться. В качестве примера можно привести оловянное покрытие на железе (луженое железо). Рассмотрим работу гальванического элемента, возникающего в этом случае (например, в атмосфере влажного воздуха).

на аноде: Fe – 2ē → Fe 2+

Fe 2+ + 2 OH – → Fe(OH)2

Разрушается защищаемый металл. Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.

4) Электрохимическая защита - перевод металла в коррозионно-устойчивое со­стояние путём торможения катодных и анодных реакций коррозионного процесса электрохимическими методами. Различают три вида электрохимической защиты: катодная, протекторная и анодная.

Катодная защита. Суть катодной защиты заключается в том, что защищаемое изделие подключается к отрицательному полюсу источника электрического напряжения, т.о. становится катодом. В качестве противоэлектрода используется металлический лом или графит.

Протекторная защита. Суть протекторной защиты состоит в следующем. К изделию, подвергающемуся электрохимической коррозии, присоединяют деталь-протектор из более активного металла, чем металлы изделия: протектор является анодом и будет разрушаться, а изделие останется неизменным.

Анодная защита. Анодная защита используется только для тех металлов, которые при анодной нагрузке способны образовывать на своей поверхности пассивные оксидные или солевые пленки, защищающие металл от коррозии, например, железо в серной кислоте. Анодная защита отличается от катодной тем, что защищаемая конструкция присоединяется к положительному полюсу внешнего источника тока.

5) Обработка внешней среды, в которой протекает коррозия. Сущность метода заключается либо в удалении из окружающей среды тех веществ, которые выполняют роль деполяризатора, либо в изоляции металла от деполяризатора. Максимально замедлить процесс коррозии можно путем введения в окружающую среду специальных веществ – ингибиторов. Механизм действия ингибиторов заключается в том, что их молекулы адсорбируются на поверхности металла, препятствуя протеканию электродных процессов.

Данные способы защиты находят широкое применение в промышленности в силу многих своих преимуществ – уменьшения потерь материалов, увеличения толщины покрытия, наносимого за один слой, уменьшения расхода растворителей, улучшение условий производства окрасочных работ и т.д. Защита от коррозии является одной из важнейших проблем, имеющей большое значение для народного хозяйства.

Задачи практической части работы:

- исследовать влияние различных сред на коррозию железа;

- изучить электрохимическую коррозию при контакте металлов;

- ознакомиться с защитными свойствами анодных и катодных покрытий.

Опыт 1. Изучение влияния среды на коррозию железа

Посуда и реактивы: пять химических пробирок, пять железных гвоздей, водопроводная вода, дистиллированная вода, 0,1н раствор хлорида натрия, 0,1н раствор гидроксида натрия, 0,1н раствор соляной кислоты.

Порядок выполнения работы

Пять одинаковых железных гвоздей опускают в пять пробирок. В первую пробирку приливают 0,1н раствор NaCl, во вторую – 0,1н раствор NaOH, в третью – 0,1н раствор HCl, в четвертую – дистиллированную воду, в пятую – водопроводную воду. Закрывают пробирки пробками и в течение месяца наблюдают за происходящими изменениями.

Электрохимическая коррозия - это взаимодействие металла с коррозионной средой, проводящей электрический ток, и ее скорость зависит от электродного потенциала металла.

Примером электрохимической коррозии является разрушение деталей машин, приборов и различных металлических конструкций в почвенных, грунтовых, речных и морских водах, в атмосфере, под пленками влаги, в технических растворах, под действием смазочно-охлаждающих жидкостей и т.д. При электрохимической коррозии всегда требуется наличие электролита (конденсат, дождевая вода и т. д.), с которым соприкасаются электроды — либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами.

Коррозионный элемент

Гальванический элемент — химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани

В гальванических элементах происходит переход химической энергии в электрическую энергию

Гальванический элемент содержит два металлических электрода, которые отличаются значениями своих электродных потенциалов. Электроды соединены между собою проводником и погружены в раствор электролита. Более активный металл является анодом, на котором протекает окисление, а менее активный – катодом, на котором протекает восстановление. Электроны, которые освобождаются при окислении анода, перемещаются на катод. Благодаря пространственному разделению полуреакций окисления и восстановления возникает электрический ток.

Анодом (А) называется участок поверхности металла, с которого ионы переходят в раствор электролита. Анод заряжен отрицательно (-) и на нем протекает окислительный процесс разрушения металла. Катод (К) - участок поверхности металла, где разряжаются катионы электролита. Катод заряжен положительно (+) и на нем протекает восстановительный процесс. Таким образом, поверхность металлического изделия представляет собой совокупность катодных и анодных микроучастков, которые в среде электролита образуют короткозамкнутые гальванические элементы. Во время работы гальванические элементы могут частично поляризоваться. В результате перехода электронов с анода на катод потенциал катода становится более отрицательным, а потенциал анода более положительным. В этом случае происходит явление выравнивания потенциалов, что вызывает прекращение тока и коррозии.

Активность металла характеризуется величиной стандартного потенциала металла. Чем меньше величина стандартного потенциала металла, тем больше способность атомов металла, погруженного в раствор, отдавать электроны, т.е. тем больше его химическая активность. В зависимости от величины стандартного потенциала металлы объединены в электрохимический ряд напряжений. Окислительная способность металлов увеличивается в этом ряду слева направо, а восстановительная способность металлов увеличивается справа налево. Чем левее находится металл в ряду напряжений (чем отрицательней значение его потенциала), тем выше его химическая активность. Анодом является более химически активный металл в паре, а катодом - пассивный.

Причины возникновения местных гальванических элементов:

1) неоднородность сплава

• неоднородность металлической фазы, обусловлена неоднородностью сплава и наличием микро- и макровключений;

• неравномерность окисных пленок на поверхности за счет наличия макро-и микропор, а также неравномерного образования вторичных продуктов коррозии;

• наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов.

2) неоднородность среды

• область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию.

3) неоднородность физических условий

• облучение (облученный участок - анод);

• воздействие внешних токов (место входа блуждающего тока - катод, место выхода - анод);

• температура (по отношению к холодным участкам, нагретые являются анодами) и т. д.

Анодные и катодные процессы при электрохимической коррозии металлов

Любой металл содержит примеси других металлов, поэтому в среде электролита система из основного металла (Мe1) и металла-примеси (Мe2) образуют большое число микрогальванических элементов:

где более активный металл, например Мe1, является анодом (А) и на аноде идут процессы окисления (окисляется сам металл):

Менее активный металл (Мe2) является катодом (К), на катоде идет процесс восстановления окислителя среды. При электрохимической коррозии в кислой среде на поверхности катода (менее активного металла) происходит восстановление катионов водорода:

процесс электрохимической коррозии Cu–Zn в кислой среде:

А(Zn): Zn – 2ē = Zn 2+ 1

Zn + 2H + = Zn 2+ + H2

Образование гальванической пары Cu–Zn ускоряет процесс разрушения цинка.

Катионы водорода, восстанавливаясь на катоде, принимают электроны на медной поверхности, а на аноде происходит окисление цинка. Таким образом, при электрохимической коррозии происходит возникновение электрического тока, обусловленное перемещением электронов по поверхности металлов.

Морская вода имеет слабощелочную реакцию среды, рН варьирует в пределах от 7,5 до 8,4. При электрохимической коррозии в щелочной среде на аноде происходит окисление (разрушение) металла, а на катоде – восстановление молекулярного кислорода, растворенного в морской воде. А: Me(0) – ne → Me(n+) К: 2H2O + О2 + 4e → 4OH(-) (рН ≥ 7 – среда слабощелочная) При электрохимической коррозии анодом становится металл, обладающий меньшим значением электродного потенциала, а катодом – металл с большим значением электродного потенциала.

Влажная атмосферная коррозия наблюдается при наличии на поверхности тончайшей пленки влаги. Толщина такой пленки составляет от 100 до 1 мкм. Относительная влажность воздуха, при которой начинается образование влажной пленки, составляет около 60 – 70%. Значение, при котором начинается конденсация на поверхности влаги, называется критической влажностью. Критическая влажность зависит от загрязнения воздуха и состояния металла.

Уравнение атмосферной коррозии:

Анод: ионы металла переходят в раствор:

Катод: проходит реакция восстановления:

O2 + 2H2O + 4e → 4OH - (щелочные, нейтральные среды)

O2 + 4H + + 4e → 2H2O (подкисленная среда)

Во многом стойкость металлов и сплавов, в условиях атмосферной коррозии, зависит от природы металла и состояния его поверхности.

Термодинамические основы процессов коррозии

Термодинамическую возможность электрохимической коррозии, как любого химического процесса, можно определить по изменению энергии Гиббса. Поскольку коррозия является самопроизвольно протекающим процессом, то сопровождается ее убылью, т.е. ∆GT Me + mHO +ne.

Анодная пассивность металлов.

При значительном торможении анодной реакции ионизации металла скорость коррозионного процесса может понизится на несколько порядков. Такое состояние металла принято называть анодной пассивностью. Пассивность можно определить следующим образом: пассивность - состояние повышенной коррозионной устойчивости металла или сплава (в условиях, когда термодинамически он является реакционно способным), вызванное преимущественным торможением анодного процесса. Т.е. может произойти так, что в реальных условиях скорость коррозии "активных" элементов оказывается весьма незначительной в следствии наступления пассивного состояния. Например, титан расположенный левее цинка, и хром, расположенный рядом с цинком, в следствии наступления пассивности оказываются более коррозионностойкими в большинстве водных сред, чем цинк.

На склонность к пассивному состоянию влияет природа системы металл-раствор. Наибольшую склонность к переходу в пассивное состояние проявляют Ti,Ni,Al,Mg,Fe,Co и др.

Экспериментальное изучение процесса коррозии.

При выполнении практической части работы был проведен ряд экспериментов.

Опыт 1. Изучение влияния среды на коррозию железа

Посуда и реактивы: четыре химические пробирки, четыре железных гвоздя; дистиллированная вода, 0.5н раствор хлорида натрия, 0.5н раствор гидроксида натрия, 0.5 н раствор хлорида аммония.

Четыре одинаковых железных гвоздя помещают в четыре пробирки, приливают разные жидкости, закрывают пробирки и в течение месяца наблюдают за происходящими изменениями. В пробирке № 1 дистиллированная вода (вода была оставлена на воздухе для на насыщения O2 ); в пробирке № 2 раствор хлорида натрия, в пробирке № 3 раствор гидроксида натрия, в пробирке № 4 раствор хлорида аммония.

Коррозия железа наблюдается во всех пробирках, кроме третьей.

Рис.1. Первая неделя эксперимента.

Рис.2.Вторая неделя эксперимента.

Рис.3. Третья неделя эксперимента.

Рис.4. Четвертая неделя эксперимента.

В пробирке 1 мало ржавчины, в чистой воде коррозия идет медленно т. к. вода слабый электролит.

A: Fe → Fe 2+ + 2 e −

4 Fe 2+ + O2 → 4 Fe 3+ + 2 O 2−

В пробирке 2 ржавчины больше, следовательно, хлорид ионы увеличивают скорость коррозии. Эта система аналогична морской воде. Роль катода выполняют примеси в железе.

А: Fe 0 - 2e - →Fe 2+

В пробирке 3 ржавчины не наблюдается. В щелочных растворах (рН ≥ 10) на железе происходит образование нерастворимых гидроксидов, и скорость коррозии резко падает.

В пробирке 4 ржавчины много.

Это объясняется тем, что железо неустойчиво в кислой среде. Кислая среда обеспечивается солью NH4Cl. Соль образована слабым основанием и сильной кислотой (гидролиз протекает по катиону). (NH4ОH -слабое основание, НСl - сильная кислота).

NH4 + + НОН ↔ NH4OH + Н + сокращенное уравнение

NH4Cl + Н2О ↔ NH4OH + НСl молекулярное уравнение

Из сокращенного уравнения видно, что ионы ОН− воды связываются в слабый электролит, ионы Н + накапливаются в растворе и cреда становится кислой pH катодное покрытие

Реакции в кислой среде:

А: Fe 0 -2e - →Fe 2+

При нарушении целостности катодного покрытия разрушается защищаемый металл (Fe).

Zn более активный металл, чем Fe => анодное покрытие

А: Zn 0 -2e - →Zn 2+

При нарушении целостности анодного покрытия разрушается покрытие, а металл (Fe) остается защищенным.

Читайте также: