Кванты света с длиной волны 660 нм вырывают с поверхности металла

Обновлено: 04.10.2024

1. Какой скоростью обладают электроны, вырванные из натрия светом, длина волны которого 66нм? Работа выхода электрона из натрия Дж. Из уравнения Эйнштейна для фотоэффекта, энергия одного кванта света уходит на работу выхода и кинетическую энергию:

где - работа выхода (по условию Дж), - постоянная Планка ( Дж*с), – масса электрона ( кг), – его скорость.
Энергия фотона:

где - постоянная Планка ( Дж*с), c - скорость света ( м), - длинна волны (по условию 66 нм) Откуда:

2. В опытах по фотоэффекту взяли пластину из металла с работой выхода Дж и стали освещать ее светом частотой Гц. Как изменится работа выхода фотоэлектронов из металла и максимальная кинетическая энергия фотоэлектронов , вылетающих с поверхности металла, если увеличить интенсивность падающего света, не изменяя его частоту? Для каждой величины определите соответствующий характер изменения:

Увеличится, уменьшится, не изменится

Работа выхода - это работу, которую должна совершить частица, чтобы вылететь из пластинки. И она (работа) зависит только от материала пластины. Так как пластина не меняется от опыта к опыту, то и работа выхода остается неизменной.

Запишем уравнение Эйнштейна для фотоэффекта:

где - постоянная Планка; - максимальная кинетическая энергия.

Из первой формулы видно, что максимальная кинетическая энергия зависит только от частоты света, следовательно, при увеличении интенсивности она не изменяется.

3. Скорость фотоэлектрона зависит от энергии фотона, вызывающего фотоэффект: если энергия фотона много меньше энергии покоя электрона то можно применять формулу (3), если же энергия фотона сравнима с , то вычисление необходимо вести по формуле (4).

1. Вычислим энергию покоя электрона:

2. Вычислим энергию фотона по формуле (2):

Энергия фотона много меньше энергии покоя электрона, поэтому

4. При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов 5 В . Какова работа выхода Авых , если максимальная энергия ускоренных электронов Ее равна удвоенной энергии фотонов, выбивающих их из металла?

Уравнение Эйнштейна для фотоэффекта:

Энергия ускоренных электронов:

5 .Красная граница фотоэффекта для серебра 0,26 мкм. Определите работу выхода.

1.Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона.

2.Частота света красной границы фотоэффекта для некоторого металла составляет 6*1014 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов.

3. Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.

4. На медный шарик падает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?

6. Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта λ0=307 нм и максимальная кинетическая энергия Tmax фотоэлектрона равна 1 эВ?

7. На поверхность лития падает монохроматический свет (λ=310 нм). Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 В. Определить работу выхода А.

8. Для прекращения фотоэффекта, вызванного облучением ультрафиолетовым светом платиновой пластинки, нужно приложить задерживающую разность потенциалов U1=3,7 В. Если платиновую пластинку заменить другой пластинкой, то задерживающую разность потенциалов придется увеличить до 6 В. Определить работу А выхода электронов с поверхности этой пластинки.

9. На цинковую пластинку падает монохроматический свет с длиной волны λ=220 нм. Определить максимальную скорость vmax фотоэлектронов.

10. Определить длину волны λ ультрафиолетового излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектронов, равной 10 Мм/с. Работой выхода электронов из металла пренебречь.

11. Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла под действием γ-излучения с длиной волны λ=0,3 нм.

12. Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла при облучении γ-фотонами с энергией ε=1,53 МэВ.

13. Максимальная скорость vmax фотоэлектронов, вылетающих из металла при облучении его γ-фотонами, равна 291 Мм/с. Определить энергию ε γ-фотонов.

Кванты света с длиной волны 660 нм вырывают с поверхности металла фотоэлектроны, которые описывают в однородном магнитном поле с индукцией 1 мТл окружности максимальным радиусом 2 мм?

Кванты света с длиной волны 660 нм вырывают с поверхности металла фотоэлектроны, которые описывают в однородном магнитном поле с индукцией 1 мТл окружности максимальным радиусом 2 мм.

Определите работу выхода электрона из металла.

Ответ округлите до десятых.


Из равенства m * V ^ 2 / R = q * B * V находим скорость :

V = q * B * R / m = 1, 6 * 10 ^ - 19 * 10 ^ - 3 * 2 * 10 ^ - 3 / 9, 1 * 10 ^ - 31 = 0, 35 * 10 ^ 6 м / с

Из уравнения Эйнштейна h * c / L = A + m * V ^ 2 / 2 Находим работу выхода :

A = h * c / L - m * V ^ 2 / 2 = 6, 62 * 10 ^ - 34 * 3 * 10 ^ 8 / 660 * 10 ^ - 9 - 9, 1 * 10 ^ - 31 * (0, 35 * 10 ^ 6) ^ 2 / 2 = 2, 44 * 10 ^ - 19 Дж = 1, 53 эВ.


Электрон движется в вакууме в однородном магнитном поле индукцией В = 5 мТл со скоростью 104 км / с перпендикулярно линиям магнитной индукции?

Электрон движется в вакууме в однородном магнитном поле индукцией В = 5 мТл со скоростью 104 км / с перпендикулярно линиям магнитной индукции.

Определите силу, действующую на электрон со стороны магнитного поля , и радиус окружности, по которой он движется.


Работа выхода электрона с поверхности металла 2еВ?

Работа выхода электрона с поверхности металла 2еВ.

Найдите энергию кванта, если кинетическая энергия фотоэлектрона составляет 0, 5 еВ.

Определите максимальную скорость фотоэлектронов вырываемых с поверхности цинка светом с длиной волны 0, 25 мкм?

Определите максимальную скорость фотоэлектронов вырываемых с поверхности цинка светом с длиной волны 0, 25 мкм.


Электрон влетает в однородное магнитное поле перпендикулярно линиям индукции?

Электрон влетает в однородное магнитное поле перпендикулярно линиям индукции.

Индукция магнитного поля равна 5Тл.

Электрон описывает окружность радиусом 20см.

С какой скоростью влетел электрон в однородное магнитное поле?



Электрон описывает в однородном магнитном поле окружность радиусом 5мм определите индукцию магнитного поля, если скорость движения электрона 3?

Электрон описывает в однородном магнитном поле окружность радиусом 5мм определите индукцию магнитного поля, если скорость движения электрона 3.

Фотон длина волны которого λ, вырывает с поверхности металла фотоэлектрона который попадает в однородное магнитное поле, имеет индукцию В и описывает в нем круг радиусом R?

Фотон длина волны которого λ, вырывает с поверхности металла фотоэлектрона который попадает в однородное магнитное поле, имеет индукцию В и описывает в нем круг радиусом R.

Определить работу выхода электрона из металла, масса электрона m, его заряд - е.

Красная граница фотоэффекта для некоторого металла равна 500 нм?

Красная граница фотоэффекта для некоторого металла равна 500 нм.

Определить максимальную скорость электронов вырываемых из этого металла светом с длиной волны 400 нм.

Электрон влетает в однородное магнитное поле с индукцией 1, 4 мТл в вакууме со скоростью 500км / с перпендикулярно линиями магнитной индукции?

Электрон влетает в однородное магнитное поле с индукцией 1, 4 мТл в вакууме со скоростью 500км / с перпендикулярно линиями магнитной индукции.

Определить силу, действующую на электрон и радиус окружности, по которой он движеться?


Электрон движется по окружности радиуса 10 см в однородном магнитном поле с индукцией 4 мТл перпендикулярно линиям индукции?

Электрон движется по окружности радиуса 10 см в однородном магнитном поле с индукцией 4 мТл перпендикулярно линиям индукции.

Определите скорость движения электрона.

Квант длиной волны L = 342 Å(ангстрем) вырывает с чистой поверхности металлического лития фотоэлектрон, который описывает в магнитном поле напряженностью Н = 1, 2 * 10 ^ 3 А / м окружность радиусом R ?

Квант длиной волны L = 342 Å(ангстрем) вырывает с чистой поверхности металлического лития фотоэлектрон, который описывает в магнитном поле напряженностью Н = 1, 2 * 10 ^ 3 А / м окружность радиусом R = 1, 2 см.

Определить энергию (работу выхода), затраченную на освобождение данного электрона из атома лития.

Некоторые формулы по вашему мнению могут не подходить, я их просто вспоминал и писал, в итоге вышел на финишную прямую.

Осталось все подставить и решить, общая формула есть и все подписи )


Определите максимальную кинетическую энергию фотоэлектрона калия при его освещении лучами с длиной волны 400 нм, если работа выхода электронов у калия равна 2?

Определите максимальную кинетическую энергию фотоэлектрона калия при его освещении лучами с длиной волны 400 нм, если работа выхода электронов у калия равна 2.

Работа выхода электронов из лития 2, 39 эВ.

ПОМОГИТЕ ПОЖАЛУЙСТА?

Работа выхода электронов с поверхности цезия 1, 89эВ.

Определить кинетическую энергию фотоэлектронов, если металл освещен желтым светом длиной волны 589 ммк.

Определите максимальную кинетическую энергию фотоэлектрона калия при его освещении светом с длиной волны 400нм если работа выхода электронов у калия равна 3, 6 * 10 ^ - 19?

Определите максимальную кинетическую энергию фотоэлектрона калия при его освещении светом с длиной волны 400нм если работа выхода электронов у калия равна 3, 6 * 10 ^ - 19.

Определите скорость фотоэлектронов при освещении металла светом волны 400 нм, если работа выхода электронов с поверхности металла 2 эв?

Определите скорость фотоэлектронов при освещении металла светом волны 400 нм, если работа выхода электронов с поверхности металла 2 эв.

Работа выхода электронов из цинка 4, 2 эВ?

Работа выхода электронов из цинка 4, 2 эВ.

А) Какой длине соответствует красная граница фотоэффекта для цинка?

Б) Чему равно значение запирающего напряжения для фото электронов при облучении такой же длины волны?

Работа выхода электронов из лития 4, 2эВ.


Фотон с длиной волны 0, 2мкм вырывает с поверхности натрия фотоэлектрон, кинетическая энергия которого 2эВ?

Фотон с длиной волны 0, 2мкм вырывает с поверхности натрия фотоэлектрон, кинетическая энергия которого 2эВ.

Определить работу и красную границу фотоэффекта.


Поверхность лития облучают светом частотой 10?

Поверхность лития облучают светом частотой 10.

максимальную кинетическую энергию фотоэлектронов, если работа выхода электронов из лития 2, 4

Определить энергию кванта и частоту излучения падающего на поверхность цезия если фотоэлектронам сообщается кинетическая энергия равная 3, 2 * 10 ^ - 19 Дж?

Определить энергию кванта и частоту излучения падающего на поверхность цезия если фотоэлектронам сообщается кинетическая энергия равная 3, 2 * 10 ^ - 19 Дж.

Работа выхода электрона с поверхности цезия равна 2, 88 * 10 ^ - 19 Дж.

Определить длину волны радиоактивного излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектронов, равной 10 Мм / с?

Определить длину волны радиоактивного излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектронов, равной 10 Мм / с.

Работой выхода электронов из металла пренебречь.

На этой странице сайта вы найдете ответы на вопрос Квант длиной волны L = 342 Å(ангстрем) вырывает с чистой поверхности металлического лития фотоэлектрон, который описывает в магнитном поле напряженностью Н = 1, 2 * 10 ^ 3 А / м окружность радиусом R ?, относящийся к категории Физика. Сложность вопроса соответствует базовым знаниям учеников 10 - 11 классов. Для получения дополнительной информации найдите другие вопросы, относящимися к данной тематике, с помощью поисковой системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям. Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы помогут найти нужную информацию.

Презентация по физике "Решение задач повышенной сложности" 10-11 класс

После того как вы поделитесь материалом внизу появится ссылка для скачивания.

Подписи к слайдам:

Презентация занятия кружка по физике для учащихся 10-11 классов (решение задач повышенной сложности) Тема занятия: «Фотоэффект» Длительность занятия: 80 минут Составила: Брехова В.Н Учитель МОУ СШ №102 Дзержинского района Волгограда 2015-2016 учебный год

При изучении явления фотоэффекта исследовалась зависимость энергии Ефэ вылетающих из освещенной пластины фотоэлектронов от частоты падающего света. Погрешности измерения частоты света и энергии фотоэлектронов составляли соответственно 5×1013 Гц и 4×10–19 Дж. Результаты измерений с учетом их погрешности представлены на рисунке. Согласно этим измерениям, постоянная Планка приблизительно равна

Четырёх учеников попросили нарисовать общий вид графика зависимости фототока насыщения I от интенсивности J падающего света. Какой из приведённых рисунков выполнен правильно?

Какой график соответствует зависимости максимальной кинетической энергии фотоэлектронов Е от частоты v падающих на вещество фотонов при фотоэффекте?

Слой оксида кальция облучается светом и испускает электроны. На рисунке показан график изменения максимальной энергии фотоэлектронов в зависимости от частоты падающего света. Какова работа выхода фотоэлектронов из оксида кальция?

На металлическую пластинку падает электромагнитное излучение, выбивающее из неё электроны, кинетическая энергия которых принимает значения от 0 до 3 эВ. Работа выхода электронов из металла равна 5 эВ. Чему равна энергия фотонов, падающих на пластинку?

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10–19 Дж и стали освещать ее светом частоты 6×1014Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с

1) увеличилось в 1,5 раза

2) стало равным нулю

3) уменьшилось в 2 раза

4) уменьшилось более чем в 2 раза

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10–19 Дж и стали освещать ее светом частоты 3×1014Гц. Затем частоту увеличили в 2 раза, оставив неизменным число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10– 19 Дж и стали освещать ее светом частоты 6×1014Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого максимальная кинетическая энергия фотоэлектронов

Металлическую пластину освещают светом с энергией фотонов 6,2 эВ. Работа выхода для металла пластины равна 2,5 эВ. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов?

Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода Aвых=2 эВ, если энергия фотонов равна 4,1 эВ.

Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода Aвых=2 эВ, если энергия фотонов равна 8,1 эВ.

При исследовании зависимости кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещался через различные светофильтры. В первой серии опытов использовался светофильтр, пропускающий только зелёный свет, а во второй – пропускающий только фиолетовый свет. В каждом опыте наблюдали явление фотоэффекта и измеряли запирающее напряжение. Как изменяются длина световой волны и запирающее напряжение при переходе от первой серии опытов ко второй?

Для каждой величины определите соответствующий характер её изменения:

3) не изменяется

На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?

Для каждой величины определите соответствующий характер изменения:

Кванты света с длиной волны 660 нм вырывают с поверхности металла фотоэлектроны, которые описывают в однородном магнитном поле с индукцией 1 мТл окружности максимальным радиусом 2 мм. Определите работу выхода электрона из металла.

Электроны, вылетевшие в положительном направлении оси OX под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть частота падающего света ν, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена против оси OY? Работа выхода для вещества катода 2,39 эВ, напряжённость электрического поля 3⋅102 В/м, индукция магнитного поля 10−3 Тл.

Урок решения задач по теме "Квантовая физика"(11 класс)

1. Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода A вых=2 эВ, если энергия фотонов равна 4,1 эВ.

испытывают β-распад с периодом полураспада 50 ч. В момент начала наблюдения в образце содержится 8*10 20 ядер эрбия. Через какую из точек, кроме точки А, пройдёт график зависимости от времени числа ещё не испытавших радиоактивный распад ядер эрбия?

3. Свободный пион (π 0 -мезон) с энергией покоя 135 МэВ движется со скоростью V, которая значительно меньше скорости света. В результате его распада образовались два γ-кванта, причём один из них распространяется в направлении движения пиона, а другой – в противоположном направлении. Энергия одного кванта на 10% больше, чем другого. Чему равна скорость пиона до распада?

4. Детектор полностью поглощает падающий на него свет длиной волны λ = 400 нм. Поглощаемая мощность Р = 1,1·10 –14 Вт. За какое время детектор поглотит N = 4·10 5 фотонов? Ответ округлите до целых.

5. При увеличении в 2 раза частоты света, падающего на поверхность металла, задерживающее напряжение для фотоэлектронов увеличилось в 3 раза. Первоначальная частота падающего света была равна 0,75 ⋅ 10 15 Гц. Какова длина волны, соответствующая «красной границе» фотоэффекта для этого металла?

6. Электроны, вылетевшие в положительном направлении оси OX под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть частота падающего света ν, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена против оси OY? Работа выхода для вещества катода 2,39 эВ, напряжённость электрического поля 3 ⋅ 10 2 В/м, индукция магнитного поля 10 −3 Тл.

7. Покоящийся атом излучает фотон с энергией 16,32·10 –19 Дж в результате перехода электрона из возбуждённого состояния в основное. Атом в результате отдачи начинает двигаться поступательно в противоположном направлении с кинетической энергией 8,81·10 –27 Дж. Найдите массу атома. Скорость атома считать малой по сравнению со скоростью света.

8. Электромагнитное излучение используется для нагревания воды массой 1 кг. За время 700 с температура воды увеличивается на 10 о С. Какова длина волны излучения, если источник испускает 10 20 фотонов за 1 с? Считать, что излучение полностью поглощается водой.

9. Уровни энергии электрона в атоме водорода задаются формулой En =− 13,6 n 2 эВ, где n = 1, 2, 3, … . При переходе атома из состояния Е2 в состояние Е1 атом испускает фотон. Попав на поверхность фотокатода, этот фотон выбивает фотоэлектрон. Частота света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, ν кр = 6 ⋅ 10 14 Гц. Чему равен максимально возможный импульс фотоэлектрона?

10. Один лазер излучает монохроматический свет с длиной волны λ

другой – с длиной волны λ

Отношение импульсов фотонов,

излучаемых лазерами, равно

11. В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,5 эВ и стали освещать ее светом частоты 3·10 15 Гц. Затем частоту падающей на пластину световой волны уменьшили в 4 раза, увеличив в 2 раза интенсивность светового пучка. В результате этого число фотоэлектронов, покидающих пластину за 1 с,

осталось приблизительно таким же

уменьшилось в 2 раза

оказалось равным нулю

уменьшилось в 4 раза

12. При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался красный светофильтр, а во второй – жёлтый. В каждом опыте измеряли напряжение запирания. Как изменяются длина световой волны, напряжение запирания и кинетическая энергия фотоэлектронов? Для каждой величины определите соответствующий характер её изменения:

13. Разреженный межзвёздный газ имеет линейчатый спектр излучения
с определённым набором длин волн. В спектре излучения звёзд, окружённых этим газом, наблюдаются линии поглощения с тем же набором длин волн. Это совпадение длин волн объясняется тем, что

температура межзвёздного газа в обоих случаях одна и та же

концентрация частиц межзвёздного газа и газа в облаке, окружающем звезду, одна и та же

химический состав звёзд и межзвёздного газа одинаков

длины волн излучаемых и поглощаемых фотонов определяются одним и тем же условием:

14. На рисунке изображена упрощённая диаграмма энергетических уровней атома. Нумерованными стрелками отмечены некоторые возможные переходы атома между этими уровнями. Установите соответствие между процессами поглощения света наибольшей длины волны и испускания света наибольшей длины волны и стрелками, указывающими энергетические переходы атома. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ЭНЕРГЕТИЧЕСКИЙ ПЕРЕХОД

поглощение света наибольшей длины волны

излучение света наибольшей длины волны

15. В таблице представлены результаты измерений максимальной энергии фотоэлектронов при двух разных значениях частоты падающего монохроматического света (νкр – частота, соответствующая красной границе фотоэффекта).

Частота падающего света ν

Максимальная энергия фотоэлектронов Eмакс

Какое значение энергии пропущено в таблице?

16. Предположим, что схема энергетических уровней атомов некоего вещества имеет вид, показанный на рисунке, и атомы находятся в состоянии с энергией Е (1) . Электрон, движущийся с кинетической энергией 1,5 эВ, столкнулся с одним из таких атомов и отскочил, приобретя некоторую дополнительную энергию. Определите импульс электрона после столкновения, считая, что до столкновения атом покоился. Возможностью испускания света атомом при столкновении с электроном пренебречь.

17.Пороговая чувствительность сетчатки человеческого глаза к видимому свету составляет 1,65 * 10 –18 Вт, при этом на сетчатку глаза ежесекундно попадает 5 фотонов. Определите, какой длине волны это соответствует.

18.«Красная граница» фотоэффекта для натрия λкр = 540 нм. Каково запирающее напряжение для фотоэлектронов, вылетающих из натриевого фотокатода, освещенного светом c длиной волны λ = 400 нм? Ответ округлите до десятых.

19.Энергия фотона в потоке фотонов, падающих на поверхность металла, в 2 раза превышает работу выхода электронов из металла. Во сколько раз надо увеличить частоту падающего излучения, чтобы максимальная скорость фотоэлектронов, вылетающих из этого металла, увеличилась в 2 раза?

20. Найдите работу выхода электронов из металла, если задерживающая разность потенциалов для излучения с некоторой длиной волны равна 3 В, а для длины волны в два раза большей равна 1 В.

21. Монохроматический свет с энергией фотонов Eф падает на поверхность металла, вызывая фотоэффект. При этом напряжение, при котором фототок прекращается, равно Uзап. Как изменятся длина волны λ падающего света и модуль запирающего напряжения Uзап, если энергия падающих фотонов Eф уменьшится, но фотоэффект не прекратится?

22. Когда на металлическую пластину падает электромагнитное излучение с длиной волны λ, максимальная кинетическая энергия фотоэлектронов равна 4,5 эВ. Если длина волны падающего излучения равна 2λ, то максимальная кинетическая энергия фотоэлектронов равна 1 эВ. Чему равна работа выхода электронов из металла?

23. Зелёный свет (λ = 550 нм) переходит из воздуха в стекло с показателем преломления 1,5. Определите отношение частоты фотона в воздухе к его частоте в стекле.

24. Во сколько раз частота света, соответствующая «красной границе» фотоэффекта для металла с работой выхода 1 эВ, меньше частоты света, соответствующей «красной границе» фотоэффекта для металла с работой выхода 3,2*10 –19 Дж?

25. Зелёный свет (λ = 550 нм) переходит из воздуха в стекло с показателем преломления 1,5. Определите отношение энергии фотона в воздухе к его энергии в стекле.

26. Кванты света с длиной волны 660 нм вырывают с поверхности металла фотоэлектроны, которые описывают в однородном магнитном поле с индукцией 1 мТл окружности максимальным радиусом 2 мм. Определите работу выхода электрона из металла.

27 . В вакууме находятся два кальциевых электрода, к которым подключён конденсатор ёмкостью 4000 пФ. При длительном освещении катода светом фототок между электродами, возникший вначале, прекращается, а на конденсаторе появляется заряд 5,5 ⋅ 10 −9 Кл. «Красная граница» фотоэффекта для кальция λ0=450 нм. Определите частоту световой волны, освещающей катод. Ёмкостью системы электродов пренебречь.

28. В вакууме находятся два кальциевых электрода, к которым подключён конденсатор ёмкостью 4000 пФ. При длительном освещении катода светом фототок между электродами, возникший вначале, прекращается, а на конденсаторе появляется заряд 5,5 ⋅ 10 −9 Кл. «Красная граница» фотоэффекта для кальция λ0=450 нм. Определите частоту световой волны, освещающей катод. Ёмкостью системы электродов пренебречь.

29. Два источника излучают пучки монохроматического света с длинами волн λ 1 =500 нм и λ 2 =800 нм. Чему равно отношение импульсов фотонов p 1 / p 2 в этих пучках?

30. Фотоэлектроны, выбитые монохроматическим светом частоты ν = 6,7·10 14 Гц из металла с работой выхода Авых = 1,89 эВ, попадают в однородное электрическое поле Е = 100 В/м. Каков тормозной путь для тех электронов, чья скорость максимальна и направлена вдоль линий напряжённости поля?

31. Вольфрамовую пластину облучают светом с длиной волны 200 нм. Каков максимальный импульс вылетающих из пластины электронов, если работа выхода электронов из вольфрама равна 4,54 эВ?

32. Фотокатод с работой выхода 4,42 ⋅ 10 –19 Дж освещается монохроматическим светом. Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией 4 ⋅ 10 –4 Тл перпендикулярно линиям индукции этого поля и движутся по окружностям. Максимальный радиус такой окружности 10 мм. Какова частота ν падающего света?

33. Интенсивность монохроматического светового пучка плавно уменьшают, не меняя частоту света. Как изменяются при этом концентрация фотонов в световом пучке и скорость каждого фотона?

34. На металлическую пластинку падает свет, длина волны которого λ = 400 нм. Красная граница фотоэффекта для металла этой пластинки λкр=600 нм. Во сколько раз энергия падающего фотона превосходит максимальную кинетическую энергию фотоэлектрона, выбитого из пластинки?

35. Поток фотонов выбивает из металла фотоэлектроны, максимальная кинетическая энергия которых 10 эВ. Энергия фотонов в 3 раза больше работы выхода фотоэлектронов. Какова энергия фотонов?

36. Металлическую пластину освещают монохроматическим светом с длиной волны λ=531 нм. Каков максимальный импульс фотоэлектронов, если работа выхода электронов из данного металла Aвых=1,73 ⋅ 10 −19 Дж?

37. Один лазер излучает монохроматический свет с частотой ν1=6 ⋅ 10 14 Гц, другой – с частотой ν2=5 ⋅ 10 14 Гц. Каково отношение импульсов р1/р2 фотонов, излучаемых этими лазерами?

38. Значения энергии электрона в атоме водорода задаются формулой: En=−13,6эВ/n 2 , n = 1, 2, 3, . . При переходах с верхних уровней энергии на нижние атом излучает фотон. Переходы с верхних уровней на уровень c n = 1 образуют серию Лаймана, на уровень c n = 2 – серию Бальмера и т. д. Найдите отношение максимальной длины волны фотона в серии Бальмера к максимальной длине волны фотона в серии Лаймана.

Читайте также: